573
Views
204
CrossRef citations to date
0
Altmetric
Original

Assessing exposure to airborne nanomaterials: Current abilities and future requirements

&
Pages 26-41 | Published online: 10 Jul 2009

References

  • American Conference of Government Industrial Hygienists (ACGIH). Particle size-selective sampling for particulate air contaminants. ACGIH, Cincinnati, OH 1999
  • Antonini JM. Health effects of welding. Crit Rev Toxicol 2003; 33(1)61–103
  • ASTM International. 2006. Terminology for Nanotechnology, E 2456-06, ASTM International.
  • Baltensperger, U, Weingartner, E, Burtscher, H, Keskinen, J. 2001. Dynamic mass and surface area measurements. In: PAB Baron, Willeke, K, editors. Aerosol measurement. Principles, techniques and applications. 2nd ed. New York: Wiley-Interscience. pp 387–418.
  • Baron, PA, Sorensen, CM, Brockmann, JE. 2001. Nonspherical particle measurements: Shape factors, fractals and fibers. In: PA Baron, Willeke, K, editors. Aerosol measurement. Principles, techniques and applications. 2nd ed. New York: Wiley Interscience. pp 705–749.
  • Baron, PA, Willeke, K. 2001. Aerosol measurement. Principles, techniques and applications. New York: Wiley-Interscience.
  • Brouwer DH, Gijsbers JHJ, Lurvink MWM. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. Ann Occup Hyg 2004; 48(5)439–453
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175(3)191–199
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938; 60: 309
  • European Committee for Standardization (CEN). 1993. Workplace atmospheres – size fraction determination for measurement of airborne particles, CEN EN 481:1993 Brussels, CEN.
  • Chamberlain EAC, Makower AD, Walton WH. New gravimetric dust standards and sampling procedures for British coal mines. Inhaled particles III. Unwin Brothers Ltd, LondonUK 1970
  • Cohen BS, Li W, Xiong JW, Lippmann M. Detecting H + in ultrafine ambient aerosol using iron nano-film detectors and scanning probe microscopy. Appl Occup Environ Hyg 2000; 15(1)80–89
  • Dick CAJ, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 2003; 15(1)39–52
  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993; 329(24)1753–1759
  • Dockery DW, Speizer FE, Stram DO, Ware JH, Spengler JD, Ferris BG. Effects of inhalable particles on respiratory health of children. Ann Allergy 1989; 139: 587–594
  • Donaldson K, Li XY, MacNee W. Ultrafine (nanometer) particle mediated lung injury. J Aerosol Sci 1998; 29(5–6)553–560
  • Donaldson K, Stone V, Gilmore PS, Brown DM, MacNee W. Ultrafine particles: Mechanisms of lung injury. Phil Trans R Soc Lond A 2000; 358: 2741–2749
  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Finkelstein J, Oberdorster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006; 114(8)1172–1178
  • Environmental Protection Agency (EPA). 2005. U.S. Environmental Protection Agency Nanotechnology White Paper: External Review Draft, EPA.
  • Fissan, H, Neumann, S, Trampe, A, Pui, DHY, Shin, WG. 2007. Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res, 9((1)):53–59.
  • Gaggeler HW, Baltensperger U, Emmenegger M, Jost DT, Schmidtott A, Haller P, Hofmann M. The epiphaniometer, a new device for continuous aerosol monitoring. J Aerosol Sci 1989; 20(5)557–564
  • Gebhart, J. 2001. Optical direct-reading techniques: Light intensity systems. In:. P Baron, Willeke, K, editors. Aerosol measurement: Principles, techniques, and applications. New York: John Wiley & Sons. pp 419–454.
  • HM Government. 2005. Characterizing the potential risks posed by engineered nanoparticles. A first UK government research report. Department for Environment Food and Rural Affairs.
  • Hunter D. The diseases of occupations6th edn. Hodder and Stoughton, London 1978
  • International Standards Organisation (ISO). 1995. Air quality – particle size fraction definitions for health-related sampling, ISO 7708:1995. Geneva: ISO.
  • International Standards Organisation (ISO). 2006. Workplace atmospheres – ultrafine, nanoparticle and nano-structured aerosols – inhalation exposure characterization and assessment, ISO/TR 27628. Geneva: ISO.
  • Jung H, Kittelson DB. Characterization of aerosol surface area instruments in transition regime. Aerosol Sci Tech 2005; 39: 902–911
  • Keller A, Fierz M, Siegmann K, Siegmann HC, Filippov A. Surface science with nanosized particles in a carrier gas. J Vacuum Sci Technol a –Vacuum Surfaces Films 2001; 19(1)1–8
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Env Health Pt A 2002; 65(20)1513–1530
  • Ku BK, Maynard AD. Comparing aerosol surface-area measurement of monodisperse ultrafine silver agglomerates using mobility analysis, transmission electron microscopy and diffusion charging. J Aerosol Sci 2005; 36(9)1108–1124
  • Kuhlbusch TAJ, Neumann S, Fissan H. Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J Occup Environ Hyg 2004; 1(10)660–671
  • Lison D, Lardot C, Huaux F, Zanetti G, Fubini B. Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol 1997; 71(12)725–729
  • MacNee W, Donaldson K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Resp J 2003; 21: 47S–51
