241
Views
3
CrossRef citations to date
0
Altmetric
Review

Type I interferon detection in autoimmune diseases: challenges and clinical applications

ORCID Icon, , &
Pages 883-903 | Received 07 Apr 2021, Accepted 03 Jun 2021, Published online: 25 Aug 2021

References

  • Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202(1):8–32.
  • Shows TB, Sakaguchi AY, Naylor SL, et al. Clustering of leukocyte and fibroblast interferon genes of human chromosome 9. Science. 1982;218(4570):373–374.
  • Eloranta M-L, Alm GV, Rönnblom L. Disease mechanisms in rheumatology--tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. Arthritis Rheum. 2013;65(4):853–863.
  • Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity. 2006;25(3):373–381.
  • Prakash A, Smith E, Lee C, et al. Tissue-specific Positive Feedback Requirements for Production of Type I Interferon following Virus Infection. J Biol Chem. 2005;280(19):18651–18657.
  • Arpaia N, Barton GM. Toll-like Receptors: key Players in Antiviral Immunity. Curr Opin Virol. 2011;1(6):447–454.
  • Dixit E, Kagan JC. Intracellular pathogen detection by RIG-I-like receptors. Adv Immunol. 2013;117:99–125.
  • Sun L, Wu J, Du F, et al. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway. Internet]. 2013 [cited 2021 Jan 4];339. Available from Science. ; . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/
  • Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14(4):214–228.
  • Jensen MA, Niewold TB. Interferon regulatory factors: critical mediators of human lupus. Transl Res. 2015;165(2):283–295.
  • Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1(6):519–525.
  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–386.
  • Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, et al. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–2627.
  • McNab F, Mayer-Barber K, Sher A, et al. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.
  • Bengtsson AA, Rönnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415–428.
  • Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. Annu Rev Pathol. 2019;14(1):369–393.
  • Rönnblom L. The importance of the type I interferon system in autoimmunity. Clin Exp Rheumatol. 2016;34(4 Suppl 98):21–24.
  • Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3(73):73ra19.
  • Lövgren T, Eloranta M-L, Båve U, et al. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 2004;50(6):1861–1872.
  • Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3ʹ-->5ʹ exonucleases. J Biol Chem. 1999;274(28):19655–19660.
  • Lood C, Gullstrand B, Truedsson L, et al. C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum. 2009;60(10):3081–3090.
  • Elkon KB, Santer DM. Complement, interferon and lupus. Curr Opin Immunol. 2012;24(6):665–670.
  • Barrat FJ, Elkon KB, Fitzgerald KA. Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity. Annu Rev Med. 2016;67(1):323–336.
  • Mahajan A, Herrmann M, Muñoz LE. Clearance Deficiency and Cell Death Pathways: a Model for the Pathogenesis of SLE. Front Immunol. 2016;7:35.
  • Crow MK. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010;43(1):7–16.
  • Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of Long Interspersed Nuclear Element 1 Retroelements and Induction of Type I Interferon in Patients With Systemic Autoimmune Disease. Arthritis Rheumatol. 2016;68(11):2686–2696.
  • Laska MJ, Troldborg A, Hansen B, et al. Polymorphisms within Toll-like receptors are associated with systemic lupus erythematosus in a cohort of Danish females. Rheumatology (Oxford). 2014;53(1):48–55.
  • Enevold C, Kjær L, Nielsen CH, et al. Genetic polymorphisms of dsRNA ligating pattern recognition receptors TLR3, MDA5, and RIG-I. Association with systemic lupus erythematosus and clinical phenotypes. Rheumatol Int. 2014;34(10):1401–1408.
  • Jermendy Á, Szatmári I, Körner A, et al. Association between interferon-induced helicase (IFIH1) rs1990760 polymorphism and seasonal variation in the onset of type 1 diabetes mellitus. Pediatr Diabetes. 2018;19(2):300–304.
  • Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38(6):617–619.
  • Robinson T, Kariuki SN, Franek BS, et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients. J Immunol. 2011;187(3):1298–1303.
  • Sutherland A, Davies J, Owen CJ, et al. Genomic Polymorphism at the Interferon-Induced Helicase (IFIH1) Locus Contributes to Graves’ Disease Susceptibility. J Clin Endocrinol Metab. 2007;92(8):3338–3341.
  • Varzari A, Bruch K, Deyneko IV, et al. Analysis of polymorphisms in RIG-I-like receptor genes in German multiple sclerosis patients. J Neuroimmunol. 2014;277(1–2):140–144.
  • Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–315.
  • Zhang H, Pu J, Wang X, et al. IRAK1 rs3027898 C/A polymorphism is associated with risk of rheumatoid arthritis. Rheumatol Int. 2013;33(2):369–375.
