69
Views
0
CrossRef citations to date
0
Altmetric
Review

New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis

, &
Received 15 Feb 2024, Accepted 17 Apr 2024, Published online: 02 May 2024

References

  • Packham JCHM. Long-term follow-up of 246 adults with juvenile idiopathic arthritis: functional outcome. Rheumatology (Oxford). 2002;41:1428–1435. doi: 10.1093/rheumatology/41.12.1428
  • Chhabra A, Robinson C, Houghton K, et al. Long-term outcomes and disease course of children with juvenile idiopathic arthritis in the ReACCh-out cohort: a two-centre experience. Rheumatology (Oxford). 2020 Dec 1;59(12):3727–3730. doi: 10.1093/rheumatology/keaa118
  • Giancane G, Muratore V, Marzetti V, et al. Disease activity and damage in juvenile idiopathic arthritis: methotrexate era versus biologic era. Arthritis Res Ther. 2019 Jul 8;21(1):168. doi: 10.1186/s13075-019-1950-7
  • Petty RE, Southwood TR, Manners P, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004 Feb;31(2):390–392.
  • Nagai H, Kirino Y, Nakano H, et al. Elevated serum gasdermin D N-terminal implicates monocyte and macrophage pyroptosis in adult-onset Still’s disease. Rheumatology (Oxford). 2021 Aug 2;60(8):3888–3895. doi: 10.1093/rheumatology/keaa814
  • Schulert GS, Kessel C. Molecular pathways in the pathogenesis of systemic juvenile idiopathic arthritis. Rheum Dis Clin North Am. 2023 Nov;49(4):895–911. doi: 10.1016/j.rdc.2023.06.007
  • Henderson LA, Hoyt KJ, Lee PY, et al. Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis. JCI Insight. 2020 Mar 26;5(6). doi: 10.1172/jci.insight.132508
  • Schulert GS, Yasin S, Carey B, et al. Systemic Juvenile Idiopathic Arthritis-Associated Lung disease: characterization and risk factors. Arthritis Rheumatol. 2019 Nov;71(11):1943–1954.
  • Saper VE, Chen G, Deutsch GH, et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann Rheum Dis. 2019 Dec;78(12):1722–1731.
  • Saper VE, Ombrello MJ, Tremoulet AH, et al. Severe delayed hypersensitivity reactions to IL-1 and IL-6 inhibitors link to common HLA-DRB1*15 alleles. Ann Rheum Dis. 2022 Mar;81(3):406–415. doi: 10.1136/annrheumdis-2021-220578
  • Aksentijevich I, Soriano A, Hernandez-Rodriguez JE. Editorial: autoinflammatory diseases: from genes to bedside. Front Immunol. 2020;11:1177. doi: 10.3389/fimmu.2020.01177
  • Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy—recent progress and future developments. AAPS J. 2017 Nov 27;20(1):4.
  • Ombrello MJ, Arthur VL, Remmers EF, et al. Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis. 2017 May;76(5):906–913. doi: 10.1136/annrheumdis-2016-210324
  • Stock CJ, Ogilvie EM, Samuel JM, et al. Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis. Genes Immunity. 2008 Jun;9(4):349–357.
  • Hinks A, Martin P, Thompson SD, et al. Autoinflammatory gene polymorphisms and susceptibility to UK juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2013 Apr 2;11(1):14. doi: 10.1186/1546-0096-11-14
  • McDowell TL, Symons JA, Ploski R, et al. A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum. 1995 Feb;38(2):221–228.
  • Donn RP, Barrett JH, Farhan A, et al. Cytokine gene polymorphisms and susceptibility to juvenile idiopathic arthritis. British paediatric rheumatology study group. Arthritis Rheum. 2001 Apr;44(4):802–810.
  • Cinek O, Vavrincova P, Striz I, et al. Association of single nucleotide polymorphisms within cytokine genes with juvenile idiopathic arthritis in the Czech population. J Rheumatol. 2004 Jun;31(6):1206–1210.
  • Cimaz R, Cazalis MA, Reynaud C, et al. IL1 and TNF gene polymorphisms in patients with juvenile idiopathic arthritis treated with TNF inhibitors. Ann Rheumatic Dis. 2007;66(7):900–904. doi: 10.1136/ard.2006.067454
  • Fishman DFG, Mohamed-Ali R, Jeffery V, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102(7):1369–1376. doi: 10.1172/JCI2629
  • Ogilvie EM, Fife MS, Thompson SD, et al. The -174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum. 2003 Nov;48(11):3202–3206.
