81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of carbon nanotube levels in organic matter: an inter-laboratory comparison to determine best practice

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 214-228 | Received 13 Nov 2023, Accepted 11 Mar 2024, Published online: 01 Apr 2024

References

  • APB. 2013. "Association Pharmaceutique Belge. Vérification/auto contrôle, des préparations en officine. Documents et site My Quality Assistant/FTM 2ème édition 2010 (CD ROM)." http://www.uphoc.com/files/uploads/2017/05/Autocontrole-preparations-officine-docAUP.pdf.
  • Bourdiol, F., D. Dubuc, K. Grenier, F. Mouchet, L. Gauthier, and E. Flahaut. 2015. “Quantitative Detection of Carbon Nanotubes in Biological Samples by an Original Method Based on Microwave Permittivity Measurements.” Carbon 81: 535–545. https://doi.org/10.1016/j.carbon.2014.09.086.
  • Czarny, B., D. Georgin, F. Berthon, G. Plastow, M. Pinault, G. Patriarche, A. Thuleau, et al. 2014. “Carbon Nanotube Trans Location to Distant Organs after Pulmonary Exposure: Insights from in Situ C-14-Radiolabeling and Tissue Radioimaging.” ACS Nano 8 (6): 5715–5724. https://doi.org/10.1021/nn500475u.
  • Devoy, J., H. Nunge, E. Bonfanti, C. Seidel, L. Gaté, and F. Cosnier. 2020. “Quantitative Measurement of Carbon Nanotubes in Rat Lung.” Nanotoxicology 14 (9): 1227–1240. https://doi.org/10.1080/17435390.2020.1814439.
  • Donaldson, K., F. A. Murphy, R. Duffin, and C. A. Poland. 2010. “Asbestos, Carbon Nanotubes and the Pleural Mesothelium: A Review of the Hypothesis regarding the Role of Long Fibre Retention in the Parietal Pleura, Inflammation and Mesothelioma.” Particle and Fibre Toxicology 7 (1): 5. https://doi.org/10.1186/1743-8977-7-5.
  • Doudrick, K., P. Herckes, and P. Westerhoff. 2012. “Detection of Carbon Nanotubes in Environmental Matrices Using Programmed Thermal Analysis.” Environmental Science & Technology 46 (22): 12246–12253. https://doi.org/10.1021/es300804f.
  • ECHA. 2022. Multi-Walled Carbon Tubes (synthetic graphite in tubular shape) with a geometric tube diameter range _ 30nm to <3 lm and a length _5 lm and aspect ratio > 3:1, including Multi-Walled Carbon Nanotubes. MWC(N)T. https://echa.europa.eu/fr/registry-of-clh-intentions-untiloutcome/-/dislist/details/0b0236e18195a284
  • Ellinger-Ziegelbauer, H., and J. Pauluhn. 2009. “Pulmonary Toxicity of Multi-Walled Carbon Nanotubes (Baytubes) Relative to Alpha-Quartz following a Single 6h Inhalation Exposure of Rats and a 3 Months Post-Exposure Period.” Toxicology 266 (1-3): 16–29. https://doi.org/10.1016/j.tox.2009.10.007.
  • Gonzalez, A. G., and M. A. Herrador. 2007. “A Practical Guide to Analytical Method Validation, Including Measurement Uncertainty and Accuracy Profiles.” Trac-Trends in Analytical Chemistry 26: 227–238.
  • Grenier, K., D. Dubuc, P.-E. Poleni, M. Kumemura, H. Toshiyoshi, T. Fujii, and H. Fujita. 2009. “Integrated Broadband Microwave and Microfluidic Sensor Dedicated to Bioengineering.” IEEE Transactions on Microwave Theory and Techniques 57 (12): 3246–3253. https://doi.org/10.1109/TMTT.2009.2034226.
  • He, Y., S. R. Al-Abed, and D. D. Dionysiou. 2017. “Quantification of Carbon Nanotubes in Different Environmental Matrices by a Microwave Induced Heating Method.” The Science of the Total Environment 580: 509–517. https://doi.org/10.1016/j.scitotenv.2016.11.205.