  • Zhao W, Yue X, Liu K, et al. The status of pulmonary fibrosis in systemic sclerosis is associated with IRF5, STAT4, IRAK1, and CTGF polymorphisms. Rheumatol Int. 2017;37(8):1303–1310.
  • Doudar NA, Abdelshafy SS, Rady SAK, et al. Systemic lupus erythematosus: genetic variants in Xq28 region. Reumatologia. 2019;57(5):264–270.
  • Liu X, Xing H, Gao W, et al. A functional variant in the OAS1 gene is associated with Sjögren’s syndrome complicated with HBV infection. Internet]. 2017 [cited 2021 Mar 14];7. Available from: Sci Rep. ; . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730593/
  • Li H, Reksten TR, Ice JA, et al. Identification of a Sjögren’s syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. Internet]. 2017 [cited 2021 Mar 14];13. Available from: PLoS Genet. ; . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501660/
  • Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 2004;75(3):504–507.
  • Gourh P, Tan FK, Assassi S, et al. Association of the PTPN22 R620W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum. 2006;54(12):3945–3953.
  • Dieudé P, Guedj M, Wipff J, et al. The PTPN22620W allele confers susceptibility to systemic sclerosis: findings of a large case–control study of European Caucasians and a meta-analysis. Arthritis Rheum. 2008;58(7):2183–2188.
  • Orvain C, Assassi S, Avouac J, et al. Systemic sclerosis pathogenesis: contribution of recent advances in genetics. Curr Opin Rheumatol. 2020;32(6):505–514.
  • Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337–338.
  • Vlachogiannis NI, Nezos A, Tzioufas AG, et al. Increased frequency of the PTPN22W* variant in primary Sjogren’s Syndrome: association with low type I IFN scores. Clin Immunol. 2016;173:157–160.
  • Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3ʹ-5ʹ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917–920.
  • Namjou B, Kothari PH, Kelly JA, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12(4):270–279.
  • Hughes M, Little J, Herrick AL, et al. A synonymous variant in TREX1 is associated with systemic sclerosis and severe digital ischaemia. Scand J Rheumatol. 2017;46(1):77–78.
  • Fredi M, Bianchi M, Andreoli L, et al. Typing TREX1 gene in patients with systemic lupus erythematosus. Reumatismo. 2015;67(1):1–7.
  • Nezos A, Makri P, Gandolfo S, et al. TREX1 variants in Sjogren’s syndrome related lymphomagenesis. Cytokine. 2020;132:154781.
  • Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem. 2001;276(26):23382–23390.
  • Wang J-M, Huang A-F, Yuan Z-C, et al. Association of IRF5 rs2004640 polymorphism and systemic lupus erythematosus: a meta-analysis. Int J Rheum Dis. 2019;22(9):1598–1606.
  • Tang L, Chen B, Ma B, et al. Association between IRF5 polymorphisms and autoimmune diseases: a meta-analysis. Genet Mol Res. 2014;13(2):4473–4485.
  • Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A. 2007;104(16):6758–6763.
  • Stock CJW, De Lauretis A, Visca D, et al. Defining genetic risk factors for scleroderma-associated interstitial lung disease : IRF5 and STAT4 gene variants are associated with scleroderma while STAT4 is protective against scleroderma-associated interstitial lung disease. Clin Rheumatol. 2020;39(4):1173–1179.
  • Peng Y, Chen B, Sheng X, et al. Polymorphisms in IRF5 and TYK2 Genes Are Associated with Rheumatoid Arthritis in a Chinese Han Population. Med Sci Monit. 2021;27:e928455.
  • Dieudé P, Guedj M, Wipff J, et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum. 2009;60(1):225–233.
  • Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet. Internet]. 2013 [cited 2019 Jul 3];45(11). doi:https://doi.org/10.1038/ng.2792
  • Li Y, Chen S, Li P, et al. Association of the IRF5 rs2070197 polymorphism with systemic lupus erythematosus: a meta-analysis. Clin Rheumatol. 2015;34(9):1495–1501.
  • Fu Q, Zhao J, Qian X, et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 2011;63(3):749–754.
  • Carmona FD, Gutala R, Simeón CP, et al. Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann Rheum Dis. 2012;71(1):114–119.
  • Li S-W, He Y, Zheng Z-H, et al. Single-nucleotide polymorphisms of IRF8 gene are associated with systemic lupus erythematosus in Chinese Han population. Int J Immunogenet. 2014;41(2):112–118.
  • Leonard D, Svenungsson E, Sandling JK, et al. Coronary heart disease in systemic lupus erythematosus is associated with interferon regulatory factor-8 gene variants. Circ Cardiovasc Genet. 2013;6(3):255–263.
  • Gorlova O, Martin J-E, Rueda B, et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 2011;53(7):e1002178.
  • Arismendi M, Giraud M, Ruzehaji N, et al. Identification of NF-κB and PLCL2 as new susceptibility genes and highlights on a potential role of IRF8 through interferon signature modulation in systemic sclerosis. Arthritis Res Ther. Internet]. 2015 [cited 2021 Feb 21];17. ;17:.
