641
Views
10
CrossRef citations to date
0
Altmetric
Review

Nonalcoholic fatty liver disease, insulin resistance, and sweeteners: a literature review

, &
Pages 83-93 | Received 23 Sep 2019, Accepted 06 Mar 2020, Published online: 26 Mar 2020

References

  • NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128· 9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642.
  • World Health Organisation. Obesity and overweight 2016 [updated 2017 Oct cited 2017 Oct cited 2020 Feb 2]. Availablle from: www.who.int/mediacentre/factsheets/fs311/en/
  • De Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92:1257–1264.
  • Poulimeneas P, Grammatikopoulou M, Dimitrakopoulos L, et al. Regional differences in the prevalence of underweight, overweight and obesity among 13-year-old adolescents in Greece. Int J Pediatr Adolesc Med. 2016 Dec;3(4):153–161.
  • Rito AI, Buoncristiano M, Spinelli A, et al. Association between characteristics at birth, breastfeeding and obesity in 22 countries: the WHO European childhood obesity surveillance initiative - COSI 2015/2017. Obes Facts. 2019;12(2):226–243.
  • Ode KL, Frohnert BI, Nathan BM. Identification and treatment of metabolic complications in pediatric obesity. Rev Endocr Metab Disord. 2009;10(3):167–188.
  • van der Aa MP, Fazeli Farsani S, Knibbe CA, et al. Population-based studies on the epidemiology of insulin resistance in children. J Diabetes Res. 2015;2015:362375.
  • Bermudez V, Salazar J, Martínez MS, et al. Prevalence and associated factors of insulin resistance in adults from Maracaibo City, Venezuela. Adv Prev Med. 2016;2016:9405105.
  • US Food and Drug Administration. Additional information about high-intensity sweeteners permitted for use in food in the United States: US food and drug administration; 2017 cited 2020 Feb 2. Available from: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397725.htm
  • European Union (EU). Regulation (EC) No 1333/2008 of the European parliament and of the council of 16 December 2008 on Food Additives. [cited 2020 Feb 2]. Available from: http://data.europa.eu/eli/reg/2008/1333/oj
  • EFSA. European Food Safety Authority webpage for sweeteners. [cited 2020 Feb 2]. Available from: https://www.efsa.europa.eu/en/topics/topic/sweeteners
  • Martyn D, Roberts MD, Lee HY, et al. Low-/No-calorie sweeteners: a review of global intakes. Nutrients. 2018 Mar;10(3):357.
  • Roberts A. The safety and regulatory process for low calorie sweeteners in the United States. Physiol Behav. 2016 Oct 1;164(Pt B):439–444.
  • Younossi ZM, Marchesini G, Pinto-Cortez H, et al. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation. 2019 Jan;103(1):22–27.
  • Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017 Jan;37(Suppl 1):81–84.
  • EFSA. European Food Safety Authority Scientific Opinion on the substantiation of health claims related to the sugar replacers xylitol, sorbitol, mannitol, maltitol, lactitol, isomalt, erythritol, D-tagatose, isomaltulose, sucralose and polydextrose and maintenance of tooth mineralisation by decreasing tooth demineralisation (ID 463, 464, 563, 618, 647, 1182, 1591, 2907, 2921, 4300), and reduction of post-prandial glycaemic responses (ID 617, 619, 669, 1590, 1762, 2903, 2908, 2920) pursuant to Article 13 (1)of Regulation (EC) No 1924/2006. Efsa J. 2011;9(4):2076.
  • ISA. International sweeteners association booklet, low calorie sweeteners: role and benefits, 2016 [cited 2020 Feb 2]. Available from: http://www.efad.org/en-us/news/stakeholders-news/isa-booklet-low-calorie-sweeteners-role-and-benefits-september-2018/
  • EPA. European Association of polyol producers webpage, 2016 [cited 2020 Feb 1]. Available from: http://polyols-eu.org
  • Association AD. Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners. J Am Diet Assoc. 2004;104:255–275.
  • Mayo Clinic Staff. Artificial sweeteners and other sugar substitutes (online). [updated 2020 Feb 04 cited 2014 Sept 20]. Available from: http://www.mayoclinic.org/healthy-living/nutrition-and-=healthy-eating/in-depth/artificial-sweeteners/art-20046936
  • Prashant GM, Patil RB, Nagaraj T, et al. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract. 2012;13(6):749–752.
  • Beiswanger BB, Boneta AE, Mau MS, et al. The effect of chewing sugar-free gum after meals on clinical caries incidence. JADA. 1998;129:1623–1626.
  • Roos EH, Donly KJ. In vivo dental plaque pH variation with regular and diet soft drinks. Pediatr Dent. 2002;24:350–353.