  • Mark D, Vincent JH. A new personal sampler for airborne total dust in workplaces. Ann Occup Hyg 1986; 30(1)89–102
  • Maynard, AD. 2006. Nanotechnology: A research strategy for addressing risk, PEN 03 Washington DC, Woodrow Wilson International Center for Scholars. Project on Emerging Nanotechnologies.
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB. Safe handling of nanotechnology. Nature 2006a; 444(16)267–269
  • Maynard, AD, Baron, PA. 2004. Aerosols in the industrial environment. In: LS Ruzer, Harley, NH, editors. Aerosols handbook. Measurement, dosimetry and health effects. Boca Raton: CRC Press. pp 225–264.
  • Maynard AD, Brown LM. Overview of methods for analysing single ultrafine particles. Philosophical Transact Royal Soc London Ser A – Mathematical Phys Engineering Sci 2000; 358(1775)2593–2609
  • Maynard, AD, Jensen, PA. 2001. Aerosol measurement in the workplace. In: PA Baron, Willeke, K, editors. Aerosol measurement: Principles, techniques and applications. 2nd ed. New York: Wiley Interscience. pp 779–799.
  • Maynard, AD, Ku, BK, Emery, M, Stolzenburg, M, McMurry, PH. 2007. Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. J Nanopart Res, 9((1)):85–92.
  • Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J Nanopart Res 2005; 7(6)587–614
  • McCawley MA, Kent MS, Berakis MT. Ultrafine beryllium aerosol as a possible metric for chronic beryllium disease. Appl Occup Environ Hyg 2001; 16: 631–638
  • Mossman B, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 1998; 157: 1666–1680
  • National Institute for Occupational Safety and Health (NIOSH). 2006. Approaches to safe nanotechnology. An information exchange with NIOSH. Updated June 2006, www.cdc.gov/niosh/topics/nanotech. Atlanta, GA: NIOSH.
  • National Science and Technology Council (NSET). 2006. Environmental, health and safety research needs for engineered nanoscale materials, Washington DC, Subcommittee on Nanoscale Science, Engineering and Technology, Committee on Technology, NSET.
  • Oberdörster G. Toxicology of ultrafine particles: In vivo studies. Phil Trans Roy Soc London Series A 2000; 358(1775)2719–2740
  • Oberdörster G, Gelein RM, Ferin J, Weiss B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?. Inhal Toxicol 1995; 7: 111–124
  • Oberdörster, G, Maynard, A, Donaldson, K, Castranova, V, Fitzpatrick, J, Ausman, K, Carter, J, Karn, B, Kreyling, W, Lai, D, Olin, S, Monteiro-Riviere, N, Warheit, D, Yang, H. 2005a. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fiber Toxicol, 2(8): DOI:10.1186/1743-8977-2-8.
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005b; 13(117)823–840
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16(6–7)437–445
  • Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 1997; 74(1)24–33
  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respiratory Crit Care Med 1997; 155(4)1376–1383
  • Pope CAI, Dockery DW, Spengler JD, Raizenne ME. Respiratory health and PM10 pollution: a daily time series analysis. Am Rev Resp Dis 1991; 144: 668–674
  • Rogak SN, Flagan RC, Nguyen HV. The mobility and structure of aerosol agglomerates. Aerosol Sci Technol 1993; 18(1)25–47
  • Romieu I, Meneses F, Ruiz S, Sienra JJ, Huerta J, White MC, Etzel RA. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. Am J Respir Care Med 1996; 154: 300–307
  • The Royal Society and The Royal Academy of Engineering (RS/RAE). 2004. Nanoscience and nanotechnologies: Opportunities and uncertainties, LondonUK: RS/RAE.
  • Schwartz J. Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease. Thorax 1995; 50: 531–538
  • Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles?. J Air Waste Manage Assoc 1996; 46(10)927–939
  • Schwartz J, Slater D, Larson TV, Pierson WE, Koenig JQ. Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis 1993; 147: 826–831
  • Schwartz J, Spix C, Wichmann HE, Malin E. Air pollution and acute respiratory illness in five German communities. Environ Res 1991; 56: 1–4
  • Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995; 345: 176–178
  • Shi JP, Harrison RM, Evans D. Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS. Atmos Environ 2001; 35: 6193–6200
  • Shin, WG, Pui, DHY, Fissan, H, Neumann, S, Trampe, A. 2007. Calibration and numerical simulation of Nanoparticle Surface Area Monitor (TSI Model 3550 NSAM). J Nanopart Res, 9((1)):61–69.
  • Talbot JH. A diffraction size-frequency analyser with automatic recording of size-frequency distributions and total and respirable surface areas. J Sci Instrum 1966; 43: 744–749
  • Talbot JH. Automated dust measurement: The diffraction size-frequency analyser. J Mine Vent Soc S Afr 1967; 20: 21–30
  • Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalat Toxicol 2000; 12(12)1113–1126
  • Walton HW, Vincent JH. Aerosol instrumentation in occupational hygiene: An historical perspective. Aerosol Sci Tech 1998; 28: 417–438
  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91(1)227–236

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.