  • De Jager PL, Jia X, Wang J, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet. 2009;41(7):776–782.
  • Assassi S, Mayes MD, Arnett FC, et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 2010;62(2):589–598.
  • Leyva L, Fernández O, Fedetz M, et al. IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta treatment response. J Neuroimmunol. 2005;163(1–2):165–171.
  • Owens T, Khorooshi R, Wlodarczyk A, et al., Interferons in the central nervous system: a few instruments play many tunes. Glia. 62(3): 339–355. 2014.
  • Bieber AJ, Suwansrinon K, Kerkvliet J, et al. Allelic variation in the Tyk2 and EGF genes as potential genetic determinants of CNS repair. Proc Natl Acad Sci U S A. 2010;107(2):792–797.
  • Mero I-L, Lorentzen ÅR, Ban M, et al. A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. Eur J Hum Genet. 2010;18(4):502–504.
  • Spach KM, Noubade R, McElvany B, et al. A single nucleotide polymorphism in Tyk2 controls susceptibility to experimental allergic encephalomyelitis. J Immunol. 2009;182:7776–7783.
  • Shapiro MR, Thirawatananond P, Peters L, et al. De-coding genetic risk variants in type 1 diabetes. Immunol Cell Biol. 2021;99(5):496–508.
  • Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–124.
  • Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus. N Engl J Med. 2007;357(10):977–986.
  • Wang J-M, Xu W-D, Huang A-F. Association of STAT4 Gene Rs7574865, Rs10168266 Polymorphisms and Systemic Lupus Erythematosus Susceptibility: a Meta-analysis. Immunol Invest. 2021;50(2–3):282–294.
  • Lee H-S, Remmers EF, Le JM, et al. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med. 2007;13(9–10):455–460.
  • Colafrancesco S, Ciccacci C, Priori R, et al. STAT4, TRAF3IP, IL10, and HCP5 Polymorphisms in Sjögren’s Syndrome: association with Disease Susceptibility and Clinical Aspects. J Immunol Res. Internet]. 2019 [cited 2019 Jul 2];22. Available from ;:1–8.
  • Zheng J, Yin J, Huang R, et al. Meta-analysis reveals an association of STAT4 polymorphisms with systemic autoimmune disorders and anti-dsDNA antibody. Hum Immunol. 2013;74(8):986–992.
  • Korman BD, Alba MI, Le JM, et al. Variant form of STAT4 is associated with primary Sjögren’s syndrome. Genes Immun. 2008;9(3):267–270.
  • Sugiura T, Kawaguchi Y, Goto K, et al. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann Rheum Dis. 2012;71(10):1646–1650.
  • Dieudé P, Guedj M, Wipff J, et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009;60(8):2472–2479.
  • Taylor KE, Remmers EF, Lee AT, et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 2008;4(5):e1000084.
  • Yi L, Wang JC, Guo XJ, et al. STAT4 is a Genetic Risk Factor for Systemic Sclerosis in a Chinese Population. Int J Immunopathol Pharmacol. 2013;26(2):473–478.
  • Svenungsson E, Gustafsson J, Leonard D, et al. A STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-phospholipid antibodies in systemic lupus erythematosus. Ann Rheum Dis. 2010;69(5):834–840.
  • Hedrich CM, Tsokos GC. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol Med. 2011;17(12):714–724.
  • Cai T, Muhali F, Song R, et al. Genome-wide DNA methylation analysis in Graves’ disease. Genomics. 2015;105(4):204–210.
  • Chen S, Pu W, Guo S, et al. Genome-Wide DNA Methylation Profiles Reveal Common Epigenetic Patterns of Interferon-Related Genes in Multiple Autoimmune Diseases. Front Genet. Internet]. 2019 [cited 2021 Feb 28];10. Available from:. ; . : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459983/
  • Mavragani CP, Nezos A, Sagalovskiy I, et al. Defective regulation of L1 endogenous retroelements in primary Sjogren’s syndrome and systemic lupus erythematosus: role of methylating enzymes. J Autoimmun. 2018;88:75–82.
  • Mavragani CP, Kirou KA, Nezos A, et al. Expression of APOBEC family members as regulators of endogenous retroelements and malignant transformation in systemic autoimmunity. Clin Immunol. 2021;223:108649.
  • Goulielmos GN, Zervou MI, Vazgiourakis VM, et al. The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene. 2018;668:59–72.
  • Niewold TB, Hua J, Lehman TJA, et al. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007;8(6):492–502.
  • Weckerle CE, Franek BS, Kelly JA, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044–1053.
  • Kirou KA, Lee C, George S, et al. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005;52(5):1491–1503.
