620
Views
12
CrossRef citations to date
0
Altmetric
Review

The long and winding road to IgA deficiency: causes and consequences

, , &
Pages 371-382 | Received 15 Jun 2016, Accepted 11 Oct 2016, Published online: 25 Oct 2016

References

  • Sullivan KE, Stiehm ER Stiehm’s immune deficiencies. 1st ed. London: Academic Press; 2014.
  • Al-Attas RA, Rahi AH Primary antibody deficiency in Arabs: first report from eastern Saudi Arabia. J Clin Immunol. 1998;18:368–371.
  • Pereira LF, Sapina AM, Arroyo J, et al. Prevalence of selective IgA deficiency in Spain: more than we thought. Blood. 1997;90:893.
  • Ezeoke AC Selective IgA deficiency (SIgAD) in Eastern Nigeria. Afr J Med Med Sci. 1988;17:17–21.
  • Holt PD, Tandy NP, Anstee DJ Screening of blood donors for IgA deficiency: a study of the donor population of South-West England. J Clin Pathol. 1977;30:1007–1010.
  • Carneiro-Sampaio MM, Carbonare SB, Rozentraub RB, et al. Frequency of selective IgA deficiency among Brazilian blood donors and healthy pregnant women. Allergol Immunopathol. 1989;17:213–216.
  • Saghafi S, Pourpak Z, Aghamohammadi A, et al. Selective immunoglobulin A deficiency in Iranian blood donors: prevalence, laboratory and clinical findings. Iran J Allergy Asthma Immunol. 2008;7:157–162.
  • Ferreira RC, Pan-Hammarström Q, Graham RR, et al. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet. 2012;8:e1002476.
  • Feng ML, Zhao YL, Shen T, et al. Prevalence of immunoglobulin A deficiency in Chinese blood donors and evaluation of anaphylactic transfusion reaction risk. Transfus Med. 2011;21:338–343.
  • Rhim JW, Kim KH, Kim DS, et al. Prevalence of primary immunodeficiency in Korea. J Korean Med Sci. 2012;27:788–793.
  • Clark JA, Callicoat PA, Brenner NA, et al. Selective IgA deficiency in blood donors. Am J Clin Pathol. 1983;80:210–213.
  • Kanoh T, Mizumoto T, Yasuda N, et al. Selective IgA deficiency in Japanese blood donors: frequency and statistical analysis. Vox Sang. 1986;50:81–86.
  • Bousfiha A, Jeddane L, Al-Herz W, et al. The 2015 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2015;35:727–738.
  • Bruton OC Agammaglobulinemia. Pediatrics. 1952;9:722–728.
  • DiGeorge AM Congenital absence of the thymus and its immunologic consequences: concurrence with congenital hypoparathyroidism. Birth Defects Orig Artic Ser. 1968;IV:116–121.
  • Hitzig WH, Willi H Hereditary lymphoplasmocytic dysgenesis (“alymphocytosis with agammaglobulinemia”). Schweiz Med Wochenschr. 1961;91:1625–1633.
  • Grabar P, Williams CA Method permitting the combined study of the electrophoretic and the immunochemical properties of protein mixtures; application to blood serum. Biochim Biophys Acta. 1953;10:193–194.
  • Thieffry S, Arthuis M, Aicardi J, et al. Ataxiatelangiectasis. (7 personal cases). Rev Neurol. 1961;105:390–405.
  • Rockey JH, Hanson LA, Heremans JF, et al. Beta-2A aglobulinemia in two healthy men. J Lab Clin Med. 1964;63:205–212.
  • Conley ME, Notarangelo LD, Etzioni A Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93:190–197.
  • Al-Herz W, Bousfiha A, Casanova JL, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2011;2:54.
  • European Society for Immunodeficiencies. Diagnostic criteria from the ESID for IgA deficiency 2016 [2016 Sep 28]. Available from: http://esid.org/Working-Parties/Clinical/Resources/Diagnostic-criteria-for-PID2#Q7
  • Borte S, Pan-Hammarström Q, Liu C, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009;114:4089–4098.
  • Ozkan H, Atlihan F, Genel F, et al. IgA and/or IgG subclass deficiency in children with recurrent respiratory infections and its relationship with chronic pulmonary damage. J Investig Allergol Clin Immunol. 2005;15:69–74.
