462
Views
0
CrossRef citations to date
0
Altmetric
Review

Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies

, , &
Received 20 Jan 2024, Accepted 24 Apr 2024, Published online: 07 May 2024

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019 [article]. Ca A Cancer J Cli. 2019 Jan;69(1):7–34. doi: 10.3322/caac.21551
  • McGuigan A, Kelly P, Turkington RC, et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes [review]. WJG. 2018 Nov 21;24(43):4846–4861. doi: 10.3748/wjg.v24.i43.4846
  • Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition [letter]. N Engl J Med. 2017 Dec 21;377(25):2500–2501. doi: 10.1056/NEJMc1713444
  • Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression [article]. Nature Med. 2016 May;22:(5):497–505.
  • Li K-Y, Yuan J-L, Trafton D, et al. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chron Dis Transl Med. 2020;6(1):6–17. doi: 10.1016/j.cdtm.2020.01.002
  • Basturk O, Hong S-M, Wood LD, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas [article]. Am J Surg Pathol. 2015 Dec;39:(12):1730–1741.
  • Rezaee N, Barbon C, Zaki A, et al. Intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia is a risk factor for the subsequent development of pancreatic ductal adenocarcinoma [article]. HPB. 2016 Mar;18:(3):236–246.
  • Oyama H, Tada M, Takagi K, et al. Long-term risk of malignancy in branch-duct intraductal papillary mucinous neoplasms [article]. Gastroenterology. 2020 Jan;158:(1):226–237.
  • Matsuda Y, Furukawa T, Yachida S, et al. The prevalence and clinicopathological characteristics of high-grade pancreatic intraepithelial neoplasia: autopsy study evaluating the entire pancreatic parenchyma [article]. Pancreas. 2017 May;46:(5):658–664.
  • Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer [review]. Lancet. 2016;388(10039):73–85. doi: 10.1016/S0140-6736(16)00141-0
  • Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer [review]. Lancet. 2020 Jun 27;395(10242):2008–2020. doi: 10.1016/S0140-6736(20)30974-0
  • Guo J, Xie K, Zheng S. Molecular biomarkers of pancreatic intraepithelial neoplasia and their implications in early diagnosis and therapeutic intervention of pancreatic cancer [review]. Int J Biol Sci. 2016;12(3):292–301. doi: 10.7150/ijbs.14995
  • Vitone LJ, Greenhalf W, Howes NR, et al. Hereditary pancreatitis and secondary screening for early pancreatic cancer [review]. Rocz Akad Med Bialymst. 2005;50:73–84.
  • Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects [review]. J Invest Med. 2012 Apr;60(4):643–663. doi: 10.2310/JIM.0b013e31824a4d79
  • Jura N, Archer H, Bar-Sagi D. Chronic pancreatitis, pancreatic adenocarcinoma and the black box in-between [review]. Cell Res. 2005 Jan;15(1):72–77. doi: 10.1038/sj.cr.7290269
  • Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment [article]. Clin Cancer Res. 2012 Aug 15;18(16):4266–4276. doi: 10.1158/1078-0432.CCR-11-3114
  • Zheng L, Xue J, Jaffee EM, et al. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma [review]. Gastroenterology. 2013 May;144:(6):1230–1240.
  • Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion [article]. Cancer Res. 2007 Oct 1;67(19):9518–9527. doi: 10.1158/0008-5472.CAN-07-0175
  • Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer [review]. Nat Rev Gastroenterol Hepatol. 2020 Mar;17(3):153–168. doi: 10.1038/s41575-019-0245-4
  • Tape CJ, Ling S, Dimitriadi M, et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation (vol 165, pg 910, 2016) [correction]. Cell. 2016 Jun 16;165(7):1818–1818. doi: 10.1016/j.cell.2016.05.079
  • Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma [review]. N Engl J Med. 2014 Sep 11;371(11):1039–1049. doi: 10.1056/NEJMra1404198
  • Stromnes IM, Brockenbrough JS, Izeradjene K, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity [article]. Gut. 2014 Nov;63:(11):1769–1781.
