168
Views
4
CrossRef citations to date
0
Altmetric
Review

The molecular immunology of human susceptibility to fungal diseases: lessons from single gene defects of immunity

Pages 461-486 | Received 04 Dec 2018, Accepted 14 Feb 2019, Published online: 04 Mar 2019

References

  • Choi J, Kim SH. A genome tree of life for the Fungi kingdom. Proc Natl Acad Sci U S A. 2017;114:9391–9396.
  • Dy W, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999;266:163–171.
  • Casadevall A. Amoeba provide insight into the origin of virulence in pathogenic fungi. Adv Exp Med Biol. 2012;710:1–10.
  • Appel O. Disease resistance in plants. Science. 1915;41:773–782.
  • Stakman EC. Pest, pathogen, and weed control for increased food production. Proc Natl Acad Sci U S A. 1966;56:376–381.
  • Jones LR. Disease resistance in cabbage. Proc Natl Acad Sci U S A. 1918;4:42–46.
  • Vinh DC. Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Rev Clin Immunol. 2014;10:1069–1100.
  • Jl C, Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genomics Hum Genet. 2013;14:215–243.
  • Biffen RH. Mendel’s Laws of inheritance and wheat breeding. J Agric Sci. 1905;1:4–48.
  • Aragon W, Reina-Pinto JJ, Serrano M. The intimate talk between plants and microorganisms at the leaf surface. J Exp Bot. 2017;68:5339–5350.
  • Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 2008;8:889–895.
  • Medzhitov R, Ds S, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–941.
  • Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019;105:329–338.
  • Rosenthal JP, Kotanen PM. Terrestrial plant tolerance to herbivory. Trends Ecol Evol. 1994;9:145–148.
  • Muola A, Mutikainen P, Laukkanen L, et al. Genetic variation in herbivore resistance and tolerance: the role of plant life-history stage and type of damage. J Evol Biol. 2010;23:2185–2196.
  • Turley NE, Godfrey RM, Johnson MT. Evolution of mixed strategies of plant defense against herbivores. New Phytol. 2013;197:359–361.
  • Hammond-Kosack KE, Jones JD. Plant disease resistance genes. Ann Rev Plant Physiol Plant Mol Biol. 1997;48:575–607.
  • Peterson RKD, Varella AC, Higley LG. Tolerance: the forgotten child of plant resistance. PeerJ. 2017;5:e3934.
  • Rosenthal T. Aulus Cornelius Celsus - his contributions to dermatology. Arch Dermatol. 1961;84:613–618.
  • Grzybowski A, Pietrzak K. Robert Remak (1815-1865): discoverer of the fungal character of dermatophytoses. Clin Dermatol. 2013 Nov-Dec;31(6):802–805.
  • Donald GF. The history, clinical features, and treatment of tinea capitis due to Trichophyton tonsurans and Trichophyton violaceum. Aust J Dermatol. 1959;5:90–102.
  • Ajello L. Natural history of the dermatophytes and related fungi. Mycopathol Mycol Appl. 1974;53:93–110.
  • Vanbreuseghem R. Some stages in the progress of medical mycology. Br J Dermatol. 1964;76:401–407.
  • Espinel-Ingroff A. History of medical mycology in the united states. Clin Microbiol Rev. 1996;9:235–272.
  • Barnett JA. A history of research on yeasts 12: medical yeasts part 1, Candida albicans. Yeast. 2008;25:385–417.
  • Dickson EC. “Valley Fever” of the San Joaquin Valley and Fungus Coccidioides. Cal West Med. 1937;47:151–155.
  • Rothman S. Susceptibility factors in fungus infections in man. Trans N Y Acad Sci. 1949;12:27–33.
  • Blank F. Human favus in Quebec. Dermatologica. 1962;125:369–381.
  • Hauser FV, Rothman S Monilial granuloma; report of a case and review of the literature. Arch Derm Syphilol. 1950;61:297–310.
  • Glanzmann E, Riniker P. [Essential lymphocytophthisis; new clinical aspect of infant pathology]. Ann Paediatr. 1950;175:1–32.
  • Cole RB, D’Sousa A, Good RA, et al. Lymphopenic agammaglobulinemia (Swiss type) in Chicago. Autosomal recessive form. Am J Dis Child. 1969;118:748–758.
  • Greenwood RD, Traisman HS, Rice HM, et al. Swiss type agammaglobulinemia in the United States. Autosomal recessive lymphopenic thymic dysplasia with agammaglobulinemia. Am J Dis Child. 1971;121:30–34.
  • Nezelof C. Thymic pathology in primary and secondary immunodeficiencies. Histopathology. 1992;21:499–511.
  • Edwards JE Jr., Lehrer RI, Stiehm ER, et al. Severe candidal infections: clinical perspective, immune defense mechanisms, and current concepts of therapy. Ann Intern Med. 1978;89:91–106.
  • Buckley RH, Lucas ZJ, Hattler BG Jr., et al. Defective cellular immunity associated with chronic mucocutaneous moniliasis and recurrent staphylococcal botryomycosis: immunological reconstitution by allogeneic bone marrow. Clin Exp Immunol. 1968;3:153–169.