  • Korte A, Angelopoulou MV, Maroulakos G. Assessing the effect of low calorie soda beverages on primary tooth enamel: an in Vitro study. J Clin Pediatr Dent. 2019;43(3):190–195.
  • Ludwig DS. Relation between consumption of sugar sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet. 2001;357(9255):505–508.
  • Katan MB, De Ruyter JC, Kuijper LDJ, et al. Impact of masked replacement of sugar-sweetened with sugar-free beverages on body weight increases with initial BMI: secondary analysis of data from an 18 month double-blind trial in children. PLoS ONE. 2016;11:7.
  • Taljaard C, Covic NM, van Graan AE, et al. Effects of a multi-micronutrient-fortified beverage, with and without sugar, on growth and cognition in South African schoolchildren: a randomised, double-blind, controlled intervention. Br J Nutr. 2013;110:2271–2284.
  • Ebbeling CB, Feldman HA, Osganian SK, et al. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics. 2006;117(3):673–680.
  • Santos NC, de Araujo LM, De Luca Canto G, et al. Data concerning effects of aspartame on main metabolic variables associated to diabetes and obesity do not support a beneficial related to its consumption. Crit Rev Food Sci Nutr. 2018;58(12):2068–2081.
  • Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr. 2014 Sep;100(3):765–777.
  • Lohner S, Toews I, Meerpohl JJ. Health outcomes of non nutritive sweeteners: analysis of the research landscape. Nutr J. 2017 Sep 8;16(1):55.
  • Toews I, Lohner S, Küllenberg de Gaudry D, et al. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019 Jan 2;364:k4718.
  • Fagherazzi G, Vilier A, SaesSartorelli D, et al. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epide´ miologique aupre` s des femmes de la Mutuelle Ge´ ne´rale de l’Education Nationale–European. Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2013;97:517–523.
  • Choudhary AK. Aspartame: should individuals with type II diabetes be taking it? Curr Diabetes Rev. 2018;14(4):350–362.
  • Temizkan S, Deyneli O, Yasar M. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr. 2015 Feb;69(2):162–166.
  • Sanyaolu A, Marinkovic A, Gosse J, et al. Artificial sweeteners and their association with diabetes: a review. J Pub Health Catalog. 2018;1(4):86–88.
  • Davinson TL, Sample CH, Swithers SE. An application of pavlovian principles to the problems of obesity and cognitive decline neurobiol. Leam Mem. 2014;108:172–184.
  • Davidson TL, Tracy AL, Schier LA, et al. A view of obesity as a learning and memory disorder. J Exp Psychol Anim Learn Cogn. 2014;40:261–279.
  • Deutsch R. Conditioned hypoglycemia: a mechanism for saccharin-induced sensitivity to insulin in the rat. J Comp Physiol Psychol. 1974;86:350–358.
  • Prashant GH, Patil RB, Nagaraj T, et al. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract. 2012;13(6):749–752.
  • Palmnas MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rats. PloS One. 2014;9:e109841.
  • Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–186.
  • Bian X, Chi L, Gao B, et al. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front Physiol. 2017 Jul 24;8:487.
  • Bian X, Tu P, Chi L, et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol. 2017 Sep;107(Pt B):530–539.
  • Chi L, Bian X, Gao B, et al. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules. 2018 Feb 9;23(2):E367.
  • Bian X, Chi L, Gao B, et al. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One. 2017 Jun 8;12(6):e0178426.
  • Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.
  • Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–1499.
  • Lobach AR, Roberts A, Rowland IR. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol. 2018;124:385–399.
  • Schiffman SS, Nagle HT. Revisited: assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol. 2019 Jul 24;132:110692.
  • Mace OJ, Affleck J, Patel N, et al. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol. 2007;582:379–392.
  • Jang HJ, Kokrashivili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagonlike peptide-1. Proc Natl Acad Sci USA. 2007;104(38):15069–15074.
  • Abhilash M, Paul MV, Varghese MV, et al. Effect of long term intake of aspartame on antioxidant defence status in liver. Food Chem Toxicol. 2011;49:1203–1207.
  • Liauchonak I, Qorri B, Dawoud F, et al. Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients. 2019 Mar 16;11(3):E644.
  • NGA EH, Mohamed DS. The effect of aspartame on the histological structure of the liver and renal cortex of adult male albino rat and the possible protective effect of Pimpinella anisum oil. Egypt J Histol. 2011;34:715–726.
  • Basaranoglu M, Basaranoglu G, Sabunci T, et al. Fructose as a key player in the development of fatty liver disease. World J Gastroenterol. 2013;19:1166–1172.
  • Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for non-alcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.
  • Tetri LH, Basaranoglu M, Brunt EM, et al. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastointest Liver Physiol. 2008;295:G987–95.
  • Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic De Novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016 May;61(5):1282–1293.
  • Ma J, Fox CS, Jacques PF, et al. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart study cohorts. J Hepatol. 2015 Aug;63(2):462–469.
  • Wijarnpreecha K, Thongprayoon C, Edmonds PJ, et al. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM. 2016 July;109(7):461–466.
  • Kanerva N, Sandboge S, Kaartinen NE, et al. Higher fructose intake is inversely associated with risk of nonalcoholic fatty liver disease in older Finnish adults. Am J Clin Nutr. 2014;100:1133–1138.
  • Abdelmalek MF, Suzuki A, Guy C, et al. Nonalcoholic steatohepatitis clinical research network. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–1971.
  • Horst KW, Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017 Sep;9(9):E981.
  • Andrejić BM, Mijatović VM, Samojlik IN, et al. The influence of chronic intake of saccharin on rat hepatic and pancreatic function and morphology: gender differences. Bosn J Basic Med Sci. 2013;13:94–99.
  • Alkafafy M-S, Ibrahim ZS, Ahmed MM, et al. Impact of aspartame and saccharin on rat liver: biochemical, molecular and histological approach. Int J Immunopathol Pharmacol. 2015;28(2):247–255.
  • Janssens S, Ciapaite J, Wolters JC, et al. An in vivo magnetic resonance spectroscopy study of the effects of caloric and non caloric sweeteners on liver lipid metabolism in rats. Nutrients. 2017 May 10;9(5):E476.
  • Wijarnpreecha K, Thongprayoon C, Edmonds PJ, et al. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM. 2016;109(7):461–466.
  • Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002 Nov 26;99(24):15596–15601.
  • Figlewicz DP, Ioannou G, Bennett Jay J, et al. Effect of moderate intake of sweeteners on metabolic health in the rat. Physiol Behav. 2009 Dec;98(5):618–624.
  • Mohd-Radzman NH, Ismail WI, Adam Z, et al. Potential roles of Stevia rebaudiana bertoni in abrogating insulin resistance and diabetes: a review. Evid Based Complement Alternat Med. 2013;2013:718049.
  • Bender C, Graziano S, Zimmermann BF. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties. Int J Food Sci Nutr. 2015;66(5):553–558.
  • Shivanna M, Naika M, Khanum F, et al. Anti-oxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications. 2012;27(2):103–113.
  • Isoyan AS, Simonyan KV, Simonyan RM, et al. Superoxide-producing lipoprotein fraction from Stevia leaves: definition of specific activity. BMC Complement Altern Med. 2019 Apr 25;19(1):88.
  • Piovan S, Pavanello A, Peixoto GML, et al. Stevia non sweetener fraction displays an insulinotropic effect involving neurotransmission in pancreatic islets. Int J Endocrinol. 2018 Apr 29;2018:3189879.
  • Duran A, Vásquez LA, Morales IG, et al. Association between stevia sweetener consumption and nutritional status in university students. Nutr Hosp. 2015;32:362–366.
  • Wang Z, Xue L, Guo C, et al. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-κB pathway. Biochem Biophys Res Commun. 2012;417:1280–1285.
  • Arai C, Miyake M, Matsumoto Y, et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J Nutr Sci Vitaminol. 2013;59:393–401.
  • Arai C, Kohguchi M, Akamatsu S, et al. Trehalose suppresses lipopolysaccharide-induced osteoclastogenesis bone marrow in mice. Nutr Res. 2001;21:993–999.
  • Yoshizane C, Mizote A, Yamada M, et al. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr J. 2017 Feb 6;16(1):9.
  • Nasteska D, Harada N, Suzuki K, et al. Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes. 2014;63:2332–2343.
  • Mayer AL, Higgins CB, Heitmeier MR, et al. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Sci Rep. 2016;6:38586.
  • Higgins C, Zhang Y, Mayer A, et al. Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARγ. JCI Insight. 2018 Aug 23;3(16):e120794.
  • Zhang Y, DeBosch DJ. Using trehalose to prevent and treat metabolic function: effectiveness and mechanisms. Curr Opin Clin Nutr Metab Care. 2019 Apr 24;22:303–310.
  • DeBosch BJ, Heitmeier MR, Mayer AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal. 2016 Feb 23;9(416):ra21.
  • Guerrero-Wyss M, Durán Agüero S, Angarita Dávila L. D-tagatose is a promising sweetener to control glycaemia: a new functional food. Biomed Res Int. 2018 Jan 9;2018:8718053.
  • Mangunson MBA, Roberts A, Nestmann ER. Critical review of the current literature on the safety of sucralose. Food Chem Toxicol. 2017;106(Pt A):324–355.
  • den Hartog GJ, Boots AW, Adam-Perrot A, et al. Erythritol is a sweet antioxidant. Nutrition. 2010 Apr;26(4):449–458.