  • Hanson LA, Söderström R, Nilssen DE, et al. IgG subclass deficiency with or without IgA deficiency. Clin Immunol Immunopathol. 1991;61:S70–7.
  • Edwards E, Razvi S, Cunningham-Rundles C IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin Immunol. 2004;111:93–97.
  • Cunningham-Rundles C Physiology of IgA and IgA deficiency. J Clin Immunol. 2001;21:303–309.
  • Abolhassani H, Aghamohammadi A, Hammarström L. Monogenic mutations associated with IgA deficiency. Expert Rev Clin Immunol. 2016:1–15. [Epub ahead of print].
  • Ludvigsson JF, Neovius M, Ye W, et al. IgA deficiency and risk of cancer: a population-based matched cohort study. J Clin Immunol. 2015;35:182–188.
  • Sokol RJ, Booker DJ, Stamps R, et al. IgA red cell autoantibodies and autoimmune hemolysis. Transfusion. 1997;37:175–181.
  • Fagarasan S, Honjo T Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol. 2003;3:63–72.
  • Woof JM, Mestecky J Mucosal immunoglobulins. Immunol Rev. 2005;206:64–82.
  • Delacroix DL, Dive C, Rambaud JC, et al. IgA subclasses in various secretions and in serum. Immunology. 1982;47:383–385.
  • Simell B, Kilpi T, Kayhty H Subclass distribution of natural salivary IgA antibodies against pneumococcal capsular polysaccharide of type 14 and pneumococcal surface adhesin A (PsaA) in children. Clin Exp Immunol. 2006;143:543–549.
  • Macpherson AJ, McCoy KD, Johansen FE, et al. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1:11–22.
  • Chintalacharuvu KR, Chuang PD, Dragoman A, et al. Cleavage of the human immunoglobulin A1 (IgA1) hinge region by IgA1 proteases requires structures in the Fc region of IgA. Infect Immun. 2003;71:2563–2570.
  • Woof JM, Russell MW Structure and function relationships in IgA. Mucosal Immunol. 2011;4:590–597.
  • Mantis NJ, Rol N, Corthesy B Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4:603–611.
  • Mathias A, Corthesy B Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. J Biol Chem. 2011;286:17239–17247.
  • Bidgood SR, Tam JC, McEwan WA, et al. Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells. Proc Natl Acad Sci U S A. 2014;111:13463–13468.
  • Monteiro RC, Van De Winkel JG IgA Fc receptors. Annu Rev Immunol. 2003;21:177–204.
  • Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, et al. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol. 2001;167:2861–2868.
  • Wines BD, Hogarth PM IgA receptors in health and disease. Tissue Antigens. 2006;68:103–114.
  • Rios D, Wood MB, Li J, et al. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 2016;9:907–916.
  • Spencer J, Sollid LM The human intestinal B-cell response. Mucosal Immunol. 2016; 9:1113–1124.
  • Reboldi A, Cyster JG Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol Rev. 2016;271:230–245.
  • Lundell AC, Rabe H, Quiding-Jarbrink M, et al. Development of gut-homing receptors on circulating B cells during infancy. Clin Immunol. 2011;138:97–106.
  • Gorfu G, Rivera-Nieves J, Ley K Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9:836–850.
  • Mora JR, Von Andrian UH Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008;1:96–109.
  • Mei HE, Yoshida T, Sime W, et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood. 2009;113:2461–2469.
  • Fukuyama Y, Tokuhara D, Sekine S, et al. Potential roles of CCR5(+) CCR6(+) dendritic cells induced by nasal ovalbumin plus Flt3 ligand expressing adenovirus for mucosal IgA responses. PloS One. 2013;8:e60453.
  • Reboldi A, Arnon TI, Rodda LB, et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science. 2016;352:aaf4822.
  • Castigli E, Scott S, Dedeoglu F, et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci U S A. 2004;101:3903–3908.
  • Munblit D, Sheth S, Abrol P, et al. Exposures influencing total IgA level in colostrum. J Dev Orig Health Dis. 2016;7:61–67.
  • Martin CR, Ling PR, Blackburn GL Review of infant feeding: key features of breast milk and infant formula. Nutrients. 2016;8: 279.
  • Trend S, Strunk T, Lloyd ML, et al. Levels of innate immune factors in preterm and term mothers’ breast milk during the 1st month postpartum. Br J Nutr. 2016;115:1178–1193.
  • Bode L Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–1162.