  • Giblett ER, Anderson JE, Cohen F, et al. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972;2:1067–1069.
  • Noguchi M, Yi H, Rosenblatt HM, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993;73:147–157.
  • Russell SM, Tayebi N, Nakajima H, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995;270:797–800.
  • Gifford M, Buss W, Douds R. Data on Coccidioides fungus infection, Kern County, 1900-1936. Kern County Health Department Annual Report, p. 39–54. Kern County Health Department, Bakersfield, California. 1937.
  • Deresinski SC, Pappagianis D, Stevens DA. Association of ABO blood group and outcome of coccidioidal infection. Sabouraudia. 1979;17:261–264.
  • Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–240.
  • Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–1132.
  • Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–1141.
  • Huang W, Na L, Fidel PL, et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–631.
  • Minegishi Y, Saito M, Tsuchiya S, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–1062.
  • Ma CS, Chew GY, Simpson N, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205:1551–1557.
  • Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–776.
  • Renner ED, Rylaarsdam S, Anover-Sombke S, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122:181–187.
  • Kisand K, Boe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.
  • Puel A, Doffinger R, Natividad A, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–297.
  • Karner J, Meager A, Laan M, et al. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin Exp Immunol. 2013;171:263–272.
  • Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–68.
  • Boisson B, Wang C, Pedergnana V, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39:676–686.
  • Ling Y, Cypowyj S, Aytekin C et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212:619–631.
  • van de Veerdonk FL, Plantinga TS, Hoischen A, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61.
  • Liu L, Okada S, Kong XF, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–1648.
  • Boisson-Dupuis S, Kong XF, Okada S, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012;24:364–378.
  • Zheng J, van de Veerdonk FL, Crossland KL, et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur J Immunol. 2015;45:2834–2846.
  • Niehues H, Rosler B, van der Krieken DA, et al. STAT1 gain-of-function compromises skin host defense in the context of IFN-gamma signaling. J Allergy Clin Immunol. 2018 Dec 18. pii: S0091-6749(18)32731-3. doi: 10.1016/j.jaci.2018.11.033. [Epub ahead of print]
  • Toubiana J, Okada S, Hiller J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127:3154–3164.
  • Depner M, Fuchs S, Raabe J, et al. The extended clinical phenotype of 26 patients with chronic mucocutaneous candidiasis due to gain-of-function mutations in STAT1. J Clin Immunol. 2016;36:73–84.
  • Beziat V, Li J, Lin JX, et al. A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol. 2018 Jun 15;3(24). pii: eaat4956. doi: 10.1126/sciimmunol.aat4956.
  • Frey-Jakobs S, Hartberger JM, Fliegauf M, et al. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol. 2018 Jun 15;3(24). pii: eaat4941. doi: 10.1126/sciimmunol.aat4941.
  • LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–638.
  • Prando C, Samarina A, Bustamante J, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore). 2013;92:109–122.
  • Ouederni M, Sanal O, Ikinciogullari A, et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor beta1 deficiency. Clin Infect Dis. 2014;58:204–213.
  • Martinez-Barricarte R, Markle JG, Ma CS, et al. Human IFN-gamma immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol. 2018 Dec 21;3(30). pii: eaau6759. doi: 10.1126/sciimmunol.aau6759.
  • Brenchley JM, Paiardini M, Knox KS, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 2008;112:2826–2835.
  • Liu F, Fan X, Auclair S, et al. Sequential dysfunction and progressive depletion of Candida albicans-specific CD4 T cell response in HIV-1 infection. PLoS Pathog. 2016;12:e1005663.
  • Saunte DM, Mrowietz U, Puig L, et al. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br J Dermatol. 2017;177:47–62.
  • Smith LW, Sano ME. Moniliasis with meningeal involvement. J Infect Dis. 1933;53:1933.
  • Bogen E, Kessel J. Monilial meningitis. Arch Pathol. 1937;23:909.
  • Miale JB. Candida albicans infection confused with tuberculosis. Arch Pathol. 1943;35:427–437.
  • Morris AA, Kalz GG, Lotspeich ES. Ependymitis and meningitis due to Candida (Monilia) albicans. Arch Neurol Psychiatry. 1945;54:361–366.
  • Halpert B, Wilkins H. Mycotic meningitis due to Candida. J Am Med Assoc. 1946;130:932–934.
  • Zimmerman SL, Frutchey L, Gibbes JH. Meningitis due to Candida (Monilia) albicans with recovery. J Am Med Assoc. 1947;135:145–147.
  • Spicer C, Hiatt WO, Kessel JF. Candida albicans and cryptococcus neoformans occurring as infective agents in an 8-year-old boy. J Pediatr. 1948;33:761–769.
  • Craig WM, Gates EM. Metastatic mycotic abscesses of the brain. Arch Neurol Psychiatry. 1949;62:314–321.
  • Parrillo OJ Disseminated mycotic disease; report of three cases. J Am Med Assoc. 1950;144:747–749.
  • Lelong M, Alison F, Le Tan V, et al. [Generalized thrush; septicemia caused by Candida albicans]. Bull Mem Soc Med Hop Paris. 1953;54:5–21.