  • [cited 2020 Feb 20] Available from: https://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&sort=GRN_No&order=DESC&startrow=1&type=basic&search=erythritol
  • Oku T, Nakamura S. Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults. J Nutr Sci Vitaminol (Tokyo). 2007 Feb;53(1):13–20.
  • Urías-Silvas JE, Cani PD, Delmée E, et al. Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr. 2008 Feb;99(2):254–261.
  • Hooshmand S, Holloway B, Nemoseck T, et al. Effects of agave nectar versus sucrose on weight gain, adiposity, blood glucose, insulin, and lipid responses in mice. J Med Food. 2014 Sep;17(9):1017–1021.
  • Stanhope KL, Schwarz JM, Havel PJ. Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Curr Opin Lipidol. 2013;24:198–206.
  • Dornas WC, de Lima WG, Pedrosa ML, et al. Health implications of high-fructose intake and current research. Adv Nutr. 2015 Nov;6(6):729–737.
  • Lambertz J, Weiskirchen S, Landert S, et al. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol. 2017 Sep 19;8:1159.
  • Baek SH, Park SJ, Lee HG. D-psicose, a sweet monosaccharide, ameliorate hyperglycemia, and dyslipidemia in C57BL/6J db/db mice. J Food Sci. 2010 Mar;75(2):H49–53.
  • Hayashi N, Iida T, Yamada T, et al. Study on the postprandial blood glucose suppression effect of d-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Biosci Biotechnol Biochem. 2010;74:510–519.
  • Hossain A, Yamaguchi F, Hirose K, et al. Rare sugar d-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima fatty rats. Drug Des Devel Ther. 2015;9:525–535.
  • Mu W, Zhang W, Feng Y, et al. Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol. 2012;94:1461–1467.
  • Amo K, Arai H, Uebanso T, et al. Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr. 2011 Jul;49(1):1–7.
  • Kishore P, Kehlenbrink S, Hu M, et al. Xylitol prevents NEFA-induced insulin resistance in rats. Diabetologia. 2012 Jun;55(6):1808–1812.
  • Janakiram C, Deepan Kumar CV, Joseph J. Xylitol in preventing dental caries: A systematic review and meta-analyses. J Nat Sci Biol Med. 2017 Jan-Jun;8(1):16–21.
  • Levin GV. Tagatose, the new GRAS sweetener and health product. J Med Food. 2002;5(1):23–36.
  • Lu Y, Levin GV, Donner TW. Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes Metab. 2008 Feb;10(2):109–134.
  • Donner TW, Wilber JF, Ostrowski D. D-tagatose, a novel hexose: acute effects on carbohydrate tolerance in subjects with and without type 2 diabetes. Diabetes Obes Metab. 1999 Sep;1(5):285–291.
  • Ensor M, Williams J, Smith R, et al. Effects of three low-doses of D-tagatose on glycemic control over six months in subjects with mild type 2 diabetes mellitus under control with diet and exercise. J Endocrinol Diabetes Obes. 2014 Oct;2(4):1057.
  • Espinosa I, Fogelfeld L. Tagatose: from a sweetener to a new diabetic medication? Expert Opin Investig Drugs 2010 Feb;19(2):285–94.
  • Moore MC. Drug evaluation: tagatose in the treatment of type 2 diabetes and obesity. Cur Opin Investig Drugs. 2006 Oct;7(10):924–935.
  • Kanako Y, Matsuo T. The study on long-term toxicity of D-psicose in rats. J Clin Biochem Nutr. 2009 Nov;45(3):271–277.
  • Itoh K, Mizuno S, Hama S, et al. Beneficial effects of supplementation of the rare sugar “D-allulose” against hepatic steatosis and severe obesity in Lep(ob)/Lep(ob) mice M. J Food Sci. 2015 Jul;80(7):H1619–26. Epub 2015 May 25.
  • Lu Y, Levin GV, Donner TW. Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes Metab. 2008 Feb;10(2):109–134.
  • Schmid RD, Hovda LR. Acute hepatic failure in a dog after xylitol ingestion. Liver toxicity in high doses. J Med Toxicol. 2016 Jun;12(2):201–205.
  • Khayata W, Kamri A, Alsaleh R. The glycemic effect of thaumatin and its mixture with sucrose in type 2 diabetes mellitus patients. Int J Acad Sci Res. 2016 Nov-Dec;4(4): 38–46.
  • Khayata W, Kamri A, Alsaleh R. Thaumatin is similar to water in blood glucose response in Wistar rats. Int J Acad Sci Res. 2016;4(2):36–42.
  • Grembecka M. Natural sweeteners in human diet. Rocz Panstw Zakl Hig. 2015;66(3):195–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.