  • Vencovsky J, Jarosova K, Ruzickova S, et al. Higher frequency of allele 2 of the interleukin-1 receptor antagonist gene in patients with juvenile idiopathic arthritis. Arthritis Rheum. 2001 Oct;44(10):2387–2391.
  • Cimaz R, Cazalis MA, Reynaud C, et al. IL1 and TNF gene polymorphisms in patients with juvenile idiopathic arthritis treated with TNF inhibitors. Ann Rheum Dis. 2007 Jul;66(7):900–904.
  • Fife MS, Gutierrez A, Ogilvie EM, et al. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res Ther. 2006;8(5):R148. doi: 10.1186/ar2041
  • Omoyinmi E, Forabosco P, Hamaoui R, et al. Association of the IL-10 gene family locus on chromosome 1 with juvenile idiopathic arthritis (JIA). PLOS ONE. 2012;7(10):e47673. doi: 10.1371/journal.pone.0047673
  • Donn R, Alourfi Z, De Benedetti F, et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum. 2002 Sep;46(9):2402–2409.
  • Miterski B, Drynda S, Boschow G, et al. Complex genetic predisposition in adult and juvenile rheumatoid arthritis. BMC Genet. 2004 Feb 4;5(1):2. doi: 10.1186/1471-2156-5-2
  • Berdeli A, Ozyurek AR, Ulger Z, et al. Association of macrophage migration inhibitory factor gene -173 G/C polymorphism with prognosis in Turkish children with juvenile rheumatoid arthritis. Rheumatol Int. 2006 Jun;26(8):726–731.
  • Bukulmez H, Fife M, Tsoras M, et al. Tapasin gene polymorphism in systemic onset juvenile rheumatoid arthritis: a family-based case-control study. Arthritis Res Ther. 2005;7(2):R285–90. doi: 10.1186/ar1480
  • Prahalad S, Bohnsack JF, Jorde LB, et al. Association of two functional polymorphisms in the CCR5 gene with juvenile rheumatoid arthritis. Genes Immunity. 2006 Sep;7(6):468–475.
  • Scheibel I, Veit T, Neves AG, et al. Differential CCR5Delta32 allelic frequencies in juvenile idiopathic arthritis subtypes: evidence for different regulatory roles of CCR5 in rheumatological diseases. Scand J Rheumatol. 2008 Jan;37(1):13–17.
  • Lindner E, Nordang GB, Melum E, et al. Lack of association between the chemokine receptor 5 polymorphism CCR5delta32 in rheumatoid arthritis and juvenile idiopathic arthritis. BMC Med Gene. 2007 Jun 12;8(1):33. doi: 10.1186/1471-2350-8-33
  • Hinks A, Martin P, Flynn E, et al. Association of the CCR5 gene with juvenile idiopathic arthritis. Genes Immunity. 2010 Oct;11(7):584–589.
  • Border R, Johnson EC, Evans LM, et al. No support for historical Candidate gene or Candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am J Psychiatry. 2019 May 1;176(5):376–387. doi: 10.1176/appi.ajp.2018.18070881
  • Farrell MS, Werge T, Sklar P, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015 May;20(5):555–562.
  • Ombrello MJ, Remmers EF, Tachmazidou I, et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc Natl Acad Sci USA. 2015 Dec 29;112(52):15970–15975. doi: 10.1073/pnas.1520779112
  • Nigrovic PA. Autoinflammation and autoimmunity in systemic juvenile idiopathic arthritis. Proc Natl Acad Sci USA. 2015 Dec 29;112(52):15785–15786.
  • Kessel C, Hedrich CM, Foell D. Innately adaptive or truly autoimmune: is there something unique about systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 2020 Feb;72(2):210–219. doi: 10.1002/art.41107
  • Prahalad S, Conneely KN, Jiang Y, et al. Brief report: susceptibility to childhood-onset rheumatoid arthritis: investigation of a weighted genetic risk score that integrates cumulative effects of variants at five genetic Loci. Arthritis Rheum. 2013 Jun;65(6):1663–1667.
  • Hinks A, Cobb J, Marion MC, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013 Jun;45(6):664–669.