  • Sutherland DB, Fagarasan S IgA synthesis: a form of functional immune adaptation extending beyond gut. Curr Opin Immunol. 2012;24:261–268.
  • Yazdani R, Latif A, Tabassomi F, et al. Clinical phenotype classification for selective immunoglobulin A deficiency. Expert Rev Clin Immunol. 2015;11:1245–1254.
  • Jörgensen GH, Gardulf A, Sigurdsson MI, et al. Clinical symptoms in adults with selective IgA deficiency: a case-control study. J Clin Immunol. 2013;33:742–747.
  • Ludvigsson JF, Neovius M, Hammarström L Risk of infections among 2100 individuals with IgA deficiency: a nationwide cohort study. J Clin Immunol. 2016;36:134–140.
  • Bossuyt X, Moens L, Van Hoeyveld E, et al. Coexistence of (partial) immune defects and risk of recurrent respiratory infections. Clin Chem. 2007;53:124–130.
  • French MA, Denis KA, Dawkins R, et al. Severity of infections in IgA deficiency: correlation with decreased serum antibodies to pneumococcal polysaccharides and decreased serum IgG2 and/or IgG4. Clin Exp Immunol. 1995;100:47–53.
  • Zinneman HH, Kaplan AP The association of giardiasis with reduced intestinal secretory immunoglobulin A. Am J Dig Dis. 1972;17:793–797.
  • Della Libera I, Martelossi S, Tommasini A Selective IgA deficiency: ruling out coeliac disease and selective antibody deficiency to polysaccharides. J Clin Immunol. 2013;33:1149.
  • Ladhani S, Oeser C, Sheldon J, et al. Immunoglobulin deficiency in children with Hib vaccine failure. Vaccine. 2011;29:9137–9140.
  • Browning MJ Specific polysaccharide antibody deficiency in chromosome 18p deletion syndrome and immunoglobulin A deficiency. J Investig Allergol Clin Immunol. 2010;20:263–266.
  • Aghamohammadi A, Cheraghi T, Gharagozlou M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009;29:130–136.
  • Singh K, Chang C, Gershwin ME IgA deficiency and autoimmunity. Autoimmune Rev. 2014;13:163–177.
  • Wang N, Hammarström L IgA deficiency: what is new? Curr Opin Allergy Clin Immunol. 2012;12:602–608.
  • Vassallo RR Review: IgA anaphylactic transfusion reactions. Part I. Laboratory diagnosis, incidence, and supply of IgA-deficient products. Immunohematology /American Red Cross. 2004;20:226–233.
  • Munks R, Booth JR, Sokol RJ A comprehensive IgA service provided by a blood transfusion center. Immunohematology /American Red Cross. 1998;14:155–160.
  • Petty RE, Palmer NR, Cassidy JT, et al. The association of autoimmune diseases and anti-IgA antibodies in patients with selective IgA deficiency. Clin Exp Immunol. 1979;37:83–88.
  • Björkander J, Hammarström L, Smith CI, et al. Immunoglobulin prophylaxis in patients with antibody deficiency syndromes and anti-IgA antibodies. J Clin Immunol. 1987;7:8–15.
  • Koskinen S, Tolo H, Hirvonen M, et al. Long-term follow-up of anti-IgA antibodies in healthy IgA-deficient adults. J Clin Immunol. 1995;15:194–198.
  • Cunningham-Rundles C, Zhou Z, Mankarious S, et al. Long-term use of IgA-depleted intravenous immunoglobulin in immunodeficient subjects with anti-IgA antibodies. J Clin Immunol. 1993;13:272–278.
  • Brown R, Nelson M, Aklilu E, et al. An evaluation of the DiaMed assays for immunoglobulin A antibodies (anti-IgA) and IgA deficiency. Transfusion. 2008;48:2057–2059.
  • Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30:10–16.
  • Koskinen S Long-term follow-up of health in blood donors with primary selective IgA deficiency. J Clin Immunol. 1996;16:165–170.
  • Plebani A, Ugazio AG, Monafo V, et al. Clinical heterogeneity and reversibility of selective immunoglobulin A deficiency in 80 children. Lancet. 1986;1:829–831.
  • Kutukculer N, Karaca NE, Demircioglu O, et al. Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. Pediatr Allergy Immunol. 2007;18:167–173.