  • Lesina M, Kurkowski MU, Ludes K, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer [article]. Cancer Cell. 2011 Apr 12;19(4):456–469. doi: 10.1016/j.ccr.2011.03.009
  • Zhang Y, Yan W, Collins MA, et al. Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance [article]. Cancer Res. 2013 Oct 15;73(20):6359–6374. doi: 10.1158/0008-5472.CAN-13-1558-T
  • O’Hayer KM, Brady DC, Counter CM. ELR plus CXC chemokines and oncogenic ras-mediated tumorigenesis [article]. Carcinogenesis. 2009 Nov;30(11):1841–1847. doi: 10.1093/carcin/bgp198
  • Yu C, Merza M, Luo L, et al. Inhibition of Ras signalling reduces neutrophil infiltration and tissue damage in severe acute pancreatitis [article]. Eur J Pharmacol. 2015 Jan 5;746:245–251. doi: 10.1016/j.ejphar.2014.11.020
  • Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma [article]. Cancer Cell. 2016 Jun 13;29(6):832–845. doi: 10.1016/j.ccell.2016.04.014
  • McAllister F, Leach SD. Targeting IL-17 for pancreatic cancer prevention [editorial material]. Oncotarget. 2014 Oct 30;5(20):9530–9531. doi: 10.18632/oncotarget.2618
  • Zhang Y, Chandra V, Riquelme Sanchez E, et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer [article]. J Exp Med. 2020 Dec;217(12). doi: 10.1084/jem.20190354
  • He D, Li H, Yusuf N, et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells [article]. J Immunol. 2010 Mar 1;184(5):2281–2288. doi: 10.4049/jimmunol.0902574
  • Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to Host physiology: short-chain fatty acids as key bacterial metabolites [review]. Cell. 2016 Jun 2;165(6):1332–1345. doi: 10.1016/j.cell.2016.05.041
  • Wang Y, Du J, Wu X, et al. Crosstalk between autophagy and microbiota in cancer progression [review]. Mol Cancer. 2021 Dec 11;20(1). doi: 10.1186/s12943-021-01461-0
  • Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation [Review]. Nat Rev Immunol. 2020 Jan;20:(1):40–54.
  • Sepich-Poore GD, Zitvogel L, Straussman R, et al. The microbiome and human cancer [review]. Science. 2021;371(6536):eabc4552. doi: 10.1126/science.abc4552
  • Demkow U. Neutrophil extracellular traps (NETs) in cancer Invasion, evasion and metastasis [review]. Cancers (Basel). 2021 Sep;13(17):4495. doi: 10.3390/cancers13174495
  • Tan Q, Ma X, Yang B, et al. Periodontitis pathogen porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils [article]. Gut Microbes. 2022 Dec 31;14(1). doi: 10.1080/19490976.2022.2073785
  • Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis [article]. Proc Natl Acad Sci, USA. 2006 Aug 15;103(33):12493–12498. doi: 10.1073/pnas.0601807103
  • Wu L, Saxena S, Awaji M, et al. Tumor-associated neutrophils in cancer: going pro [review]. Cancers (Basel). 2019 Apr;11:(4):564.
  • Galdiero MR, Varricchi G, Loffredo S, et al. Potential involvement of neutrophils in human thyroid cancer [article]. PLOS ONE. 2018 Jun 28;13(6):e0199740. doi: 10.1371/journal.pone.0199740
  • Li T-J, Jiang Y-M, Hu Y-F, et al. Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer [article]. Clin Cancer Res. 2017 Mar 15;23(6):1575–1585. doi: 10.1158/1078-0432.CCR-16-0617
  • Zhang Y, Zoltan M, Riquelme E, et al. Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells [article]. Gastroenterology. 2018 Jul;155:(1):210–223.e3.
  • Jin L, Kim HS, Shi J. Neutrophil in the pancreatic tumor microenvironment [review]. Biomolecules. 2021 Aug;11(8):1170. doi: 10.3390/biom11081170
  • Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Investig. 2013 Aug;123(8):3446–3458. Article. doi: 10.1172/JCI67484
  • Spicer JD, McDonald B, Cools-Lartigue JJ, et al. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells [article]. Cancer Res. 2012 Aug 15;72(16):3919–3927. doi: 10.1158/0008-5472.CAN-11-2393
  • Pieterse E, Rother N, Garsen M, et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition [article]. Arteriosclerosis Thrombosis Vasc Biol. 2017 Jul;37:(7):1371–1379.
  • Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25 [Article]. Nature. 2020 Jul 2;583(7814):133–138. doi: 10.1038/s41586-020-2394-6
  • Takesue S, Ohuchida K, Shinkawa T, et al. Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer‑associated fibroblasts. Int J Oncol. 2020 Feb;56:(2):596–605.
  • Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy [review]. Nat Rev Cancer. 2020 Sep;20:(9):485–503.
  • Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted [review]. Nat Rev Immunol. 2022 Mar;22(3):173–187. doi: 10.1038/s41577-021-00571-6
  • Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN [article]. Cancer Cell. 2009 Sep 8;16(3):183–194. doi: 10.1016/j.ccr.2009.06.017
  • Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer [review]. Nat Rev Clin Oncol. 2019 Oct;16(10):601–620. doi: 10.1038/s41571-019-0222-4
  • Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment [review]. Blood. 2019 May 16;133(20):2159–2167. doi: 10.1182/blood-2018-11-844548
  • Gershkovitz M, Caspi Y, Fainsod-Levi T, et al. TRPM2 mediates neutrophil killing of disseminated tumor cells [article]. Cancer Res. 2018 May 15;78(10):2680–2690. doi: 10.1158/0008-5472.CAN-17-3614
  • Granot Z, Henke E, Comen EA, et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung [article]. Cancer Cell. 2011 Sep 13;20(3):300–314. doi: 10.1016/j.ccr.2011.08.012
  • Beauvillain C, Delneste Y, Scotet M, et al. Neutrophils efficiently cross-prime naive T cells in vivo [article]. Blood. 2007 Oct 15;110(8):2965–2973. doi: 10.1182/blood-2006-12-063826
  • Tillack K, Breiden P, Martin R, et al. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses [article]. J Immunol. 2012 Apr 1;188(7):3150–3159. doi: 10.4049/jimmunol.1103414
  • Sun R, Luo J, Li D, et al. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells [article]. Oncotarget. 2014 Dec 30;5(24):12621–12634. doi: 10.18632/oncotarget.2181
  • Hirschhorn D, Budhu S, Kraehenbuehl L, et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants [article]. Cell. 2023 Mar 30;186(7):1432–1447.e17. doi: 10.1016/j.cell.2023.03.007
  • Matlung HL, Babes L, Zhao XW, et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis [article]. Cell Rep. 2018 Jun 26;23(13):3946–3959. doi: 10.1016/j.celrep.2018.05.082
  • Comen E, Wojnarowicz P, Seshan VE, et al. TNF is a key cytokine mediating neutrophil cytotoxic activity in breast cancer patients [article]. NPJ Breast Cancer. 2016;2(1):16009–16009. doi: 10.1038/npjbcancer.2016.9
  • Finisguerra V, Di Conza G, Di Matteo M, et al. MET is required for the recruitment of anti-tumoural neutrophils [article]. Nature. 2015 Jun 18;522(7556):349–353. doi: 10.1038/nature14407
  • Gungor N, Knaapen AM, Munnia A, et al. Genotoxic effects of neutrophils and hypochlorous acid [article]. Mutagenesis. 2010 Mar;25:(2):149–154.
  • Rotondo R, Barisione G, Mastracci L, et al. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer [article]. Intl J Cancer. 2009 Aug 15;125(4):887–893. doi: 10.1002/ijc.24448
  • Yang T-H, St John LS, Garber HR, et al. Membrane-associated proteinase 3 on granulocytes and acute myeloid leukemia inhibits T cell proliferation [article]. J Immunol. 2018 Sep 1;201(5):1389–1399. doi: 10.4049/jimmunol.1800324
  • Mishalian I, Bayuh R, Eruslanov E, et al. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—A new mechanism of impaired antitumor immunity. Intl J Cancer. 2014 Sep 1;135(5):1178–1186. doi: 10.1002/ijc.28770
  • Michaeli J, Shaul ME, Mishalian I, et al. Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment [article]. Oncoimmunology. 2017;6(11):e1356965. doi: 10.1080/2162402X.2017.1356965
  • Kornepati AV, Vadlamudi RK, Curiel TJ. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer. 2022;22(3):174–189. doi: 10.1038/s41568-021-00431-4
  • Wang T-T, Zhao Y-L, Peng L-S, et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway [article]. Gut. 2017 Nov;66:(11):1900–1911.
  • He G, Zhang H, Zhou J, et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma [article]. J Exp Clin Cancer Res. 2015 Nov 18;34(1). doi: 10.1186/s13046-015-0256-0
  • Segal BHH, Giridharan T, Suzuki S, et al. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells [review]. Immunol Rev. 2023 Mar;314(1):13–35. doi: 10.1111/imr.13178
  • Yang J, Kumar A, Vilgelm AE, et al. Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms [article]. Cancer Immunol Res. 2018 Oct;6:(10):1186–1198.
  • Das A, Monteiro M, Barai A, et al. MMP proteolytic activity regulates cancer invasiveness by modulating integrins [article]. Sci Rep. 2017 Oct 27;7(1). doi: 10.1038/s41598-017-14340-w
  • Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. Article: doi: 10.1126/science.aao4227
  • Seubert B, Gruenwald B, Kobuch J, et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice [article]. Hepatology. 2015 Jan;61:(1):238–248.
  • Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells [article]. Nature. 2015 Dec 17;528(7582):413–417. doi: 10.1038/nature16140
  • Poli V, Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease [review]. Trends Microbiol. 2023 Mar;31(3):280–293. doi: 10.1016/j.tim.2022.10.002
  • Papayannopoulos V. Neutrophil extracellular traps in immunity and disease [review]. Nat Rev Immunol. 2018 Feb;18(2):134–147. doi: 10.1038/nri.2017.105
  • Thiam HR, Wong SL, Wagner DD, et al. Cellular mechanisms of NETosis [review]. Annu Rev Cell Dev Biol. 2020;36(1):191–218. doi: 10.1146/annurev-cellbio-020520-111016
  • Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease [article]. Nature Med. 2016 Feb;22:(2):146–153.
  • Rice CM, Davies LC, Subleski JJ, et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression [article]. Nat Commun. 2018 Nov 30;9(1). doi: 10.1038/s41467-018-07505-2
  • Al-Khami AA, Zheng L, Del Valle L, et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells [article]. Oncoimmunology. 2017;6(10):e1344804. doi: 10.1080/2162402X.2017.1344804
  • Lian X, Yang K, Li R, et al. Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy [review]. Mol Cancer. 2022 Jan 21;21(1). doi: 10.1186/s12943-021-01486-5
  • Evrard M, Kwok IWH, Chong SZ, et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions [article]. Immunity. 2018 Feb 20;48(2):364–379. doi: 10.1016/j.immuni.2018.02.002
  • Zhou G, Peng K, Song Y, et al. CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer [article]. Carcinogenesis. 2018 Feb;39:(2):272–282.
  • Uyanik B, Goloudina AR, Akbarali A, et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses [article]. Nat Commun. 2021 Jun 15;12(1). doi: 10.1038/s41467-021-23330-6
  • Jiang W, Li X, Xiang C, et al. Neutrophils in pancreatic cancer: potential therapeutic targets [review]. Front Oncol. 2022 Oct 17; 12;12. doi: 10.3389/fonc.2022.1025805
  • Waugh DJJ, Wilson C. The interleukin-8 pathway in cancer [article]. Clin Cancer Res. 2008 Nov 1;14(21):6735–6741. doi: 10.1158/1078-0432.CCR-07-4843
  • Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases [review]. Theranostics. 2017;7(6):1543–1588. doi: 10.7150/thno.15625
  • Fu S, Chen X, Lin H-J, et al. Inhibition of interleukin 8/C‑X-C chemokine receptor�1,/2 signaling reduces malignant features in human pancreatic cancer cells. Int J Oncol. 2018 Jul;53:(1):349–357.
  • Li P, Rozich N, Wang J, et al. Anti-IL-8 antibody activates myeloid cells and potentiates the anti-tumor activity of anti-PD-1 antibody in the humanized pancreatic cancer murine model [article]. Cancer Lett. 2022 Jul 28;539:215722. doi: 10.1016/j.canlet.2022.215722
  • Yuen KC, Liu L-F, Gupta V, et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade [article]. Nature Med. 2020 May;26:(5):693–698.
  • Che J, Song R, Chen B, et al. Targeting CXCR1/2: the medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead [review]. Eur J Med Chem. 2020 Jan 1;185:111853. doi: 10.1016/j.ejmech.2019.111853
  • Han Z-J, Li Y-B, Yang L-X, et al. Roles of the CXCL8-CXCR1/2 axis in the tumor microenvironment and immunotherapy [review]. Molecules. 2022 Jan;27:(1):137.
  • Piro G, Carbone C, Agostini A, et al. CXCR1/2 dual-inhibitor ladarixin reduces tumour burden and promotes immunotherapy response in pancreatic cancer [article]. Br J Cancer. 2023 Jan 19;128(2):331–341. doi: 10.1038/s41416-022-02028-6
  • De Filippo K, Rankin SM. CXCR 4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. 2018 Nov; 48;48(S2). doi: 10.1111/eci.12949
  • Blair AB, Wang J, Davelaar J, et al. Dual stromal targeting sensitizes pancreatic adenocarcinoma for anti-programmed cell death protein 1 therapy [article]. Gastroenterology. 2022 Nov;163:(5):1267–1280.
  • Zou HY, Friboulet L, Kodack DP, et al. PF-06463922, an ALK/ROS1 Inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models [article]. Cancer Cell. 2015 Jul 13;28(1):70–81. doi: 10.1016/j.ccell.2015.05.010
  • Shaw AT, Felip E, Bauer TM, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial [article]. Lancet Oncol. 2017 Dec;18:(12):1590–1599.