  • Arthur VL, Shuldiner E, Remmers EF, et al. IL1RN variation influences both disease susceptibility and response to recombinant human interleukin-1 receptor antagonist therapy in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2018 Aug;70(8):1319–1330. doi: 10.1002/art.40498
  • Wakil SM, Monies DM, Abouelhoda M, et al. Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheum. 2015;67(1):288–295. doi: 10.1002/art.38877
  • Cader MZ, Boroviak K, Zhang Q, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function [article]. Nat Immunol. 2016;17(9):1046–1056. doi: 10.1038/ni.3532
  • Patel N, El Mouzan MI, Al-Mayouf SM, et al. Study of mendelian forms of Crohn’s disease in Saudi Arabia reveals novel risk loci and alleles. Gut. 2014 Nov;63(11):1831–1832.
  • Butbul Aviel Y, Ofir A, Ben-Izhak O, et al. A novel loss-of-function mutation in LACC1 underlies hereditary juvenile arthritis with extended intra-familial phenotypic heterogeneity. Rheumatology (Oxford). 2021 Oct 2;60(10):4888–4898. doi: 10.1093/rheumatology/keab017
  • Omarjee O, Mathieu AL, Quiniou G, et al. LACC1 deficiency links juvenile arthritis with autophagy and metabolism in macrophages. J Exp Med. 2021 Mar 1;218(3). doi: 10.1084/jem.20201006
  • Kallinich T, Thorwarth A, von Stuckrad S-L, et al. Juvenile arthritis caused by a novel FAMIN (LACC1) mutation in two children with systemic and extended oligoarticular course [journal article]. Pediatr Rheumatol. 2016;14(1):63. doi: 10.1186/s12969-016-0124-2
  • Huang Z, You X, Chen L, et al. mTORC1 links pathology in experimental models of still’s disease and macrophage activation syndrome. Nat Commun. 2022 Nov 28;13(1):6915. doi: 10.1038/s41467-022-34480-6
  • Wei Z, Oh J, Flavell RA, et al. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature. 2022 Sep;609(7926):348–353.
  • Manki A, Nishikomori R, Nakata-Hizume M, et al. Tumor necrosis factor receptor-associated periodic syndrome mimicking systemic juvenile idiopathic arthritis. Allergol Int. 2006 Sep;55(3):337–341.
  • Horneff G, Rhouma A, Weber C, et al. Macrophage activation syndrome as the initial manifestation of tumour necrosis factor receptor 1-associated periodic syndrome (TRAPS). Clin Exp Rheumatol. 2013;31:S99–S102.
  • Ayaz NA, Ozen S, Bilginer Y, et al. MEFV mutations in systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2009 Jan;48(1):23–25.
  • Rigante D, Emmi G, Fastiggi M, et al. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders [journal article]. Clin Rheumatol. 2015 Aug 01;34(8):1333–1339. doi: 10.1007/s10067-015-2923-0
  • Alansari S, Alsaleem A, Alzaid T, et al. The SLC29A3 variant, neutrophilic dermatosis, and hyperferritinemia imitate systemic juvenile idiopathic arthritis in a Saudi child: a case report. J Rheum Dis. 2023 Apr 1;30(2):133–137. doi: 10.4078/jrd.22.0054
  • Molho-Pessach V, Ramot Y, Camille F, et al. H syndrome: the first 79 patients. J Am Acad Dermatol. 2014 Jan;70(1):80–88.
  • Jorgensen SE, Christiansen M, Host C, et al. Systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome due to a CASP1 variant causing inflammasome hyperactivation. Rheumatology (Oxford). 2020 Oct 1;59(10):3099–3105. doi: 10.1093/rheumatology/keaa242
  • Shimizu M, Nakagishi Y, Yachie A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine. 2013 Feb 01;61(2):345–348.
  • Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131(13):1442–1455. doi: 10.1182/blood-2017-12-820852
  • Yasin S, Fall N, Brown RA, et al. IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome. Rheumatology (Oxford). 2020 Feb 1;59(2):361–366. doi: 10.1093/rheumatology/kez282
  • Schulert GS, Canna SW. Convergent pathways of the hyperferritinemic syndromes. Int Immunol. 2018 Apr 25;30(5):195–203.
  • Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014 Oct;46(10):1140–1146. doi: 10.1038/ng.3089
  • Kitamura A, Sasaki Y, Abe T, et al. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014 Nov 17;211(12):2385–2396. doi: 10.1084/jem.20141091
  • Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014 Oct;46(10):1135–1139.