  • Chasset F, Ribi C, Trendelenburg M, et al. Identification of highly active systemic lupus erythematosus by combined type I interferon and neutrophil gene scores vs classical serologic markers. Rheumatology (Oxford). 2020;59(11):3468–3478.
  • Mai L, Asaduzzaman A, Noamani B, et al. The baseline interferon signature predicts disease severity over the subsequent 5 years in systemic lupus erythematosus. Arthritis Res Ther. 2021;23(1):29.
  • Flessa C-M, Vlachiotis S, Nezos A, et al. Independent association of low IFNλ1 gene expression and type I IFN score/IFNλ1 ratio with obstetric manifestations and triple antiphospholipid antibody positivity in primary antiphospholipid syndrome. Clin Immunol. 2019;209:108265.
  • Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med. 2019;6(1):e000270.
  • Zahn S, Rehkämper C, Kümmerer BM, et al. Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. J Invest Dermatol. 2011;131(1):133–140.
  • Sarkar MK, Hile GA, Tsoi LC, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77(11):1653–1664.
  • Tucci M, Quatraro C, Lombardi L, et al. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 2008;58(1):251–262.
  • Peterson KS, Huang J-F, Zhu J, et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest. 2004;113(12):1722–1733.
  • Nzeusseu Toukap A, Galant C, Theate I, et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 2007;56(5):1579–1588.
  • Feinglass EJ, Arnett FC, Dorsch CA, et al. Neuropsychiatric manifestations of systemic lupus erythematosus: diagnosis, clinical spectrum, and relationship to other features of the disease. Medicine (Baltimore). 1976;55(4):323–339.
  • Van Dam AP. Diagnosis and pathogenesis of CNS lupus. Rheumatol Int. 1991;11(1):1–11.
  • Hanly JG, Urowitz MB, Sanchez-Guerrero J, et al. Neuropsychiatric events at the time of diagnosis of systemic lupus erythematosus: an international inception cohort study. Arthritis Rheum. 2007;56(1):265–273.
  • Popescu A, Kao AH. Neuropsychiatric systemic lupus erythematosus. Curr Neuropharmacol. 2011;9(3):449–457.
  • Reinert LS, Lopušná K, Winther H, et al. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun. 2016;7(1):13348.
  • Mondal TK, Saha SK, Miller VM, et al. Autoantibody-mediated neuroinflammation: pathogenesis of neuropsychiatric systemic lupus erythematosus in the NZM88 murine model. Brain Behav Immun. 2008;22(6):949–959.
  • Crupi R, Cambiaghi M, Spatz L, et al. Reduced adult neurogenesis and altered emotional behaviors in autoimmune-prone B-cell activating factor transgenic mice. Biol Psychiatry. 2010;67(6):558–566.
  • Trysberg E, Carlsten H, Tarkowski A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus. 2000;9(7):498–503.
  • Santer DM, Yoshio T, Minota S, et al., Potent Induction of IFN-α and Chemokines by Autoantibodies in the Cerebrospinal Fluid of Patients with Neuropsychiatric Lupus. J Immunol. 182(2): 1192–1201. 2009.
  • Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–11947.
  • Goldmann T, Zeller N, Raasch J, et al., USP 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 34(12): 1612–1629. 2015.
  • Blank T, Prinz M. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia. 2017;65(9):1397–1406.
  • Vaknin-Dembinsky A, Karussis D, Avichzer J, et al. NMO spectrum of disorders: a paradigm for astrocyte-targeting autoimmunity and its implications for MS and other CNS inflammatory diseases. J Autoimmun. 2014;54:93–99.
  • Van Heteren JT, Rozenberg F, Aronica E, et al. Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi-Goutières syndrome. Glia. 2008;56(5):568–578.
  • Liu Y, Carlsson R, Ambjørn M, et al. PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J Neurosci. 2013;33(35):14231–14245.
  • Pashenkov M, Huang YM, Kostulas V, et al. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain. 2001;124(3):480–492.
  • Kocur M, Schneider R, Pulm A-K, et al. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathol Commun. 2015;3(1):20.
  • Mavragani CP, Moutsopoulos HM. Sjögren syndrome. CMAJ. 2014;186(15):E579–E586.
  • Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165(20):2337–2344.
  • Skarlis C, Argyriou E, Mavragani CP. Lymphoma in Sjögren’s Syndrome: predictors and Therapeutic Options. CurrTreat Options Rheumatol. 2020;6(1):1–17.
  • Mavragani CP, Crow MK. Activation of the type I interferon pathway in primary Sjogren’s syndrome. J Autoimmun. 2010;35(3):225–231.
  • Wakamatsu E, Nakamura Y, Matsumoto I, et al. DNA microarray analysis of labial salivary glands of patients with Sjögren’s syndrome. Ann Rheum Dis. 2007;66(6):844–845.
  • Hjelmervik TOR, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–1544.