  • Emdin W, Finlayson MH. Moniliasis of the central nervous system in a child with recovery. S Afr Med J. 1954;28:868–871.
  • Carron R, Chavanis P. [Meningitis due to Candida albicans following local and general prolonged antibiotic]. Pediatrie. 1954;9:287–290.
  • Fine JM, Franklin DA, Lieberthal AS. Mycotic meningitis due to candida albicans; a four year recovery. Neurology. 1955;5:438–443.
  • Eschwege J. Generalized moniliasis with localization in the brain. AMA Arch Neurol Psychiatry. 1958;79:250–263.
  • Luyendijk W, Welman AJ, Cormane RH. [Candidiasis with intracranial localization (neurological, mycological and therapeutic aspects)]. Ned Tijdschr Geneeskd. 1959;103:2320–2325.
  • Kozinn PJ, Taschdjian CL. Enteric candidiasis. Diagnosis and clinical considerations. Pediatrics. 1962;30:71–85.
  • Tarkkanen A, Tommila V, Valle O, et al. Endogenous fungus endophthalmitis due to Candida albicans. Br J Ophthalmol. 1967;51:188–192.
  • Belisle G, Lachance W, Leblanc G [Meningitis caused by Candida albicans. Report of a case and discussion]. Union Med Can. 1968;97:710–715.
  • Vorreith M. Mycotic encephalitis. Acta Neuropathol. 1968;11:55–68.
  • Black JT Cerebral candidiasis: case report of brain abscess secondary to Candida albicans, and review of literature. J Neurol Neurosurg Psychiatry. 1970;33:864–870.
  • White BE. Cerebral candidiasis. N Engl J Med. 1972;286:321.
  • Edelson RN, McNatt EN, Porro RS. Candida meningitis; with cerebral arteritis. N Y State J Med. 1975;75:900–904.
  • Holyst J, Majewski A, Tyszkiewicz S. Massive cerebellar abscess due to Candida albicans. Neurochirurgia (Stuttg). 1976;19:126–129.
  • Chesney PJ, Teets KC, Mulvihill JJ, et al. Successful treatment of Candida meningitis with amphotericin B and 5-fluorocytosine in combination. J Pediatr. 1976;89:1017–1019.
  • Thron A, Wietholter H. Cerebral candidiasis: CT studies in a case of brain abscess and granuloma due to Candida albicans. Neuroradiology. 1982;23:223–225.
  • Ilgren EB, Westmorland D, Adams CB, et al. Cerebellar mass caused by Candida species. Case report. J Neurosurg. 1984;60:428–430.
  • Sulkava R, Jaaskelainen J, Paetau A, et al. Fatal Candida meningitis in a previously healthy adult. Ann Clin Res. 1984;16:201–203.
  • Wiethölter H, Thron A, Scholz E, et al. Systemic Candida albicans infection with cerebral abscess and granulomas. Clin Neuropathol. 1984;3:37–41.
  • Chaabane M, Krifa H, Ladeb MF, et al. Cerebral candidiasis. Computed tomography appearance. Pediatr Radiol. 1989;19:436.
  • Ikeda K, Yamashita J, Fujisawa H, et al. Cerebral granuloma and meningitis caused by Candida albicans: useful monitoring of mannan antigen in cerebrospinal fluid. Neurosurgery. 1990;26:860–863.
  • Jamjoom A, al-Abedeen Jamjoom Z, al-Hedaithy S, et al. Ventriculitis and hydrocephalus caused by Candida albicans successfully treated by antimycotic therapy and cerebrospinal fluid shunting. Br J Neurosurg. 1992;6:501–504.
  • Germain M, Gourdeau M, Hebert J. Case report: familial chronic mucocutaneous candidiasis complicated by deep candida infection. Am J Med Sci. 1994;307:282–283.
  • Mason TB 2nd, Chiriboga CA, Cargan AL, et al. Postinflammatory hydrocephalus and intracranial mass lesion from Candida in an immunocompetent child. J Child Neurol. 1996;11:336–341.
  • Akyuz M, Karpuzoglu G, Acikbas C, et al. Candida albicans granuloma imitate clivus chordoma. Acta Neurochir (Wien). 2002;144:505–506.
  • Hong XY, Chou YC, Lazareff JA. Brain stem candidiasis mimicking cerebellopontine angle tumor. Surg Neurol. 2008;70:87–91.
  • Borha A, Parienti JJ, Emery E, et al. [Candida albicans cerebral granuloma in an immunocompetent patient. A case report]. Neurochirurgie. 2009;55:57–62.
  • Miri SM, Tayebi Meybodi A, Habibi Z, et al. Fungal granuloma of the brain in a case of chronic mucocutaneous candidiasis. Arch Iran Med. 2012;15:452–454.
  • Hoarau G, Kerdraon O, Lagree M, et al. Detection of (1,3)-beta-D-glucans in situ in a Candida albicans brain granuloma. J Infect. 2013;67:622–624.
  • Barnett JA. A history of research on yeasts 8: taxonomy. Yeast. 2004;21:1141–1193.
  • Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–1735.
  • Drewniak A, Gazendam RP, Tool AT, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121:2385–2392.
  • Gavino C, Cotter A, Lichtenstein D, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59:81–84.
