1
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Elimination study of intact lipid nanocapsules after intravenous rat administration

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Received 03 Jan 2024, Accepted 11 Apr 2024, Published online: 03 May 2024

References

  • Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond. J. Control. Rel. 2022;342:53–65. doi:10.1016/j.jconrel.2021.12.030
  • Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14:93–126. doi:10.2217/nnm-2018-0120
  • Da Silva FLO, Marques MBDF, Kato KC, et al. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin. Drug Discov. 2020;15:853–864. doi:10.1080/17460441.2020.1750591
  • Nikalje AP. Nanotechnology and its applications in medicine. Med. Chem. 2015;5(2):81–89. doi:10.4172/2161-0444.1000247
  • Park K, Otte A, Park H. Perspective on drug delivery in 2050. J. Control. Rel. 2022;344:157–159. doi:10.1016/j.jconrel.2022.02.025
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 2019;4(3):e10143. doi: 10.1002/btm2.10143
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 2018;9:790. doi:10.3389/fphar.2018.00790
  • Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35:257–264. doi:10.1016/j.tibtech.2016.08.011
  • Park SJ. Protein-nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomed. 2020;15:5783–5802. doi:10.2147/IJN.S254808
  • Zhang Y-N, Poon W, Tavares AJ, et al. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Rel. 2016;240:332–348. doi:10.1016/j.jconrel.2016.01.020
  • Huai Y, Hossen MN, Wilhelm S, et al. Nanoparticle interactions with the tumor microenvironment. Bioconjug. Chem. 2019;30:2247–2263. doi:10.1021/acs.bioconjchem.9b00448
  • Huang Y, Wang J, Jiang K, et al. Improving kidney targeting: the influence of nanoparticle physicochemical properties on kidney interactions. J. Control. Rel. 2021;334:127–137. doi:10.1016/j.jconrel.2021.04.016
  • Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018;3:358–374. doi:10.1038/s41578-018-0038-3
  • Baboci L, Capolla S, Di Cintio F, et al. The dual role of the liver in nanomedicine as an actor in the elimination of nanostructures or a therapeutic target. J. Oncol. 2020;2020:4638192. doi:10.1155/2020/4638192
  • Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi:10.1021/acsnano.9b01383
  • Lebreton V, Legeay S, Saulnier P, et al. Specificity of pharmacokinetic modeling of nanomedicines. Drug Discov. Today. 2021;26:2259–2268. doi:10.1016/j.drudis.2021.04.017
  • Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: overcoming the physiological barriers for precise drug delivery and clearance. J. Control. Rel. 2020;322:64–80. doi:10.1016/j.jconrel.2020.03.020
  • Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat. Biotechnol. 2007;25(10):1165–1170. doi:10.1038/nbt1340
  • Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9:6655–6674. doi:10.1021/acsnano.5b01320
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008;3:703–717. doi:10.2217/17435889.3.5.703
  • Naumenko V, Nikitin A, Kapitanova K, et al. Intravital microscopy reveals a novel mechanism of nanoparticles excretion in kidney. J. Control. Rel. 2019;307:368–378. doi:10.1016/j.jconrel.2019.06.026
  • Adhipandito CF, Cheung SH, Lin YH, et al. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 2021;22(20):11182. doi:10.3390/ijms222011182
  • Choi CH, Zuckerman JE, Webster P, et al. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA. 2011;108:6656–6661. doi:10.1073/pnas.1103573108
  • Lebreton V, Kaeokhamloed N, Vasylaki A, et al. Pharmacokinetics of intact lipid nanocapsules using new quantitative FRET technique. J. Control. Rel. 2022;351:681–691. doi:10.1016/j.jconrel.2022.09.057
  • Roger E, Gimel JC, Bensley C, Klymchenko AS, Benoit JP. Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model. J. Control. Rel. 2017;253:11–18. doi:10.1016/j.jconrel.2017.03.005
  • Groo AC, Bossiere M, Trichard L, et al. In vivo evaluation of paclitaxel-loaded lipid nanocapsules after intravenous and oral administration on resistant tumor. Nanomedicine (Lond). 2015;10(4):589–601. doi:10.2217/nnm.14.124
  • Wu H, Infante JR, Keedy VL, et al. Population pharmacokinetics of PEGylated liposomal CPT-11 (IHL-305) in patients with advanced solid tumors. Eur. J. Clin. Pharmacol. 2013;69(12):2073–2081. doi:10.1007/s00228-013-1580-y
  • Vonarbourg A, Passirani C, Saulnier P, et al. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356–4373. doi:10.1016/j.biomaterials.2006.03.039
  • Heurtault B, Saulnier P, Pech B, et al. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res. 2002;19(6):875–880.
  • US FDA. Bioanalytical Method Validation Guidance for Industry U.S. Food and Drug Administration. 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
  • International Conference on Harmonization. Validation of analytical procedures: text and methodology Q2(R1). European Medicines Agency 1994. https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline
  • Lainé AL, Gravier J, Henry M, et al. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring. J. Control. Rel. 2014;28(188):1–8. doi:10.1016/j.jconrel.2014.05.042
  • Probst RJ, Lim JM, Bird DN, et al. Gender differences in the blood volume of conscious Sprague–Dawley rats. J. Am. Assoc. Lab. Anim. Sci. 2006;45(2):49–52.
  • Davis FF. The origin of pegnology. Adv. Drug Deliv. Rev. 2002;17(54):457–458. doi:10.1016/s0169-409x(02)00021-2
  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012;134(4):2139–2147. doi:10.1021/ja2084338
  • Williams RM, Shah J, Tian HS, et al. Selective nanoparticle targeting of the renal tubules. Hypertension 2018;71(1):87–94. doi:10.1161/hypertensionaha.117.09843
  • Cahouet A, Denizot B, Hindré F, et al. Biodistribution of dual radiolabeled lipidic nanocapsules in the rat using scintigraphy and g counting. Int. J. Pharm. 2002;242(1–2):367–371. doi:10.1016/s0378-5173(02)00218-1
  • Allard E, Hindre F, Passirani C, et al. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur. J. Nucl. Med. Mol. Imag. 2008;35(10):1838–1846. doi:10.1007/s00259-008-0735-z
  • Hirsjärvi S, Sancey L, Dufort S, et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int. J. Pharm. 2013;453(2):594–600. doi:10.1016/j.ijpharm.2013.05.057
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008;5(4):505–515. doi:10.1021/mp800051m
  • Gustafson HH, Holt-Casper D, Grainger DW, et al. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. doi:10.1016/j.nantod.2015.06.006
  • Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008;5(4):496–504. doi:10.1021/mp800049w
  • Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987–992.
  • Pelaz B, Del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9(7):6996–7008. doi:10.1021/acsnano.5b01326
  • Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy”. Nanomater. Front. Bioeng. Biotechnol. 2020;3(8):166. doi:10.3389/fbioe.2020.00166
  • Zhang A, Meng K, Liu Y, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid Interface Sci. 2020;284:102261. doi:10.1016/j.cis.2020.102261
  • Lebreton V, Legeay S, Vasylaki A, et al. Protein corona formation on lipidic nanocapsules: influence of the interfacial PEG repartition. Eur. J. Pharm. Sci. 2023;1(189):106537. doi:10.1016/j.ejps.2023.106537
  • Wei Q, Becherer T, Angioletti-Uberti S, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem. Int. Ed. Engl. 2014;53(31):8004–8031. doi:10.1002/anie.201400546

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.