  • De Laat PC, Weemaes CM, Gonera R, et al. Clinical manifestations in selective IgA deficiency in childhood. A follow-up report. Acta Paediatr Scand. 1991;80:798–804.
  • Shkalim V, Monselize Y, Segal N, et al. Selective IgA deficiency in children in Israel. J Clin Immunol. 2010;30:761–765.
  • Blum PM, Hong R, Stiehm ER Spontaneous recovery of selective IgA deficiency. Additional case reports and a review. Clin Pediatr. 1982;21:77–80.
  • Zeidler H Niki de Saint Phalle’s lifelong dialogue between art and diseases: psychological trauma of sexual abuse, transient selective IgA deficiency, occupational exposure to toxic plastic material, chronic lung disease, rheumatoid arthritis. Joint Bone Spine. 2013;80:332–337.
  • Hoernes M, Seger R, Reichenbach J Modern management of primary B-cell immunodeficiencies. Pediatr Allergy Immunol. 2011;22:758–769.
  • Wolf HM, Eibl MM The anti-inflammatory effect of an oral immunoglobulin (IgA-IgG) preparation and its possible relevance for the prevention of necrotizing enterocolitis. Acta Paediatr Suppl. 1994;83:37–40.
  • Eibl MM History of immunoglobulin replacement. Immunol Allergy Clin North Am. 2008;28:737–764.
  • Foster JP, Seth R, Cole MJ Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth weight neonates. Cochrane Database Syst Rev. 2016;4:Cd001816.
  • Hostoffer RW Selective IgA deficiency: management and prognosis. [cited 2016 June 13]. Available from: www.uptodate.com2014
  • Koistinen J Familial clustering of selective IgA deficiency. Vox Sang. 1976;30:181–190.
  • Soler-Palacin P, Cobos-Carrascosa E, Martin-Nalda A, et al. Is familial screening useful in selective immunoglobulin A deficiency?. Anales De Pediatria. 2016;84:70–78.
  • Aghamohammadi A, Sedighipour L, Saeed SE, et al. Alterations in humoral immunity in relatives of patients with common variable immunodeficiency. J Investig Allergol Clin Immunol. 2008;18:266–271.
  • Jörgensen GH, Thorsteinsdottir I, Gudmundsson S, et al. Familial aggregation of IgAD and autoimmunity. Clin Immunol. 2009;131:233–239.
  • Rezaei N, Abolhassani H, Kasraian A, et al. Family study of pediatric patients with primary antibody deficiencies. Iran J Allergy Asthma Immunol. 2013;12:377–382.
  • Hammarström L, Vorechovsky I, Webster D Selective IgA deficiency (SIgAD) and Common Variable Immuno Deficiency (CVID). Clin Exp Immunol. 2000;120:225–231.
  • Stewart GJ, Teutsch SM, Castle M, et al. HLA-DR, -DQA1 and -DQB1 associations in Australian multiple sclerosis patients. Eur J Immunogenet. 1997;24:81–92.
  • Rojana-udomsart A, James I, Castley A, et al. High-resolution HLA-DRB1 genotyping in an Australian inclusion body myositis (s-IBM) cohort: an analysis of disease-associated alleles and diplotypes. J Neuroimmunol. 2012;250:77–82.
  • Fernandes AP, Louzada-Junior P, Foss MC, Donadi EA. HLA-DRB1, DQB1, and DQA1 allele profile in Brazilian patients with type 1 diabetes mellitus. Ann N Y Acad Sci. 2002;958:305–308.
  • Bortolotto AS, Petry MG, Da Silveira JG, et al. HLA-A, -B, and -DRB1 allelic and haplotypic diversity in a sample of bone marrow volunteer donors from Rio Grande do Sul State, Brazil. Hum Immunol. 2012;73:180–185.
  • Wang N, Lu P, Ling B, et al. Caucasian origin of disease associated HLA haplotypes in chinese blood donors with IgA deficiency. J Clin Immunol. 2014;34:157–162.
  • Fojtikova M, Novota P, Cejkova P, et al. HLA class II, MICA and PRL gene polymorphisms: the common contribution to the systemic lupus erythematosus development in Czech population. Rheumatol Int. 2011;31:1195–1201.
  • Polvi A, Arranz E, Fernandez-Arquero M, et al. HLA-DQ2-negative celiac disease in Finland and Spain. Hum Immunol. 1998;59:169–175.