  • Lanternier F, Mahdaviani SA, Barbati E, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135: 1558–68.e2.
  • Herbst M, Gazendam R, Reimnitz D, et al. Chronic Candida albicans Meningitis in a 4-year-old girl with a homozygous mutation in the CARD9 gene (Q295X). Pediatr Infect Dis J. 2015;34:999–1002.
  • Gavino C, Hamel N, Zeng JB, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2016;137: 1178–88.e7.
  • Celmeli F, Oztoprak N, Turkkahraman D, et al. Successful granulocyte colony-stimulating factor treatment of relapsing candida albicans meningoencephalitis caused by CARD9 deficiency. Pediatr Infect Dis J. 2016;35:428–431.
  • Drummond RA, Collar AL, Swamydas M, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11:e1005293.
  • Alves de Medeiros AK, Lodewick E, Bogaert DJ et al. Chronic and Invasive Fungal Infections in a Family with CARD9. Deficiency. J Clin Immunol. 2016;36:204–209.
  • Jones N, Garcez T, Newman W, et al. Endogenous Candida endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Rep. 2016 Mar 3;2016. pii: bcr2015214117. doi: 10.1136/bcr-2015-214117.
  • Quan C, Li X, Shi RF, et al. Recurrent fungal infections in a Chinese patient with CARD9 deficiency and a review of 48 cases. Br J Dermatol. 2018 Aug 16. doi: 10.1111/bjd.17092. [Epub ahead of print]
  • Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis. 2003;37:1172–1177.
  • Schmid J, Tortorano AM, Jones G, et al. Increased mortality in young candidemia patients associated with presence of a Candida albicans general-purpose genotype. J Clin Microbiol. 2011;49:3250–3256.
  • Rosentul DC, Plantinga TS, Oosting M, et al. Genetic variation in the dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J Infect Dis. 2011;204:1138–1145.
  • Lanternier F, Pathan S, Vincent QB, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–1714.
  • Jachiet M, Lanternier F, Rybojad M, et al. Posaconazole treatment of extensive skin and nail dermatophytosis due to autosomal recessive deficiency of CARD9. JAMA Dermatol. 2015;151:192–194.
  • Grumach AS, de Queiroz-Telles F, Migaud M, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35:486–490.
  • Boudghene Stambouli O, Amrani N, Boudghene Stambouli K, et al. Dermatophytic disease with deficit in CARD9: A new case with a brain impairment. J Mycol Med. 2017;27:250–253.
  • White TC, Findley K, Dawson TL Jr., et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014 Aug 1;4(8). pii: a019802.
  • Hsu YM, Zhang Y, You Y, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8:198–205.
  • Dorhoi A, Desel C, Yeremeev V, et al. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med. 2010;207:777–792.
  • Uematsu T, Iizasa E, Kobayashi N, et al. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep. 2015;5:17577.
  • Gavino C, Mellinghoff S, Cornely OA, et al. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses. 2018;61:61–65.
  • Corvilain E, Casanova JL, Puel A. Inherited CARD9 deficiency: invasive disease caused by Ascomycete Fungi in previously healthy children and adults. J Clin Immunol. 2018;38:656–693.
  • Drummond RA, Zahra FT, Natarajan M, et al. GM-CSF therapy in human caspase recruitment domain-containing protein 9 deficiency. J Allergy Clin Immunol. 2018;142: 1334–8.e5.
  • Smith GW. The treatment of torula meningo-encephalitis with amphotericin B. J Neurosurg. 1958;15:572–575.
  • Kwon-Chung KJ, Fraser JA, Doering TL, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med. 2014;4:a019760.
  • Kozubowski L, Heitman J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol Rev. 2012;36:78–94.
  • Zhai B, Zhu P, Foyle D, et al. Congenic strains of the filamentous form of Cryptococcus neoformans for studies of fungal morphogenesis and virulence. Infect Immun. 2013;81:2626–2637.
  • Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol. 2013;16:409–413.
  • Carton CA, Mount LA. Neurosurgical aspects of cryptococcosis. J Neurosurg. 1951;8:143–156.
  • Liu CT. Intracerebral cryptococcic granuloma; case report. J Neurosurg. 1953;10:686–689.
  • Howard DH, Otto V, Gupta RK. Lymphocyte-mediated cellular immunity in histoplasmosis. Infect Immun. 1971;4:605–610.
  • Wolf JE, Abegg AL, Travis SJ, et al. Effects of Histoplasma capsulatum on murine macrophage functions: inhibition of macrophage priming, oxidative burst, and antifungal activities. Infect Immun. 1989;57:513–519.
  • Iseki M, Anzo M, Yamashita N, et al. Hyper-IgM immunodeficiency with disseminated cryptococcosis. Acta Paediatr. 1994;83:780–782.
  • Tabone MD, Leverger G, Landman J, et al. Disseminated lymphonodular cryptococcosis in a child with X-linked hyper-IgM immunodeficiency. Pediatr Infect Dis J. 1994;13:77–79.
  • Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131:47–54.
  • Jain A, Atkinson TP, Lipsky PE, et al. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest. 1999;103:1151–1158.