  • Gernez Y, de Jesus AA, Alsaleem H, et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J Allergy Clin Immunol. 2019 Oct;144(4):1122–1125.e6.
  • Lam MT, Coppola S, Krumbach OHF, et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J Exp Med. 2019 Dec 2;216(12):2778–2799. doi: 10.1084/jem.20190147
  • Wada T, Kanegane H, Ohta K, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine. 2014 Jan;65(1):74–78.
  • Marsh RA, Madden L, Kitchen BJ, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010 Aug 19;116(7):1079–1082. doi: 10.1182/blood-2010-01-256099
  • Rigaud S, Fondaneche MC, Lambert N, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006 Nov 2;444(7115):110–114. doi: 10.1038/nature05257
  • Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015 Mar;39:115–123. doi: 10.1016/j.semcdb.2015.01.015
  • Chau AS, Cole BL, Debley JS, et al. Heme oxygenase-1 deficiency presenting with interstitial lung disease and hemophagocytic flares. Pediatr Rheumatol Online J. 2020 Oct 16;18(1):80. doi: 10.1186/s12969-020-00474-1
  • Romberg N, Vogel TP, Canna SW. NLRC4 inflammasomopathies. Curr Opin Allergy Clin Immunol. 2017 Dec;17(6):398–404. doi: 10.1097/ACI.0000000000000396
  • Stone DL, Ombrello A, Arostegui JI, et al. Excess serum interleukin-18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis Rheumatol. 2021 Sep 7;74:353–357.
  • FO DM, Doireau V, Faye A, et al. Intermittent hemophagocytic lymphohistiocytosis is a regular feature of lysinuric protein intolerance. J Pediatr. 1999;134(2):236–239. doi: 10.1016/S0022-3476(99)70423-3
  • Magg T, Okano T, Koenig LM, et al. Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci Immunol. 2021 Jun 18;6(60). doi: 10.1126/sciimmunol.abf9564
  • Pardeo M, Rossi MN, Pires Marafon D, et al. Early treatment and IL1RN single-nucleotide polymorphisms affect response to Anakinra in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2021 Jun;73(6):1053–1061.
  • Hinze C, Fuehner S, Kessel C, et al. Impact of IL1RN variants on response to interleukin-1 blocking therapy in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2020 Mar;72(3):499–505.
  • Erkens RGA, Calis JJA, Verwoerd A, et al. Recombinant interleukin-1 receptor antagonist is an effective first-line treatment strategy in new-onset systemic juvenile idiopathic arthritis, irrespective of HLA-DRB1 background and IL1RN variants. Arthritis Rheumatol. 2023 Jul 20;76(1):119–129. doi: 10.1002/art.42656
  • Byrne RP, van Rheenen W, et al. Project Min EALSGC. Dutch population structure across space, time and GWAS design. Nat Commun. 2020 Sep 11;11(1):4556. doi: 10.1038/s41467-020-18418-4.
  • Kimura Y, Weiss JE, Haroldson KL, et al. Pulmonary hypertension and other potentially fatal pulmonary complications in systemic juvenile idiopathic arthritis. Arthritis Care Res. 2013 May;65(5):745–752.
  • Lerman AM, Mahmud SA, Alfath Z, et al. HLA – DRB1 *15 and eosinophilia are common among patients with systemic juvenile idiopathic arthritis. Arthritis Care Res. 2023 Apr 13;75(10):2082–2087. doi: 10.1002/acr.25132
  • Wobma H, Arvila SR, Taylor ML, et al. Incidence and risk factors for eosinophilia and lung disease in biologic-exposed children with systemic juvenile idiopathic arthritis. Arthritis Care Res. 2023 Apr 11;75(10):2063–2072. doi: 10.1002/acr.25129
  • Huang Y, Sompii-Montgomery L, Patti J, et al. Disease course, treatments, and outcomes of children with systemic juvenile idiopathic arthritis associated lung disease (SJIA-LD). Arthritis Care Res. 2023 Sep 10;76:328–339.
  • Bracaglia CP, Troiano M, Testa G, et al. HLA-DRB1*15 alleles in systemic juvenile idiopathic arthritis with lung disease and macrophage activation syndrome in Italy. Pediatr Rheumatol. 2023;21:306.
  • Wobma H, Bachrach R, Farrell J, et al. Development of a screening algorithm for lung disease in systemic juvenile idiopathic arthritis. ACR Open Rheumatol. 2023 Oct;5(10):556–562.