  • Kimoto O, Sawada J, Shimoyama K, et al. Activation of the interferon pathway in peripheral blood of patients with Sjogren’s syndrome. J Rheumatol. 2011;38(2):310–316.
  • Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J Autoimmun. 2015;63:47–58.
  • Emamian ES, Leon JM, Lessard CJ, et al. Peripheral blood gene expression profiling in Sjögren’s syndrome. Genes Immun. 2009;10(4):285–296.
  • Brkic Z, Maria NI, Van Helden-meeuwsen CG, et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjogren’s syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis. 2013;72(5):728–735.
  • Imgenberg-Kreuz J, Sandling JK, Björk A, et al. Transcription profiling of peripheral B cells in antibody-positive primary Sjögren’s syndrome reveals upregulated expression of CX3CR1 and a type I and type II interferon signature. Scand J Immunol. 2018;87(5):e12662.
  • Bodewes ILA, Versnel MA. Interferon activation in primary Sjögren’s syndrome: recent insights and future perspective as novel treatment target. Expert Rev Clin Immunol. 2018;14(10):817–829.
  • Hillen MR, Pandit A, Blokland SLM, et al. Plasmacytoid DCs From Patients With Sjögren’s Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front Immunol. 2019;10:2096.
  • Margaretten M. Neurologic Manifestations of Primary Sjögren Syndrome. Rheum Dis Clin North Am. 2017;43(4):519–529.
  • Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–2038.
  • Lande R, Giacomini E, Serafini B, et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol. 2004;173(4):2815–2824.
  • Cavanagh LL, Boyce A, Smith L, et al. Rheumatoid arthritis synovium contains plasmacytoid dendritic cells. Arthritis Res Ther. 2005;7(2):R230–240.
  • Van HJ, Tjm S, Blankert P, et al. Expression of interferon β in synovial tissue from patients with rheumatoid arthritis: comparison with patients with osteoarthritis and reactive arthritis. Ann Rheum Dis. 2005;64(12):1780–1782.
  • Van Der Pouw Kraan TCTM, Wijbrandts CA, Van Baarsen LGM, et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis. 2007;66(8):1008–1014.
  • Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med. 2019;6(1):e000336.
  • Seyhan AA, Gregory B, Cribbs AP, et al. Novel biomarkers of a peripheral blood interferon signature associated with drug-naïve early arthritis patients distinguish persistent from self-limiting disease course. Sci Rep. 2020;10(1):8830.
  • Van Baarsen LGM, Bos WH, Rustenburg F, et al. Gene expression profiling in autoantibody-positive patients with arthralgia predicts development of arthritis. Arthritis Rheum. 2010;62(3):694–704.
  • Van Der Pouw Kraan TCTM, Van Baarsen LGM, Wijbrandts CA, et al. Expression of a pathogen-response program in peripheral blood cells defines a subgroup of Rheumatoid Arthritis patients. Genes Immun. 2008;9(1):16–22.
  • Mavragani CP, La DT, Stohl W, et al. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-beta/alpha ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort. Arthritis Rheum. 2010;62(2):392–401.
  • Roelofs MF, Wenink MH, Brentano F, et al. Type I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA). Ann Rheum Dis. 2009;68(9):1486–1493.
  • Coclet-Ninin J, Dayer JM, Burger D. Interferon-beta not only inhibits interleukin-1beta and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw. 1997;8(4):345–349.
  • Palmer G, Mezin F, Juge-Aubry CE, et al. Interferon beta stimulates interleukin 1 receptor antagonist production in human articular chondrocytes and synovial fibroblasts. Ann Rheum Dis. 2004;63(1):43–49.
  • Triantaphyllopoulos KA, Williams RO, Tailor H, et al. Amelioration of collagen-induced arthritis and suppression of interferon-gamma, interleukin-12, and tumor necrosis factor alpha production by interferon-beta gene therapy. Arthritis Rheum. 1999;42(1):90–99.
  • Van Holten J, Reedquist K, Sattonet-Roche P, et al. Treatment with recombinant interferon-β reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther. 2004;6(3):R239–R249.
  • Wu M, Assassi S. The role of type 1 interferon in systemic sclerosis. Front Immunol. 2013;4:266.
  • Vlachogiannis NI, Pappa M, Ntouros PA, et al. Association Between DNA Damage Response, Fibrosis and Type I Interferon Signature in Systemic Sclerosis. Internet]. 2020 [cited 2021 Feb 27];11. Available from Front Immunol. ; . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566292/
  • Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of Interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 2014;66(3):714–725.
  • Mireles-Canales MP, González-Chávez SA, Quiñonez-Flores CM, et al. DNA Damage and Deficiencies in the Mechanisms of Its Repair: implications in the Pathogenesis of Systemic Lupus Erythematosus. J Immunol Res. 2018;2018:8214379.
