519
Views
94
CrossRef citations to date
0
Altmetric
Original

Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes

, , , &
Pages 211-226 | Received 05 Jun 2007, Published online: 10 Jul 2009

References

  • Atkins P, de Poula J. Physical Chemistry7th Ed. Freeman and Company, New York, W. H 2002
  • Anjilvel S, Asgharian B. A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 1995; 28: 41–50
  • ASTM International Committee E56 on Nanotechnology. 2006. ASTM E2456-06 Standard Terminology for Nanotechnology is available at: www.astm.org.
  • Baggs RB, Ferin J, Oberdörster G. Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet Pathol 1997; 34: 592–597
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004; 77: 347–357
  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 2002; 70: 86–97
  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJW, Yang PC. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 2006; 20: E1732–1741
  • Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdörster G, Salem H, Schlesinger RB. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicol Sci 2000; 55: 24–35
  • Driscoll KE, Lindenschmidt RC, Maurer JK, Higgins JM, Ridder G. Pulmonary response to silica or titanium dioxide: Inflammatory cells, alveolar macrophage-derived cytokines, and histopathology. Am J Respir Cell Mol Biol 1990a; 2: 381–390
  • Driscoll KE, Lindenschmidt RC, Maurer JK, Perkins L, Perkins M, Higgins J. Pulmonary response to inhaled silica or titanium dioxide. Toxicol Appl Pharmacol 1991; 111: 201–210
  • Driscoll KE, Maurer JK, Lindenschmidt RC, Romberger D, Rennard SI, Crosby L. Respiratory tract responses to dust: Relationships between dust burden, lung injury, alveolar macrophage fibronectin release, and the development of pulmonary fibrosis. Toxicol Appl Pharmacol 1990b; 106: 88–101
  • Ferin J, Orberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 1992; 6: 535–542
  • Grassian VH, O'Shaughnessy P T, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007; 115(3)397–402
  • Gurr J, Wang A, Chen C, Jan K. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005; 213: 66–73
  • Hext PM. Current perspectives on particulate induced pulmonary tumors. Hum Exp Toxicol 1994; 13: 700–715
  • Hext PM, Tomenson JA, Thompson P. Titanium dioxide: Inhalation toxicology and epidemiology. Annals Occupat Hygiene 2005; 49(6)461–472
  • Lai YL. Comparative ventilation of the normal lung. Comparative biology of the normal lung, RA Parent. CRC Press, Boca Raton, FL 1991; 217–240
  • Lison D, Lardot C, Huaux F, Zanetti G, Fubini B. Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol 1997; 71: 725–729
  • Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A, Li WF, Carnes C, Klabunde KJ. Nanocrystalline metal oxides as unique chemical reagents/sorbents. Chem Eur J 2001; 7: 2505–2509
  • Limbach LK, Yuchun L, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 2005; 39: 9370–9376
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB. Safe handling of nanotechnology. Nature 2006; 444: 267–269
  • Moss OR, Wong VA. When nanoparticles get in the way: Impact of projected area on in vivo and in vitro macrophage function. Inhal Toxicol 2007; 18: 711–716
  • Nadithe V, Rahamatalla M, Finlay WH, Mercer JR, Samuel J. Evaluation of nose-only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs. J Pharm Sci 2003; 92: 1066–1076
  • Naicker PK, Cummings PT, Zhang H, Banfield JF. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B 2005; 109: 15243–15249
  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622–627
  • Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2000; 74: 1–8
  • Oberdörster G, Cox C, Gelein R. Intratracheal instillation versus intratracheal inhalation of tracer particles for measuring lung clearance function. Exp Lung Res 1997; 23: 17–34
  • Oberdörster G Finkelstein JN Johnston C Gelein R Cox C Baggs R Elder ACP 2000. Acute pulmonary effects of ultrafine paricles in rats and mice. Research Report 96. Health Effects Institute, Cambridge MA.
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies. Environ Health Perspect 2005; 113: 823–839
  • O'Shaughnessy PT, Achutan C, O'Neill ME, Thorne PS. A small whole-body exposure chamber for laboratory use. Inhal Toxicol 2003; 15: 251–263
  • Osier M, Baggs RB, Oberdörster G. Intratracheal instillation versus intratracheal inhalation: Influence of cytokines on inflammatory response. Environ Health Perspect 1997; 105(Suppl. 5)1265–1271
  • Osier M, Oberdörster G. Intratracheal inhalation vs. intratracheal instillation: Differences in particle effects. Fundam Appl Toxicol 1997; 40: 220–227
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92: 174–185
  • Schmoll LH O'Shaughnessy PT Pratt L. Nanoparticle aerosol generation methods from bulk powders. (Abstract No. 10H16) 7th International Aerosol Conference, St Paul, MN. 10–15 September 2006.
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 2006; 114(3)328–333
  • Thorne PS. Inhalation toxicology models of endotoxin- and bioaerosol-induced inflammation. Toxicology 2000; 152(1–3)13–23
  • Thorne PS, Adamcakova-Dodd A, Kelly KM, O'Neill ME, Duchaine C. Metalworking fluid with mycobacteria and endotoxin induces hypersensitivity pneumonitis in mice. Am. J Respir Crit Care Med 2006; 173: 759–768
  • Thorne PS, McCray PB, Howe TS, O'Neill MA. Early-onset inflammatory responses in vivo to adenoviral vectors in the presence or absence of lipopolysaccharide-induced inflammation. Am J Respiratory Cell Molec Biol 1999; 20(6)1155–1164
  • Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalat Toxicol 2000; 12(12)1113–1126
  • Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity. Toxicol Sci 2005; 88: 514–524
  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91: 227–236
  • Wu L, Yu JC, Wang XC, Zhang L, Yu J. Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature. J Solid State Chem 2005; 178: 321–328
  • Zhang HZ, Penn RL, Hamers RJ, Banfield JF. Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J Phys Chem B 1999; 103: 4656–4662

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.