  • Krini M, Chouliaras G, Kanariou M, et al. HLA class II high-resolution genotyping in Greek children with celiac disease and impact on disease susceptibility. Pediatr Res. 2012;72:625–630.
  • Kritikou-Griva E, Spyropoulou-Vlachou M, Tsagarakis NJ, et al. High frequency of human leukocyte antigen class II DRB1*1602 haplotype in Greek patients with myelodysplastic syndrome and of DRB1*1501 in the low-risk subgroup. Hum Immunol. 2012;73:278–281.
  • Kollaee A, Ghaffarpor M, Ghlichnia HA, et al. The influence of the HLA-DRB1 and HLA-DQB1 allele heterogeneity on disease risk and severity in Iranian patients with multiple sclerosis. Int J Immunogenet. 2012;39:414–422.
  • Takamura C, Ohhigashi H, Ebana Y, et al. New human leukocyte antigen risk allele in Japanese patients with Takayasu arteritis. Circ J. 2012;76:1697–1702.
  • Lee KW, Oh DH, Lee C, et al. Allelic and haplotypic diversity of HLA-A, -B, -C, -DRB1, and -DQB1 genes in the Korean population. Tissue Antigens. 2005;65:437–447.
  • Zuniga J, Yu N, Barquera R, et al. HLA class I and class II conserved extended haplotypes and their fragments or blocks in Mexicans: implications for the study of genetic diversity in admixed populations. PLoS One. 2013;8:e74442.
  • Spurkland A, Ronningen KS, Vandvik B, et al. HLA-DQA1 and HLA-DQB1 genes may jointly determine susceptibility to develop multiple sclerosis. Hum Immunol. 1991;30:69–75.
  • Maniaol AH, Elsais A, Lorentzen AR, et al. Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population. PLoS One. 2012;7:e36603.
  • Schmidt AH, Solloch UV, Pingel J, et al. High-resolution human leukocyte antigen allele and haplotype frequencies of the Polish population based on 20,653 stem cell donors. Hum Immunol. 2011;72:558–565.
  • Lima BA, Alves H HLA-A, -C, -B, and -DRB1 allelic and haplotypic diversity in bone marrow volunteer donors from Northern Portugal. Cells Tissues Organs. 2013;16:19–26.
  • Muro M, Mondejar-Lopez P, Moya-Quiles MR, et al. HLA-DRB1 and HLA-DQB1 genes on susceptibility to and protection from allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Microbiol Immunol. 2013;57:193–197.
  • Allen M, Kalantari M, Ylitalo N, et al. HLA DQ-DR haplotype and susceptibility to cervical carcinoma: indications of increased risk for development of cervical carcinoma in individuals infected with HPV 18. Tissue Antigens. 1996;48:32–37.
  • Yang KL, Chen SP, Shyr MH, et al. High-resolution human leukocyte antigen (HLA) haplotypes and linkage disequilibrium of HLA-B and -C and HLA-DRB1 and -DQB1 alleles in a Taiwanese population. Hum Immunol. 2009;70:269–276.
  • Lai MJ, Wen SH, Lin YH, et al. Distributions of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on 46,915 Taiwanese donors. Hum Immunol. 2010;71:777–782.
  • Fekih MN, Mrad M, Ouertani H, et al. Association of HLA-DR-DQ polymorphisms with diabetes in Tunisian patients. Transfus Apher Sci. 2013;49:200–204.
  • Jörgensen GH, Ornolfsson AE, Johannesson A, et al. Association of immunoglobulin A deficiency and elevated thyrotropin-receptor autoantibodies in two Nordic countries. Hum Immunol. 2011;72:166–172.
  • Price P, Witt C, Allcock R, et al. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev. 1999;167:257–274.
  • Wang N, Shen N, Vyse TJ, et al. Selective IgA deficiency in autoimmune diseases. Mol Med. 2011;17:1383–1396.
  • Cruz-Tapias P, Perez-Fernandez OM, Rojas-Villarraga A, et al. Shared HLA class II in six autoimmune diseases in Latin America: a meta-analysis. Autoimmune Dis. 2012;2012:569728.
  • Pulvirenti F, Zuntini R, Milito C, et al. Clinical associations of biallelic and monoallelic TNFRSF13B variants in Italian primary antibody deficiency syndromes. J Immunol Res. 2016;2016:1–14.