  • Stout RD, Suttles J, Xu J, et al. Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice. J Immunol. 1996;156:8–11.
  • Kennedy MK, Picha KS, Fanslow WC, et al. CD40/CD40 ligand interactions are required for T cell-dependent production of interleukin-12 by mouse macrophages. Eur J Immunol. 1996;26:370–378.
  • Alderson MR, Armitage RJ, Tough TW, et al. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med. 1993;178:669–674.
  • Kiener PA, Moran-Davis P, Rankin BM, et al. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J Immunol. 1995;155:4917–4925.
  • Fontana S, Moratto D, Mangal S, et al. Functional defects of dendritic cells in patients with CD40 deficiency. Blood. 2003;102:4099–4106.
  • Cabral-Marques O, Arslanian C, Ramos RN, et al. Dendritic cells from X-linked hyper-IgM patients present impaired responses to Candida albicans and Paracoccidioides brasiliensis. J Allergy Clin Immunol. 2012;129:778–786.
  • Lee MY, Chung JH, Shin JH, et al. Lymphonodular cryptococcosis diagnosed by fine needle aspiration cytology in hyper-IgM syndrome. A case report. Acta Cytol. 2001;45:241–244.
  • Jo EK, Kim HS, Lee MY, et al. X-linked hyper-IgM syndrome associated with Cryptosporidium parvum and Cryptococcus neoformans infections: the first case with molecular diagnosis in Korea. J Korean Med Sci. 2002;17:116–120.
  • Winkelstein JA, Marino MC, Ochs H, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82:373–384.
  • Mitsui-Sekinaka K, Imai K, Sato H, et al. Clinical features and hematopoietic stem cell transplantations for CD40 ligand deficiency in Japan. J Allergy Clin Immunol. 2015;136:1018–1024.
  • Acker KP, Fetch A, Schnell SA, et al. Scalp lesions in a pediatric patient with hyper IgM syndrome: clinical and histologic mimicry of Cryptococcus neoformans infection. J Pediatr. 2018;192:256–258.
  • Franca TT, Leite LFB, Maximo TA, et al. A novel de novo mutation in the CD40 ligand gene in a patient with a Mild X-Linked hyper-IgM phenotype initially diagnosed as CVID: new aspects of old diseases. Front Pediatr. 2018;6:130.
  • Tu RK, Peters ME, Gourley GR, et al. Esophageal histoplasmosis in a child with immunodeficiency with hyper-IgM. AJR Am J Roentgenol. 1991;157:381–382.
  • Hostoffer RW, Berger M, Clark HT, et al. Disseminated Histoplasma capsulatum in a patient with hyper IgM immunodeficiency. Pediatrics. 1994;94:234–236.
  • Yilmaz GG, Yilmaz E, Coskun M, et al. Cutaneous histoplasmosis in a child with hyper-IgM. Pediatr Dermatol. 1995;12:235–238.
  • Pedroza LA, Guerrero N, Stray-Pedersen A, et al. First case of CD40LG deficiency in ecuador, diagnosed after whole exome sequencing in a patient with severe Cutaneous Histoplasmosis. Front Pediatr. 2017;5:17.
  • Nehme F, Rowe K, El Hawari M, et al. Gastrointestinal histoplasmosis ileal stricture successfully treated with through-the-scope balloon dilation in a patient with hyperimmunoglobulin M syndrome. Clin J Gastroenterol. 2018;11:224–228.
  • Cabral-Marques O, Schimke LF, Pereira PV, et al. Expanding the clinical and genetic spectrum of human CD40L deficiency: the occurrence of paracoccidioidomycosis and other unusual infections in Brazilian patients. J Clin Immunol. 2012;32:212–220.
  • Sripa C, Mitchai J, Thongsri W, et al. Diagnostic cytology and morphometry of Penicillium marneffei in the sputum of a hypogammaglobulinemia with hyper-IgM patient. J Med Assoc Thai. 2010;93(Suppl 3):S69–S72.
  • Liu D, Zhong LL, Li Y, et al. [Recurrent fever, hepatosplenomegaly and eosinophilia in a boy]. Zhongguo Dang Dai Er Ke Za Zhi. 2016;18:1145–1149.
  • Rosain J, Kong XF, Martinez-Barricarte R, et al. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol Cell Biol. 2018 Sep 28. doi: 10.1111/imcb.12210. [Epub ahead of print]
  • Vinh DC, Patel SY, Uzel G, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115:1519–1529.
  • Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118:2653–2655.
  • Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43:1012–1017.
  • Dickinson RE, Griffin H, Bigley V, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118:2656–2658.
  • Ostergaard P, Simpson MA, Connell FC, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43:929–931.
  • Mace EM, Hsu AP, Monaco-Shawver L et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood. 2013;121:2669–2677.
  • Dorn JM, Patnaik MS, Van Hee M, et al. WILD syndrome is GATA2 deficiency: a novel deletion in the GATA2 gene. J Allergy Clin Immunol Pract. 2017;5: 1149–52.e1.
  • Lasbury ME, Tang X, Durant PJ, et al. Effect of the transcription factor GATA-2 on phagocytic activity of alveolar macrophages from Pneumocystis carinii-infected hosts. J Eukaryot Microbiol. 2001;Suppl:158S–159S.