  • Martelli-Palomino G, Paoliello-Paschoalato AB, Crispim JCO, et al. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin Exp Rheumatol. 2017;35(2):247–254.
  • Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine. 2020;132:154635.
  • Wuttge DM, Lood C, Tufvesson E, et al. Increased serum type I interferon activity in early systemic sclerosis patients is associated with antibodies against Sjögren’s syndrome antigens and nuclear ribonucleoprotein antigens. Scand J Rheumatol. 2013;42(3):235–240.
  • Lande R, Lee EY, Palazzo R, et al. CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-α production in systemic sclerosis. Nat Commun. 2019;10(1):1731.
  • Lande R, Mennella A, Palazzo R, et al. Anti-CXCL4 Antibody Reactivity Is Present in Systemic Sclerosis (SSc) and Correlates with the SSc Type I Interferon Signature. Int J Mol Sci. 2020;21(14):21.
  • Sontheimer RD. Dermatomyositis: an overview of recent progress with emphasis on dermatologic aspects. Dermatol Clin. 2002;20(3):387–408.
  • Magro CM, Segal JP, Crowson AN, et al. The phenotypic profile of dermatomyositis and lupus erythematosus: a comparative analysis. J Cutan Pathol. 2010;37(6):659–671.
  • McNiff JM, Kaplan DH. Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus. J Cutan Pathol. 2008;35(5):452–456.
  • Walsh RJ, Kong SW, Yao Y, et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 2007;56(11):3784–3792.
  • Greenberg SA. A gene expression approach to study perturbed pathways in myositis. Curr Opin Rheumatol. 2007;19(6):536–541.
  • Niewold TB, Kariuki SN, Morgan GA, et al. Elevated Serum Interferon Alpha Activity in Juvenile Dermatomyositis: associations with Disease Activity at Diagnosis and After 36 Months of Therapy. Arthritis Rheum. 2009;60(6):1815–1824.
  • Piper CJM, Wilkinson MGL, Deakin CT, et al. CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol. 2018;9:1372.
  • Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70(5):831–836.
  • Somani A-K, Swick AR, Cooper KD, et al. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol. 2008;144(10):1341–1349.
  • Cassius C, Amode R, Delord M, et al. MDA5+ Dermatomyositis Is Associated with Stronger Skin Type I Interferon Transcriptomic Signature with Upregulation of IFN-κ Transcript. J Invest Dermatol. 2020;140(6):1276–1279.e7.
  • De Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol. 2017;14(12):739–749.
  • Andreou N-P, Legaki E, Gazouli M. Inflammatory bowel disease pathobiology: the role of the interferon signature. Ann Gastroenterol. 2020;33(2):125–133.
  • Cantó E, Zamora C, Garcia-Planella E, et al. Bacteria-related Events and the Immunological Response of Onset and Relapse Adult Crohn’s Disease Patients. J Crohns Colitis. 2019;13(1):92–99.
  • Ito R, Shin-Ya M, Kishida T, et al., Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol. 146(2): 330–338. 2006.
  • Kotredes KP, Thomas B, Gamero AM. The Protective Role of Type I Interferons in the Gastrointestinal Tract. Front Immunol. 2017;8:410.
  • Pott J, Stockinger S. Type I and III Interferon in the Gut: tight Balance between Host Protection and Immunopathology. Front Immunol. 2017;8:258.
  • McAleer JP, Kolls JK. Maintaining poise: commensal microbiota calibrate interferon responses. Immunity. 2012;37(1):10–12.
  • Santaolalla R, Abreu MT. Innate immunity in the small intestine. Curr Opin Gastroenterol. 2012;28(2):124–129.
  • Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet. 2003;361(9356):512–519.
  • Mavragani CP, Nezos A, Dovrolis N, et al. Type I and II Interferon Signatures Can Predict the Response to Anti-TNF Agents in Inflammatory Bowel Disease Patients: involvement of the Microbiota. Inflamm Bowel Dis. 2020;26(10):1543–1553.
  • Samie M, Lim J, Verschueren E, et al. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol. 2018;19(3):246–254.
  • Breese E, Braegger CP, Corrigan CJ, et al. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993;78(1):127–131.
  • Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–342.
  • Mavragani CP, Niewold TB, Chatzigeorgiou A, et al. Increased serum type I interferon activity in organ-specific autoimmune disorders: clinical, imaging, and serological associations. Front Immunol. 2013;4:238.
  • Fentiman IS, Thomas BS, Balkwill FR, et al. Primary hypothyroidism associated with interferon therapy of breast cancer. Lancet. 1985;325(8438):1166.
  • Mandac JC, Chaudhry S, Sherman KE, et al. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43(4):661–672.
  • Lombardi A, Menconi F, Greenberg D, et al. Dissecting the Genetic Susceptibility to Graves’ Disease in a Cohort of Patients of Italian Origin. Front Endocrinol (Lausanne). 2016;7:21.