  • Towe C, Grom AA, Schulert GS. Diagnosis and management of the systemic juvenile idiopathic arthritis patient with emerging lung disease. Paediatr Drugs. 2023 Nov;25(6):649–658. doi: 10.1007/s40272-023-00593-8
  • Crayne CB, Albeituni S, Nichols KE, et al. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi: 10.3389/fimmu.2019.00119
  • Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annu Rev Med. 2015;66(1):145–159. doi: 10.1146/annurev-med-061813-012806
  • Emile JF, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016 Jun 2;127(22):2672–2681. doi: 10.1182/blood-2016-01-690636
  • Nikiforow S, Berliner N. To “lump” or to “split” in macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 2020 Feb;72(2):206–209. doi: 10.1002/art.41106
  • Bracaglia C, Prencipe G, De Benedetti F. Macrophage activation syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017 Jan 17;15(1):5.
  • Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019 Jan 1;58(1):5–17.
  • Schulert GS, Cron RQ. The genetics of macrophage activation syndrome. Genes Immunity. 2020 May;21(3):169–181. doi: 10.1038/s41435-020-0098-4
  • Jenkins MR, Rudd-Schmidt JA, Lopez JA, et al. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J Exp Med. 2015 Mar 9;212(3):307–317. doi: 10.1084/jem.20140964
  • Zhang M, Bracaglia C, Prencipe G, et al. A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and Hemophagocytic Lymphohistiocytosis. J Immunol. 2016 Mar 15;196(6):2492–2503. doi: 10.4049/jimmunol.1501284
  • Stepp SE, Dufourcq-Lagelouse R, Deist FL, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–1959. doi: 10.1126/science.286.5446.1957
  • Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med. 2012;63(1):233–246. doi: 10.1146/annurev-med-041610-134208
  • Vastert SJ, van Wijk R, D’Urbano LE, et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2010 Mar;49(3):441–449.
  • Zhang K, Biroschak J, Glass DN, et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis Rheum. 2008 Sep;58(9):2892–2896.
  • Hazen MM, Woodward AL, Hofmann I, et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2008 Feb;58(2):567–570.
  • Zhang M, Behrens EM, Atkinson TP, et al. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep. 2014;16(9):439. doi: 10.1007/s11926-014-0439-2
  • Schulert GS, Zhang M, Husami A, et al. Brief report: novel UNC13D intronic variant disrupting an NF-kappaB Enhancer in a patient with recurrent macrophage activation syndrome and systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2018 Jun;70(6):963–970.
  • Zhang K, Jordan MB, Marsh RA, et al. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood. 2011 Nov 24;118(22):5794–5798. doi: 10.1182/blood-2011-07-370148
  • Kaufman KM, Linghu B, Szustakowski JD, et al. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 2014 Dec;66(12):3486–3495. doi: 10.1002/art.38793
  • Canna SW, Behrens EM. Making sense of the cytokine storm: a conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr Clin North Am. 2012 Apr;59(2):329–344. doi: 10.1016/j.pcl.2012.03.002
  • Risma K, Jordan MB. Hemophagocytic lymphohistiocytosis: updates and evolving concepts. Curr Opin Pediatr. 2012 Feb;24(1):9–15. doi: 10.1097/MOP.0b013e32834ec9c1
  • Strippoli R, Caiello I, De Benedetti F. Reaching the threshold: a multilayer pathogenesis of macrophage activation syndrome. J Rheumatol. 2013 Jun;40(6):761–767. doi: 10.3899/jrheum.121233
  • Petralia F, Tignor N, Reva B, et al. Integrated proteogenomic characterization across Major histological types of pediatric brain cancer. Cell. 2020 Dec 23;183(7):1962–1985 e31. doi: 10.1016/j.cell.2020.10.044
  • Rodriguez H, Zenklusen JC, Staudt LM, et al. The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell. 2021 Apr 1;184(7):1661–1670. doi: 10.1016/j.cell.2021.02.055
  • Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev Dis Primers. 2021;1(1). doi: 10.1038/s43586-021-00056-9
  • Jia X, Tan L, Chen S, et al. Monogenic lupus: tracing the therapeutic implications from single gene mutations. Clin Immunol. 2023 Sep;254:109699. doi: 10.1016/j.clim.2023.109699
  • Omarjee O, Picard C, Frachette C, et al. Monogenic lupus: Dissecting heterogeneity. Autoimmun Rev. 2019 Oct;18(10):102361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.