  • Nielsen SR, Strobech JE, Horton ER, et al. Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade [article]. Nat Commun. 2021 Jun 7;12(1). doi: 10.1038/s41467-021-23731-7
  • Shaul ME, Levy L, Sun J, et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs. antitumor TANs [article]. Oncoimmunology. 2016;5(11):e1232221. doi: 10.1080/2162402X.2016.1232221
  • Pylaeva E, Harati MD, Spyra I, et al. NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils [article]. Intl J Cancer. 2019 Jan 1;144(1):136–149. doi: 10.1002/ijc.31808
  • Mahiddine K, Blaisdell A, Ma S, et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils [article]. J Clin Investig. 2020 Jan;130:(1):389–403.
  • Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma [article]. Gut. 2018 Jun;67:(6):1112–1123.
  • Sun R, Xiong Y, Liu H, et al. Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis [article]. Transl Oncol. 2020 Oct;13:(10):100825.
  • Kwantwi LB. Overcoming anti-PD-1/PD-L1 immune checkpoint blockade resistance: the role of macrophage, neutrophils and mast cells in the tumor microenvironment [review]. Clin Exp Med. 2023 Nov;23(7):3077–3091. doi: 10.1007/s10238-023-01059-4
  • Poto R, Cristinziano L, Modestino L, et al. Neutrophil extracellular traps, angiogenesis and cancer [article]. Biomedicines. 2022 Feb;10:(2):431.
  • McAllister F, Bailey JM, Alsina J, et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia [article]. Cancer Cell. 2014 May 12;25(5):621–637. doi: 10.1016/j.ccr.2014.03.014
  • Chen D, Li Q, Liang H, et al. Exenatide enhanced the antitumor efficacy on PD-1 blockade by the attenuation of neutrophil extracellular traps [article]. Biochem Biophys Res Commun. 2022 Sep 3;619:97–103. doi: 10.1016/j.bbrc.2022.06.052
  • Alekseeva LA, Sen’kova AV, Zenkova MA, et al. Targeting circulating SINEs and LINEs with DNase I provides metastases inhibition in experimental tumor models [article]. Mol Ther Nucleic Acids. 2020 Jun 5;20:50–61. doi: 10.1016/j.omtn.2020.01.035
  • Greene S, Robbins Y, Mydlarz WK, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 Inhibitor, enhances NK-Cell immunotherapy in head and neck cancer models [article]. Clin Cancer Res. 2020 Mar;26:(6):1420–1431.
  • Guo C, Sharp A, Vogl U, et al. A phase (Ph) I/II trial of the CXCR2 antagonist AZD5069 in combination with enzalutamide (ENZA) in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) [meeting abstract]. Ann Oncol. 2022 Sep;33:(7):S745–S745.
  • Biasci D, Smoragiewicz M, Connell CM, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response [article]. Proc Natl Acad Sci USA. 2020 Nov 17;117(46):28960–28970. doi: 10.1073/pnas.2013644117
  • Peled A, Abraham M, Avivi I, et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma [article]. Clin Cancer Res. 2014 Jan 15;20(2):469–479. doi: 10.1158/1078-0432.CCR-13-1302
  • Li K, Tandurella JA, Gai J, et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy [article]. Cancer Cell. 2022 Nov 14;40(11):1374–1391.e7. doi: 10.1016/j.ccell.2022.10.001
  • Dunne RF, Ullman NA, Belt BA, et al. A phase I study to evaluate the safety and tolerability of SX-682 in combination with PD-1 inhibitor as maintenance therapy for unresectable pancreatic adenocarcinoma [meeting abstract]. JCO. 2022 Feb 1;40(4):TPS631–TPS631. doi: 10.1200/JCO.2022.40.4_suppl.TPS631
  • Shin SM, Hernandez A, Coyne E, et al. Abstract 2270: combination of CXCR4 antagonist and anti-PD1 therapy results in significant mobilization and increased infiltration of myeloid cells into the metastatic liver microenvironment of PDAC. Cancer Res. 2023;83(7_Supplement):2270–2270. doi: 10.1158/1538-7445.AM2023-2270
  • Abraham M, Beider K, Wald H, et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation [article]. Leukemia. 2009 Aug;23:(8):1378–1388.
  • Abraham M, Biyder K, Begin M, et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003 [article]. Stem Cells (Dayton, Ohio). 2007 Sep;25:(9):2158–2166.
  • Bockorny B, Semenisty V, Macarulla T, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial [article]. Nat Med. 2020 Jun;26:(6):878–885.