  • Corssmit EP, De Metz J, Sauerwein HP, et al. Biologic responses to IFN-alpha administration in humans. J Interferon Cytokine Res. 2000;20(12):1039–1047.
  • Roti E, Minelli R, Giuberti T, et al. Multiple changes in thyroid function in patients with chronic active HCV hepatitis treated with recombinant interferon-alpha. Am J Med. 1996;101(5):482–487.
  • Farrar JD, Murphy KM. Type I interferons and T helper development. Immunol Today. 2000;21(10):484–489.
  • Caraccio N, Giannini R, Cuccato S, et al. Type I interferons modulate the expression of thyroid peroxidase, sodium/iodide symporter, and thyroglobulin genes in primary human thyrocyte cultures. J Clin Endocrinol Metab. 2005;90(2):1156–1162.
  • Monzani F, Caraccio N, Dardano A, et al. Thyroid autoimmunity and dysfunction associated with type I interferon therapy. Clin Exp Med. 2004;3(4):199–210.
  • Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes. 2018;19(3):346–353.
  • Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.
  • Lombardi A, Tsomos E, Hammerstad SS, et al. Interferon alpha: the key trigger of type 1 diabetes. J Autoimmun. 2018;94:7–15.
  • Fabris P, Betterle C, Floreani A, et al., Development of type 1 diabetes mellitus during interferon alfa therapy for chronic HCV hepatitis. Lancet. 340(8818): 548. 1992.
  • Morgan NG, Leete P, Foulis AK, et al. Islet inflammation in human type 1 diabetes mellitus. IUBMB Life. 2014;66(11):723–734.
  • Huang X, Yuang J, Goddard A, et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes. 1995;44(6):658–664.
  • Chehadeh W, Weill J, Vantyghem MC, et al., Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis. 181(6): 1929–1939. 2000.
  • Xia C-Q, Peng R, Chernatynskaya AV, et al. Increased IFN-α-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-α production. J Immunol. 2014;193(3):1024–1034.
  • Winkler C, Lauber C, Adler K, et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes. 2011;60(2):685–690.
  • Ferreira RC, Guo H, Coulson RMR, et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 2014;63(7):2538–2550.
  • Diana J, Simoni Y, Furio L, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013;19(1):65–73.
  • Nakazawa T, Satoh J, Takahashi K, et al. Complete suppression of insulitis and diabetes in NOD mice lacking interferon regulatory factor-1. J Autoimmun. 2001;17(2):119–125.
  • Stewart TA, Hultgren B, Huang X, et al. Induction of type I diabetes by interferon-alpha in transgenic mice. Science. 1993;260(5116):1942–1946.
  • Hirschfield GM, Beuers U, Corpechot C, European Association for the Study of the Liver. Electronic address: [email protected], European Association for the Study of the Liver. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol. 2017;67(1):145–172.
  • Takii Y, Nakamura M, Ito M, et al. Enhanced expression of type I interferon and toll-like receptor-3 in primary biliary cirrhosis. Lab Invest. 2005;85(7):908–920.
  • Bae HR, Hodge DL, Yang G-X, et al., The interplay of type I and type II interferons in murine autoimmune cholangitis as a basis for sex-biased autoimmunity. Hepatology. 67(4): 1408–1419. 2018.
  • Okada C, Akbar SMF, Horiike N, et al. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int. 2005;25(3):595–603.
  • Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106–2112.
  • Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–815.
  • Ramanathan S, Dale RC, Brilot F. Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev. 2016;15(4):307–324.
  • Waters P, Woodhall M, O’Connor KC, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e89.
  • Weber MS, Derfuss T, Brück W. Anti-Myelin Oligodendrocyte Glycoprotein Antibody-Associated Central Nervous System Demyelination-A Novel Disease Entity? JAMA Neurol. 2018;75(8):909–910.
  • Pittock SJ, Lennon VA, De Seze J, et al. Neuromyelitis optica and non organ-specific autoimmunity. Arch Neurol. 2008;65(1):78–83.
  • Krumbholz M, Faber H, Steinmeyer F, et al., Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity. Brain. 131(6): 1455–1463. 2008.
  • Kaneko K, Sato DK, Nakashima I, et al. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications. J Neurol Neurosurg Psychiatry. 2018;89(9):927–936.
  • Uzawa A, Mori M, Arai K, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010;16(12):1443–1452.
  • Khorooshi R, Wlodarczyk A, Asgari N, et al. Neuromyelitis optica-like pathology is dependent on type I interferon response. Exp Neurol. 2013;247:744–747.
  • Berg CT, Khorooshi R, Asgari N, et al., Influence of type I IFN signaling on anti-MOG antibody-mediated demyelination. J Neuroinflammation. 14(1): 127. 2017.