  • Lasbury ME, Tang X, Durant PJ, et al. Effect of transcription factor GATA-2 on phagocytic activity of alveolar macrophages from Pneumocystis carinii-infected hosts. Infect Immun. 2003;71:4943–4952.
  • Rezai MS, Khotael G, Kheirkhah M, et al. Cryptococcosis and deficiency of interleukin12r. Pediatr Infect Dis J. 2008;27:673.
  • Jirapongsananuruk O, Luangwedchakarn V, Niemela JE, et al. Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pac J Allergy Immunol. 2012;30:79–82.
  • Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2005;41:e38–e41.
  • de Beaucoudrey L, Samarina A, Bustamante J, et al. Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 2010;89:381–402.
  • Sampaio EP, Hsu AP, Pechacek J, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol. 2013;131:1624–1634.
  • Louvain de Souza T, de Souza Campos Fernandes RC, Azevedo da Silva J et al. Microbial Disease Spectrum Linked to a Novel. IL-12Rbeta1 N-Terminal signal peptide stop-gain homozygous mutation with paradoxical receptor cell-surface expression. Front Microbiol. 2017;8:616.
  • Lovell JP, Foruraghi L, Freeman AF et al. Persistent nodal histoplasmosis in nuclear factor kappa B essential modulator deficiency: report of a case and review of infection in primary immunodeficiencies. J Allergy Clin Immunol. 2016;138:903–905.
  • Lee PP, Lau YL. Cellular and molecular defects underlying invasive fungal infections-revelations from endemic mycoses. Front Immunol. 2017;8:735.
  • Vinh DC, Masannat F, Dzioba RB, et al. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2009;49:e62–e5.
  • Vinh DC, Schwartz B, Hsu AP, et al. Interleukin-12 receptor beta1 deficiency predisposing to disseminated Coccidioidomycosis. Clin Infect Dis. 2011;52:e99–e102.
  • Moraes-Vasconcelos D, Grumach AS, Yamaguti A, et al. Paracoccidioides brasiliensis disseminated disease in a patient with inherited deficiency in the beta1 subunit of the interleukin (IL)-12/IL-23 receptor. Clin Infect Dis. 2005;41:e31–e7.
  • Spinner MA, Ker JP, Stoudenmire CJ, et al. GATA2 deficiency underlying severe blastomycosis and fatal herpes simplex virus-associated hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2016;137:638–640.
  • Chetchotisakd P, Anunnatsiri S, Nithichanon A, et al. Cryptococcosis in anti-interferon-gamma autoantibody-positive patients: a different clinical manifestation from HIV-infected patients. JPN J Infect Dis. 2017;70:69–74.
  • van de Vosse E, van Wengen A, van der Meide WF, et al. A 38-year-old woman with necrotising cervical lymphadenitis due to Histoplasma capsulatum. Infection. 2017;45:917–920.
  • Tang BS, Chan JF, Chen M, et al. Disseminated penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis associated with acquired immunodeficiency due to autoantibody against gamma interferon. Clin Vaccine Immunol. 2010;17:1132–1138.
  • Chan JF, Trendell-Smith NJ, Chan JC, et al. Reactive and infective dermatoses associated with adult-onset immunodeficiency due to anti-interferon-gamma autoantibody: sweet’s syndrome and beyond. Dermatology. 2013;226:157–166.
  • Wongkulab P, Wipasa J, Chaiwarith R, et al. Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. PLoS One. 2013;8:e76371.
  • Pruetpongpun N, Khawcharoenporn T, Damronglerd P, et al. Disseminated Talaromyces marneffei and Mycobacterium abscessus in a patient with anti-interferon-gamma autoantibodies. Open Forum Infect Dis. 2016;3:ofw093.
  • Xu H, Liu D, He X, et al. Sweet’s syndrome associated with talaromyces marneffei and mycobacterium abscessus infection due to anti-interferon-gamma autoantibodies. Indian J Dermatol. 2018;63:428–430.
  • Saijo T, Chen J, Chen SC, et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio. 2014;5:e00912–e00914.
  • Crum-Cianflone NF, Lam PV, Ross-Walker S, et al. Autoantibodies to granulocyte-macrophage colony-stimulating factor associated with severe and unusual manifestations of Cryptococcus gattii infections. Open Forum Infect Dis. 2017;4:ofx211.
  • Tanaka N, Watanabe J, Kitamura T, et al. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett. 1999;442:246–250.
  • Kitamura T, Tanaka N, Watanabe J, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med. 1999;190:875–880.
  • Kitamura T, Uchida K, Tanaka N, et al. Serological diagnosis of idiopathic pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2000;162:658–662.
  • Wallis RS, Broder MS, Wong JY, et al. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis. 2004;38:1261–1265.
  • Hansen RA, Gartlehner G, Powell GE, et al. Serious adverse events with infliximab: analysis of spontaneously reported adverse events. Clin Gastroenterol Hepatol. 2007;5:729–735.
  • Cabral-Marques O, Ramos RN, Schimke LF, et al. Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-gamma. J Allergy Clin Immunol. 2017;139:900–12.e7.
  • Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118:3715–3720.
  • Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant. 2014;20:1940–1948.
  • Browne SK, Zaman R, Sampaio EP, et al. Anti-CD20 (rituximab) therapy for anti-IFN-gamma autoantibody-associated nontuberculous mycobacterial infection. Blood. 2012;119:3933–3939.
  • Czaja CA, Merkel PA, Chan ED, et al. Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-gamma autoantibody. Clin Infect Dis. 2014;58:e115–e8.
  • Koizumi Y, Sakagami T, Nishiyama N, et al. Rituximab restores IFN-gamma-STAT1 function and ameliorates disseminated mycobacterium avium infection in a patient with anti-interferon-gamma autoantibody. J Clin Immunol. 2017;37:644–649.
  • Odio CD, Milligan KL, McGowan K, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol. 2015;136:1411–3.e1-2.
  • Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect. 2018;24(Suppl 1):e1–e38.
  • Kanj A, Abdallah N, Soubani AO. The spectrum of pulmonary aspergillosis. Respir Med. 2018;141:121–131.
  • Lubamba BA, Jones LC, O’Neal WK, et al. X-Box-binding Protein 1 and innate immune responses of human cystic fibrosis alveolar macrophages. Am J Respir Crit Care Med. 2015;192:1449–1461.
  • Vinh DC, Sugui JA, Hsu AP, et al. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125:1389–1390.
  • Tadokoro T, Wang Y, Barak LS, et al. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A. 2014;111:E3641–E9.
  • Morgan K, Marsters P, Morley S, et al. Oncostatin M induced alpha1-antitrypsin (AAT) gene expression in Hep G2 cells is mediated by a 3ʹ enhancer. Biochem J. 2002;365:555–560.
  • Marciano BE, Spalding C, Fitzgerald A, et al. Common severe infections in chronic granulomatous disease. Clin Infect Dis. 2015;60:1176–1183.
  • van de Geer A, Nieto-Patlan A, Kuhns DB, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest. 2018;128:3957–3975.
  • Bustamante J, Arias AA, Vogt G, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12:213–221.
  • Lee MJ, Liu H, Barker BM, et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 2015;11:e1005187.
  • Rosen-Wolff A, Soldan W, Heyne K, et al. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol. 2001;80:113–115.
  • Anderson-Cohen M, Holland SM, Kuhns DB et al. Severe phenotype of chronic granulomatous disease presenting in a female with a de novo mutation in gp91-phox and a non familial, extremely skewed X chromosome inactivation. Clin Immunol. 2003;109:308–317.
  • Wolach B, Scharf Y, Gavrieli R, et al. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. Blood. 2005;105:61–66.
  • Lewis EM, Singla M, Sergeant S, et al. X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol. 2008;129:372–380.
  • Mansoory D, Roozbahany NA, Mazinany H, et al. Chronic Fusarium infection in an adult patient with undiagnosed chronic granulomatous disease. Clin Infect Dis. 2003;37:e107–e8.
  • Bassiri-Jahromi S, Doostkam A. Fungal infection and increased mortality in patients with chronic granulomatous disease. J Mycol Med. 2012;22:52–57.
  • Okura Y, Kawamura N, Okano M, et al. Fusarium falciforme infection in a patient with chronic granulomatous disease: unique long-term course of epidural abscess. Pediatr Int. 2015;57:e4–e6.
  • Rawat A, Vignesh P, Sharma A, et al. Infection profile in chronic granulomatous disease: a 23-year experience from a tertiary care center in North India. J Clin Immunol. 2017;37:319–328.
  • Jabado N, Casanova JL, Haddad E, et al. Invasive pulmonary infection due to Scedosporium apiospermum in two children with chronic granulomatous disease. Clin Infect Dis. 1998;27:1437–1441.
  • Santos PE, Oleastro M, Galicchio M, et al. [Fungal infections in paediatric patients with chronic granulomatous disease]. Rev Iberoam Micol. 2000;17:6–9.
  • Gompels MM, Bethune CA, Jackson G, et al. Scedosporium apiospermum in chronic granulomatous disease treated with an HLA matched bone marrow transplant. J Clin Pathol. 2002;55:784–786.
  • Bhat SV, Paterson DL, Rinaldi MG, et al. Scedosporium prolificans brain abscess in a patient with chronic granulomatous disease: successful combination therapy with voriconazole and terbinafine. Scand J Infect Dis. 2007;39:87–90.
  • Parta M, Hilligoss D, Kelly C, et al. Haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in a patient with chronic granulomatous disease and active infection: a first report. J Clin Immunol. 2015;35:675–680.
  • Phillips P, Forbes JC, Speert DP. Disseminated infection with Pseudallescheria boydii in a patient with chronic granulomatous disease: response to gamma-interferon plus antifungal chemotherapy. Pediatr Infect Dis J. 1991;10:536–539.
  • Boltansky H, Kwon-Chung KJ, Macher AM, et al. Acremonium strictum-related pulmonary infection in a patient with chronic granulomatous disease. J Infect Dis. 1984;149:653.
  • Pastorino AC, Menezes UP, Marques HH, et al. Acremonium kiliense infection in a child with chronic granulomatous disease. Braz J Infect Dis. 2005;9:529–534.
