453
Views
84
CrossRef citations to date
0
Altmetric
Original

Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles

, , , , &
Pages 189-204 | Received 09 May 2008, Published online: 10 Jul 2009

References

  • Al-Abadleh HA, Grassian VH. Oxide surfaces as environmental interfaces. Surf Sci Rep 2003; 52: 63–161
  • Anjilvel S, Asgharian B. A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 1995; 28: 41–50
  • ASTM International Committee E56 on Nanotechnology, ASTM E2456-06 Standard Terminology for Nanotechnology is available at www.astm.org.
  • Atkins P, de Paula J. 2002. Physical Chemistry, 7th ed.; W.H. Freeman and Company: New York.
  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J Colloid Interface Sci 1999; 212: 474–482
  • Balbus J, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdörster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA. Hazard assessment for nanoparticles – report from an interdisciplinary workshop. Environ Health Perspect 2007; 115: 1654–1659
  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S. Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 2006; 90: 23–32
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 2006; 40: 4374–4381
  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006; 163: 109–120
  • Chen D, Gao L. A facile route for high-throughput formation of single-crystal alpha-Fe2O3 nanodisks in aqueous solutions of Tween 80 and triblock copolymer. Chem Phys Lett 2004; 395: 316–320
  • Downs RT, Hall-Wallace M. The American Mineralogist Crystal Structure Database. Am Mineralogist 2003; 88: 247–250
  • Driscoll KE, Carter JM, Hassenbein DG, Howard B. Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 1997; 105(Suppl. 5)1159–1164
  • Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W, Baggs RB, et al. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharm 1996; 136: 372–380
  • Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdörster G, Salem H, Schlesinger RB. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 2000; 55: 24–35
  • Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF. Nanoparticles: Strained and stiff. Science 2004; 305: 651–654
  • Gorantla VRK, Assiongbon KA, Babu SV, Roy D. Citric acid as a complexing agent in CMP of copper: Investigation of surface reactions using impedance spectroscopy. J Electrochem Soc 2005; 152: G404–410
  • Grassian VH, O'Shaughnessy P T, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007a; 115: 397–402
  • Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Nanotoxicology 2007b; 1: 211–226
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (danio rerio). Environ Sci Technol 2007; 41: 8178–8186
  • Hamelin ME, Prince GA, Gomez AM, Kinkead R, Boivin G. Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice. J Infect Dis 2006; 193: 1634–1642
  • Hsieh TH, Yu CP, Oberdörster G. Deposition and clearance models of Ni compounds in the mouse lung and comparisons with the rat models. Aerosol Sci Technol 1999; 31: 358–372
  • Kakkar R, Kapoor PN, Klabunde KJ. Theoretical study of the adsorption of formaldehyde on magnesium oxide nanosurfaces: Size effects and the role of low-coordinated and defect sites. J Phys Chem C 2004; 108: 18140–18148
  • Kim JS, Yoon T, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J, Cho MH. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006; 89: 338–347
  • Knaapen AM, Shi T, Borm PJA, Schins RPF. Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induce by particulate matter. Mol Cell Biochem 2002; 234/235: 317–326
  • Lai YL. Comparative ventilation of the normal lung. Comparative biology of the normal lung, RA Parent. CRC Press, Boca Raton, FL 1991; 217–240
  • Lay JC, Bennett WD, Ghio AJ, Bromberg PA, Costa DL, Kim CS, et al. Cellular and biochemical response of the human lung after intrapulmonary instillation of ferric oxide particles. Am J Respir Cell Mol Biol 1999; 20: 631–642
  • Liu G, Li1 X, Qin B, Xing D, Guo Y, Fan R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 2004; 17: 961–966
  • Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Wang Y, Zhao Y. Ultra high reactivity and grave nanotoxicity of copper nanoparticles. J Radioanal Nucl Chem 2007; 272: 595–598
  • Midander K, Pan J, Leygraf C. Elaboration of a test method for the study of metal release from stainless steel particles in artificial biological media. Corrosion Sci 2006; 48: 2855–2866
  • Midander K, Wallinder IO, Leygraf C. In vitro studies of copper release from powder particles in synthetic biological media. Environ Pollut 2007; 145: 51–59
  • Moss OR. Simulants of lung interstitial fluid. Health Phys 1979; 36: 447–448
  • Moss OR, Wong VA. When nanoparticles get in the way: Impact of projected area on in vivo and in vitro macrophage function. Inhal Toxicol 2007; 18: 711–716
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies. Environ Health Perspect 2005; 113: 823–839
  • O'Shaughnessy PT, Achutan C, O'Neill ME, Thorne PS. A small whole-body exposure chamber for laboratory use. Inha Toxicol 2003; 15: 251–263
  • Osier M, Oberdörster G. Intratracheal inhalation vs. intratracheal instillation: Differences in particle effects. Fundam Appl Toxicol 1997; 40: 220–227
  • Pisanic TR II, Blackwell JD, Shubayev VI, Finones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007; 28: 2572–2581
  • Powers KW, Palazuelos M, Moudgil BJ, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007; 1: 42–51
  • Rice TM, Clarke RW, Godleski JJ, Al-Mutairi E, Jiang NF, Hauser R, Paulauskis JD. Differential ability of transition metals to induce pulmonary inflammation. Toxicol Appl Pharmacol 2001; 177: 46–53
  • Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 2007; 97: 163–180
  • Seagrave JC, McDonald JD, Mauderly JL. In vitro versus in vivo exposure to combustion emissions. Exp Toxicol Pathol 2005; 57: 233–238
  • Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J, Barchowsky A, Castranova V, Kagan VE. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 2008; 38: 579–590
  • Stopford W, Turner J, Cappellini D, Brock T. Bioaccessibility testing of cobalt compounds. J Environ Monit 2003; 5: 675–680
  • Thorne PS, Adamcakova-Dodd A, Kelly KM, O'Neill ME, Duchaine C. Metalworking fluid with mycobacteria and endotoxin induces hypersensitivity pneumonitis in mice. Am J Respir Crit Care Med 2006; 173: 759–768
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005; 12: 1161–1208
  • Warheit DB, Borm PJA, Hennes C, Lademann J. Testing strategies to establish the safety of nanomaterials: Conclusions of an ECETOC workshop. Inhal Toxicol 2007; 19: 631–643
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharm 2002; 184: 172–179
  • Wu C, Yin M, O'Brien S, Koberstein JT. Quantitative analysis of copper oxide nanoparticle composition and structure by x-ray photoelectron spectroscopy. Chem Mater 2006; 18: 6054–6058
  • Yin M, Wu C, Lou Y, Burda C, Koberstein JT, Zhu Y, O'Brien S. Copper oxide nanocrystals. J Am Chem Soc 2005; 127: 9506–9511
  • Zhang H, Penn RL, Hamers RJ, Banfield JF. Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J Phys Chem B 1999; 103: 4656–4662
  • Zhang W. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 2003; 5: 323–332
  • Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE. Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 2003; 18: 227–235

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.