  • Feng X, Reder NP, Yanamandala M, et al., Type I interferon signature is high in lupus and neuromyelitis optica but low in multiple sclerosis. J Neurol Sci. 313(1–2): 48–53. 2012.
  • Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378(2):169–180.
  • Reder AT, Feng X. How type I interferons work in multiple sclerosis and other diseases: some unexpected mechanisms. J Interferon Cytokine Res. 2014;34(8):589–599.
  • Di Filippo M, Tozzi A, Tantucci M, et al. Interferon-β1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: electrophysiological evidence. Neurobiol Dis. 2014;62:387–393.
  • Panitch H, Miller A, Paty D, et al. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology. 2004;63:1788–1795.
  • Hannon CW, McCourt C, Lima HC, et al. Interventions for cutaneous disease in systemic lupus erythematosus. Cochrane Database Syst Rev. 2021;3:CD007478.
  • Posada J, Valadkhan S, Burge D, et al. Improvement of Severe Fatigue Following Nuclease Therapy in Patients With Primary Sjögren’s Syndrome: a Randomized Clinical Trial. Arthritis Rheumatol. 2021;73(1):143–150.
  • McBride JM, Jiang J, Abbas AR, et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 2012;64(11):3666–3676.
  • Kalunian KC, Merrill JT, Maciuca R, et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75(1):196–202.
  • Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(11):1909–1916.
  • Higgs BW, Zhu W, Morehouse C, et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis. 2014;73(1):256–262.
  • Houssiau FA, Thanou A, Mazur M, et al., IFN-α kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis. 79(3): 347–355. 2020.
  • Furie RA, Morand EF, Bruce IN, et al., Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1(4): e208–e219. 2019.
  • Morand EF, Furie R, Tanaka Y, et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N Engl J Med. 2020;382(3):211–221.
  • Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16(1):R57.
  • Traynor K. FDA approves tofacitinib for rheumatoid arthritis. Am J Health Syst Pharm. 2012;69:2120.
  • Mogul A, Corsi K, McAuliffe L. Baricitinib: the Second FDA-Approved JAK Inhibitor for the Treatment of Rheumatoid Arthritis. Ann Pharmacother. 2019;53(9):947–953.
  • Kahl L, Patel J, Layton M, et al. Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus. Lupus. 2016;25(13):1420–1430.
  • Duggan S, Keam SJ. Upadacitinib: first Approval. Drugs. 2019;79(16):1819–1828.
  • Skarlis C, Marketos N, Mavragani CP. Biologics in Sjögren’s syndrome. Pharmacol Res. 2019;147:104389.
  • Jiang J, Zhao M, Chang C, et al. Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases. Clin Rev Allergy Immunol. 2020;59(2):248–272.
  • Lacy M, Hauser M, Pliskin N, et al. The effects of long-term interferon-beta-1b treatment on cognitive functioning in multiple sclerosis: a 16-year longitudinal study. Mult Scler. 2013;19(13):1765–1772.
  • Feng X, Han D, Kilaru BK, et al. Inhibition of interferon-beta responses in multiple sclerosis immune cells associated with high-dose statins. Arch Neurol. 2012;69(10):1303–1309.
  • Larsson PG, Lakshmikanth T, Laitinen OH, et al. A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia. 2015;58(2):346–354.
  • Moëll A, Skog O, Åhlin E, et al. Antiviral effect of nicotinamide on enterovirus-infected human islets in vitro: effect on virus replication and chemokine secretion. J Med Virol. 2009;81(6):1082–1087.
  • Wampler Muskardin TL, Fan W, Jin Z, et al. Distinct Single Cell Gene Expression in Peripheral Blood Monocytes Correlates With Tumor Necrosis Factor Inhibitor Treatment Response Groups Defined by Type I Interferon in Rheumatoid Arthritis. Front Immunol. 2020;11:1384.
  • Wampler Muskardin T, Vashisht P, Dorschner JM, et al. Increased pretreatment serum IFN-β/α ratio predicts non-response to tumour necrosis factor α inhibition in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1757–1762.
  • Thurlings RM, Boumans M, Tekstra J, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum. 2010;62(12):3607–3614.
  • Quartuccio L, Mavragani CP, Nezos A, et al. Type I interferon signature may influence the effect of belimumab on immunoglobulin levels, including rheumatoid factor in Sjögren’s syndrome. Clin Exp Rheumatol. 2017;35(4):719–720.
  • Comabella M, Lünemann JD, Río J, et al. A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain. 2009;132(12):3353–3365.
  • Axtell RC, De Jong BA, Boniface K, et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010;16(4):406–412.
  • Martin PK, Cadwell K. Regulation of interferon signaling in response to gut microbes by autophagy. Gut Microbes. 2020;11(1):126–134.
  • Van Baarsen LG, Wijbrandts CA, Rustenburg F, et al. Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment. Arthritis Res Ther. 2010;12(1):R11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.