  • Silliman CC, Lawellin DW, Lohr JA, et al. Paecilomyces lilacinus infection in a child with chronic granulomatous disease. J Infect. 1992;24:191–195.
  • Williamson PR, Kwon-Chung KJ, Gallin JI. Successful treatment of Paecilomyces varioti infection in a patient with chronic granulomatous disease and a review of Paecilomyces species infections. Clin Infect Dis. 1992;14:1023–1026.
  • Cohen-Abbo A, Edwards KM. Multifocal osteomyelitis caused by Paecilomyces varioti in a patient with chronic granulomatous disease. Infection. 1995;23:55–57.
  • Sillevis Smitt JH, Leusen JH, Stas HG, et al. Chronic bullous disease of childhood and a paecilomyces lung infection in chronic granulomatous disease. Arch Dis Child. 1997;77:150–152.
  • Wang SM, Shieh CC, Liu CC. Successful treatment of Paecilomyces variotii splenic abscesses: a rare complication in a previously unrecognized chronic granulomatous disease child. Diagn Microbiol Infect Dis. 2005;53:149–152.
  • Heshmatnia J, Marjani M, Mahdaviani SA, et al. Paecilomyces formosus infection in an adult patient with undiagnosed chronic granulomatous disease. J Clin Immunol. 2017;37:342–346.
  • Machouart M, Garcia-Hermoso D, Rivier A, et al. Emergence of disseminated infections due to Geosmithia argillacea in patients with chronic granulomatous disease receiving long-term azole antifungal prophylaxis. J Clin Microbiol. 2011;49:1681–1683.
  • De Ravin SS, Challipalli M, Anderson V, et al. Geosmithia argillacea: an emerging cause of invasive mycosis in human chronic granulomatous disease. Clin Infect Dis. 2011;52:e136–e43.
  • Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–821.
  • Bellanne-Chantelot C, Clauin S, Leblanc T, et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood. 2004;103:4119–4125.
  • Seyedmousavi S, Lionakis MS, Parta M, et al. Emerging Aspergillus species almost exclusively associated with primary immunodeficiencies. Open Forum Infect Dis. 2018;5:ofy213–ofy.
  • Boisson B, Honda Y, Ajiro M, et al. Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest. 2018.
  • Rieber N, Gazendam RP, Freeman AF, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1:e89890.
  • Warris A, Verweij PE, Barton R, et al. Invasive aspergillosis in two patients with Pearson syndrome. Pediatr Infect Dis J. 1999;18:739–741.
  • McKee DH, Cooper PN, Denning DW. Invasive aspergillosis in a patient with MELAS syndrome. J Neurol Neurosurg Psychiatry. 2000;68:765–767.
  • Fader RC, McGinnis MR. Infections caused by dematiaceous fungi: chromoblastomycosis and phaeohyphomycosis. Infect Dis Clin North Am. 1988;2:925–938.
  • Kenney RT, Kwon-Chung KJ, Waytes AT, et al. Successful treatment of systemic Exophiala dermatitidis infection in a patient with chronic granulomatous disease. Clin Infect Dis. 1992;14:235–242.
  • Hipolito E, Faria E, Alves AF, et al. Alternaria infectoria brain abscess in a child with chronic granulomatous disease. Eur J Clin Microbiol Infect Dis. 2009;28:377–380.
  • Shigemura T, Agematsu K, Yamazaki T, et al. Femoral osteomyelitis due to Cladophialophora arxii in a patient with chronic granulomatous disease. Infection. 2009;37:469–473.
  • Meriden Z, Marr KA, Lederman HM et al. Ochroconis gallopava infection in a patient with chronic granulomatous disease: case report and review of the literature. Med Mycol. 2012;50:883–889.
  • Wang X, Wang W, Lin Z, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133:905–8.e3.
  • Lanternier F, Barbati E, Meinzer U, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2015;211:1241–1250.
  • Wang X, Zhang R, Wu W, et al. Impaired specific Antifungal Immunity in CARD9-deficient patients with phaeohyphomycosis. J Invest Dermatol. 2018;138:607–617.
  • Yan XX, Yu CP, Fu XA, et al. CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Br J Dermatol. 2016;174:176–179.
  • Arango-Franco CA, Moncada-Velez M, Beltran CP, et al. Early-onset invasive infection due to Corynespora cassiicola associated with compound heterozygous CARD9 mutations in a Colombian patient. J Clin Immunol. 2018;38:794–803.
  • Fahimzad A, Chavoshzadeh Z, Abdollahpour H, et al. Necrosis of nasal cartilage due to mucormycosis in a patient with severe congenital neutropenia due to HAX1 deficiency. J Investig Allergol Clin Immunol. 2008;18:469–472.
  • Kumar N, Hanks ME, Chandrasekaran P, et al. Gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation-related primary immunodeficiency is associated with disseminated mucormycosis. J Allergy Clin Immunol. 2014;134:236–239.
  • Wang X, Wang A, Wang X, et al. Cutaneous mucormycosis caused by Mucor irregularis in a patient with CARD9 deficiency. Br J Dermatol. 2019 Jan;180(1):213–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.