  • Dong X, Hoeltzle MV, Hagan JB, et al. Phenotypic and clinical heterogeneity associated with monoallelic TNFRSF13B-A181E mutations in common variable immunodeficiency. Hum Immunol. 2010;71:505–511.
  • Lopez-Mejias R, del Pozo N, Fernandez-Arquero M, et al. Role of polymorphisms in the TNFRSF13B (TACI) gene in Spanish patients with immunoglobulin A deficiency. Tissue Antigens. 2009;74:42–45.
  • Salzer U, Chapel HM, Webster AD, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37:820–828.
  • Pan-Hammarström Q, Salzer U, Du L, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet. 2007;39:429–430.
  • Castigli E, Wilson S, Garibyan L, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet. 2007;39:430–431.
  • Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37:829–834.
  • Lucena JM, Burillo Sanz S, Nunez-Roldan A, et al. Incidence of the C104R TACI mutation in patients with primary antibody deficiency. J Investig Allergol Clin Immunol. 2015;25:378–379.
  • Freiberger T, Ravcukova B, Grodecka L, et al. Sequence variants of the TNFRSF13B gene in Czech CVID and IgAD patients in the context of other populations. Hum Immunol. 2012;73:1147–1154.
  • Conley ME, Cooper MD Immature IgA B cells in IgA-deficient patients. N Engl J Med. 1981;305:495–497.
  • Salzer U, Unger S, Warnatz K Common variable immunodeficiency (CVID): exploring the multiple dimensions of a heterogeneous disease. Ann N Y Acad Sci. 2012;1250:41–49.
  • Olsson M, Frankowiack M, Tengvall K, et al. The dog as a genetic model for immunoglobulin A (IgA) deficiency: identification of several breeds with low serum IgA concentrations. Vet Immunol Immunopathol. 2014;160:255–259.
  • Harriman GR, Bogue M, Rogers P, et al. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J Immunol. 1999;162:2521–2529.
  • Blutt SE, Miller AD, Salmon SL, et al. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol. 2012;5:712–719.
  • Castigli E, Wilson SA, Scott S, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med. 2005;201:35–39.
  • Tsuji S, Cortesao C, Bram RJ, et al. TACI deficiency impairs sustained Blimp-1 expression in B cells decreasing long-lived plasma cells in the bone marrow. Blood. 2011;118:5832–5839.
  • Bacchelli C, Buckland KF, Buckridge S, et al. The C76R transmembrane activator and calcium modulator cyclophilin ligand interactor mutation disrupts antibody production and B-cell homeostasis in heterozygous and homozygous mice. J Allergy Clin Immunol. 2011;127:1253–1259.
  • Wolf AI, Mozdzanowska K, Quinn WJ III, et al. Protective antiviral antibody responses in a mouse model of influenza virus infection require TACI. J Clin Invest. 2011;121:3954–3964.
  • Shultz LD, Sweet HO, Davisson MT, et al. ‘Wasted’, a new mutant of the mouse with abnormalities characteristic to ataxia telangiectasia. Nature. 1982;297:402–404.
  • Kaiserlian D, Delacroix D, Bach JF The wasted mutant mouse. I. An animal model of secretory IgA deficiency with normal serum IgA. J Immunol 1985;135:1126–1131.
  • Olsson M, Tengvall K, Frankowiack M, et al. Genome-wide analyses suggest mechanisms involving early B-cell development in canine IgA deficiency. PLoS One. 2015;10:e0133844.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
  • Benner R, van Oudenaren A, Haaijman JJ, et al. Regulation of the “spontaneous’ (background) immunoglobulin synthesis. Int Arch Allergy Appl Immunol. 1981;66:404–415.
  • Moreau MC, Ducluzeau R, Guy-Grand D, et al. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun. 1978;21:532–539.
  • Panea C, Farkas AM, Goto Y, et al. Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. Cell Rep. 2015;12:1314–1324.
  • Lecuyer E, Rakotobe S, Lengline-Garnier H, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40:608–620.
  • Telesford KM, Yan W, Ochoa-Reparaz J, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6:234–242.
  • Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455.
  • Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.
  • Rogier EW, Frantz AL, Bruno ME, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci U S A. 2014;111:3074–3079.
  • Wei M, Shinkura R, Doi Y, et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol. 2011;12:264–270.
  • Kawamoto S, Maruya M, Kato LM, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41:152–165.
  • Peterson DA, Planer JD, Guruge JL, et al. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J Biol Chem. 2015;290:12630–12649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.