  • IARC. 2017. "IARC Monographs on the Evaluation of Carcinogenic Risks to Humans." https://monographsiarcfr/wp-content/uploads/2018/06/mono111-01pdf 111.
  • Kasai, T., Y. Umeda, M. Ohnishi, T. Mine, H. Kondo, T. Takeuchi, M. Matsumoto, and S. Fukushima. 2016. “Lung Carcinogenicity of Inhaled Multi-Walled Carbon Nanotube in Rats.” Particle and Fibre Toxicology 13 (1): 53. https://doi.org/10.1186/s12989-016-0164-2.
  • Kim, J. K., M. S. Jo, Y. Kim, T. G. Kim, J. H. Shin, B. W. Kim, H. P. Kim, et al. 2020. “28-Day Inhalation Toxicity Study with Evaluation of Lung Deposition and Retention of Tangled Multi-Walled Carbon Nanotubes.” Nanotoxicology 14 (2): 250–262. https://doi.org/10.1080/17435390.2019.1700568.
  • Lee, D. K., S. Jeon, J. Jeong, K. S. Song, and W. S. Cho. 2020. “Carbon Nanomaterial-Derived Lung Burden Analysis Using UV-Vis Spectrophotometry and Proteinase K Digestion.” Particle and Fibre Toxicology 17 (1): 43. https://doi.org/10.1186/s12989-020-00377-9.
  • Morimoto, Y., M. Hirohashi, N. Kobayashi, A. Ogami, M. Horie, T. Oyabu, T. Myojo, et al. 2012. “Pulmonary Toxicity of Well-Dispersed Single-Wall Carbon Nanotubes after Inhalation.” Nanotoxicology 6 (7): 766–775. https://doi.org/10.3109/17435390.2011.620719.
  • NIOSH. 2013. Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. https://www.cdc.gov/niosh/docs/2013-145/default.html
  • Ohnishi, M., H. Yajima, T. Kasai, Y. Umeda, M. Yamamoto, S. Yamamoto, H. Okuda, et al. 2013. “Novel Method Using Hybrid Markers: development of an Approach for Pulmonary Measurement of Multi-Walled Carbon Nanotubes.” Journal of Occupational Medicine and Toxicology 8 (1): 30. https://doi.org/10.1186/1745-6673-8-30.
  • Ohnishi, M., M. Suzuki, M. Yamamoto, T. Kasai, H. Kano, H. Senoh, I. Higashikubo, et al. 2016. “Improved Method for Measurement of Multi-Walled Carbon Nanotubes in Rat Lung.” Journal of Occupational Medicine and Toxicology 11 (1): 44–49. https://doi.org/10.1186/s12995-016-0132-7.
  • Pacurari, M., V. Castranova, and V. Vallyathan. 2010. “Single- and Multi-Wall Carbon Naotubes versus Asbestos: are the Carbon Nanotubes a New Health Risk to Humans?” Journal of Toxicology and Environmental Health. Part A 73 (5): 378–395. https://doi.org/10.1080/15287390903486527.
  • Pauluhn, J. 2010. “Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures, Not Fibrillar Structures.” Toxicological Sciences: An Official Journal of the Society of Toxicology 113 (1): 226–242. https://doi.org/10.1093/toxsci/kfp247.
  • Petersen, E. J., D. X. Flores-Cervantes, T. D. Bucheli, L. C. C. Elliott, J. A. Fagan, A. Gogos, S. Hanna, et al. 2016. “Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects.” Environmental Science & Technology 50 (9): 4587–4605. https://doi.org/10.1021/acs.est.5b05647.
  • Petersen, E., A. C. Barrios, R. Bjorkland, D. G. Goodwin, J. Li, G. Waissi, T. Henry, et al. 2023. “Evaluation of Bioaccumulation of Nanoplastics, Carbon Nanotubes, Fullerenes, and Graphene Family Materials.” Environment International 173: 107650. https://doi.org/10.1016/j.envint.2022.107650.
  • Plata, D. L., C. M. Reddy, and P. M. Gschwend. 2012. “Thermogravimetry-Mass Spectrometry for Carbon Nanotube Detection in Complex Mixtures.” Environmental Science & Technology 46 (22): 12254–12261. https://doi.org/10.1021/es203198x.
  • Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, et al. 2010. “Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes.” Toxicology 269 (2-3): 136–147. https://doi.org/10.1016/j.tox.2009.10.017.
  • Poulsen, S. S., K. B. Knudsen, P. Jackson, I. E. K. Weydahl, A. T. Saber, H. Wallin, U. Vogel, et al. 2017. “Multi-Walled Carbon Nanotube-Physicochemical Properties Predict the Systemic Acute Phase Response following Pulmonary Exposure in Mice.” PloS One 12 (4): e0174167. https://doi.org/10.1371/journal.pone.0174167.
  • Rasmussen, K., J. Mast, P. De Temmerman, E. Verleysen, N. Waegeneers, F. Van Steen, J. Pizzolon, et al. 2014. Multi-Walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties. Joint Research Centre report Report EUR 26796 EN. Luxembourg: Publications Office of the European Union.
  • Reed, R. B., D. G. Goodwin, K. L. Marsh, S. S. Capracotta, C. P. Higgins, D. H. Fairbrother, J. F. Ranville, et al. 2013. “Detection of Single Walled Carbon Nanotubes by Monitoring Embedded Metals.” Environmental Science. Processes & Impacts 15 (1): 204–213. https://doi.org/10.1039/c2em30717k.
  • Ryman-Rasmussen, J. P., E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, and J. C. Bonner. 2009. “Inhaled Multiwalled Carbon Nanotubes Potentiate Airway Fibrosis in Murine Allergic Asthma.” American Journal of Respiratory Cell and Molecular Biology 40 (3): 349–358. https://doi.org/10.1165/rcmb.2008-0276OC.
  • Schierz, A., A. N. Parks, K. M. Washburn, G. T. Chandler, and P. L. Ferguson. 2012. “Characterization and Quantitative Analysis of Single-Walled Carbon Nanotubes in the Aquatic Environment Using near-Infrared Fluorescence Spectroscopy.” Environmental Science & Technology 46 (22): 12262–12271. https://doi.org/10.1021/es301856a.
  • Shvedova, A. A., E. Kisin, A. R. Murray, V. J. Johnson, O. Gorelik, S. Arepalli, A. F. Hubbs, et al. 2008. “Inhalation vs. aspiration of Single-Walled Carbon Nanotubes in C57BL/6 Mice: inflammation, Fibrosis, Oxidative Stress, and Mutagenesis.” American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (4): L552–565. https://doi.org/10.1152/ajplung.90287.2008.
  • Sobek, A., and T. D. Bucheli. 2009. “Testing the Resistance of Single- and Multi-Walled Carbon Nanotubes to Chemothermal Oxidation Used to Isolate Soots from Environmental Samples.” Environmental Pollution (Barking, Essex: 1987) 157 (4): 1065–1071. https://doi.org/10.1016/j.envpol.2008.09.004.
  • Tanaka, K., T. Yamabe, and K. Fukui. 1999. The Science and Technology of Carbon Nanotubes. 1st ed. Oxford: Elsevier.
  • Weissleder, R. 2001. “A Clearer Vision for in Vivo Imaging.” Nature Biotechnology 19 (4): 316–317. https://doi.org/10.1038/86684.
  • Wright, M. D., A. J. Buckley, and R. Smith. 2020. “Estimates of Carbon Nanotube Deposition in the Lung: improving Quality and Robustness.” Inhalation Toxicology 32 (7): 282–298. https://doi.org/10.1080/08958378.2020.1785594.
  • Ye, Y., S. J. Cai, M. Yan, T. Y. Chen, and T. L. Guo. 2013. “Concentration Detection of Carbon Nanotubes in Electrophoretic Suspension with UV-Vis Spectrophotometry for Application in Field Emission Devices.” Applied Surface Science 284: 107–112. https://doi.org/10.1016/j.apsusc.2013.07.037.
  • Zhang, M. F., Y. Xu, M. Yang, M. Yudasaka, and T. Okazaki. 2020. “Clearance of Single-Wall Carbon Nanotubes from the Mouse Lung: A Quantitative Evaluation.” Nanoscale Advances 2 (4): 1551–1559. https://doi.org/10.1039/d0na00040j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.