58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Larval dispersal and climate models provide insights into present and future distribution of a tropical sardine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 07 Jul 2023, Accepted 19 Jan 2024, Published online: 30 Mar 2024

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. 2015. SpThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 38:541–5. doi:10.1111/ecog.01132.
  • Andrew NL, Béné C, Hall SJ, Allison EH, Heck S, Ratner BD. 2007. Diagnosis and management of small-scale fisheries in developing countries. Fish and Fisheries. 8:227–40. doi:10.1111/j.1467-2679.2007.00252.x.
  • Ángeles-González LE, Martínez-Meyer E, Rosas C, Guarneros-Narváez PV, López-Rocha JA, Escamilla-Aké Á, Osorio-Olvera L, Yáñez-Arenas C. 2021. Long-term environmental data explain better the abundance of the red octopus (Octopus maya) when testing the niche centroid hypothesis. Journal of Experimental Marine Biology and Ecology. 544.
  • Araújo FG, Teixeira TP, Guedes APP, de Azevedo MCC, Pessanha ALM. 2018. Shifts in the abundance and distribution of shallow water fish fauna on the southeastern Brazilian coast: a response to climate change. Hydrobiologia. 814:205–18. doi:10.1007/s10750-018-3537-8.
  • Araújo TFP. 2020. Da ginga à sardinha: etnoictiologia e sistemática molecular de pequenos peixes de valor cultural da costa brasileira [master's thesis]. Natal (RN): Universidade Federal do Rio Grande do Norte.
  • Arceo-Carranza DA, Acereto EA, Mendoza LC, Carrara XC. 2021. Temporal shifts in the abundance and feeding of a marine fish community in a coastal lagoon in southeastern Mexico. Ciencias Marinas. 47:17–32.
  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O. 2017. Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography. 27:277–84. doi:10.1111/geb.12693.
  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O, Tittensor D. 2018. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology & Biogeography. 27:277–84. doi:10.1111/geb.12693.
  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling. 222:1810–9. doi:10.1016/j.ecolmodel.2011.02.011.
  • Beaugrand G, Reid PC. 2003. Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biology. 9:801–17. doi:10.1046/j.1365-2486.2003.00632.x.
  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science. 31:1692–4. doi:10.1126/science.1071329.
  • Bell JJ. 2008. Connectivity between island Marine Protected Areas and the mainland. Biological Conservation. 141(11):2807–20. doi:10.1016/j.biocon.2008.08.017.
  • Bennemann ABA. 2022. Conflitos de pesca em áreas marinhas protegidas: revisão sistemática global e delimitação de estoques da sardinha-cascuda (Harengula sp.) [master's thesis]. Natal (RN): Universidade Federal do Rio Grande do Norte.
  • Boria RA, Olson LE, Goodman SM, Anderson RP. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling. 275:73–7. doi:10.1016/j.ecolmodel.2013.12.012.
  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander K M, Brown C, Bruno JF, Duarte CM, Halpern BS, et al. 2011. The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science. 334:652–5. doi:10.1126/science.1210288.
  • Cabrero Á, González-Nuevo G, Gago J, Cabanas JM. 2019. Study of sardine (Sardina pilchardus) regime shifts in the Iberian Atlantic shelf waters. Fisheries Oceanography. 28:305–16. doi:10.1111/fog.12410.
  • Campredon P, Cuq F. 2001. Artisanal fishing and coastal conservation in West Africa. Journal of Coastal Conservation. 7:91–100. doi:10.1007/BF02742471.
  • Chavez FP, Ryan J, Lluch-Cota SE, Ñiquen CM. 2003. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science. 299:217–21. doi:10.1126/science.1075880.
  • Cheung WW, Watson R, Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature. 497:365–8. doi:10.1038/nature12156.
  • Coelho JFR, Mendes LF, Di Dario F, Carvalho PH, Dias RM, Lima SMQ, Verba JT, Pereira RJ. 2024. Integration of genomic and ecological methods inform management of an undescribed, yet highly exploited, sardine species. Proceedings of the Royal Society B. 291: 20232746.20232746. doi:10.1098/rspb.2023.2746.
  • Cossins AR, Crawford DL. 2005. Fish as models for environmental genomics. Nature Reviews Genetics. 6:324–33. doi:10.1038/nrg1590.
  • Di Lorenzo M, Claudet J, Guidetti P. 2016. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. Journal for Nature Conservation. 32:62–6. doi:10.1016/j.jnc.2016.04.004.
  • Dickey-Collas M, Nash RD, Brunel T, Van Damme CJ, Marshall CT, Payne MR, Corten A, Geffen AJ, Peck MA, Hatfield EM, Hintzen NT. 2010. Lessons learned from stock collapse and recovery of North Sea herring: a review. ICES Journal of Marine Science. 67:1875–86. doi:10.1093/icesjms/fsq033.
  • Doubleday ZA, Prowse TA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, Lourenço S, Quetglas A, Sauer W, Gillanders BM. 2016. Global proliferation of cephalopods. Current Biology. 26:R406–7. doi:10.1016/j.cub.2016.04.002.
  • Elith J, Kearney M, Phillips S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution / British Ecological Society. 1:330–42. doi:10.1111/j.2041-210X.2010.00036.x.
  • FAO. 2014. Countries recognize vital role of small-scale fishers. http://www.fao.org/news/story/en/item/234115/icode/ (Accessed 07 July 2021).
  • Ferreira-Araújo TFP, Macedo Lopes PF, Lima SMQ. 2021. Size matters: identity of culturally important herrings in northeastern Brazil. Ethnobiology and Conservation. 10:1–29.
  • Fitzpatrick MC, Blois JL, Williams JW, Nieto-Lugilde D, Maguire KC, Lorenz DJ. 2018. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability. Global Change Biology. 24:3575–86. doi:10.1111/gcb.14138.
  • GBIF.org. 2021a. GBIF Occurrence Download (Harengula clupeola). doi:10.15468/dl.kuxret.
  • GBIF.org. 2021b. GBIF Occurrence Download (Harengula jaguana). doi:10.15468/dl.3z4egq.
  • Habary A, Johansen JL, Nay TJ, Steffensen JF, Rummer JL. 2017. Adapt, move or die–how will tropical coral reef fishes cope with ocean warming? Global Change Biology. 23:566–77. doi:10.1111/gcb.13488.
  • Harley CDG. 2011. Climate Change, Keystone Predation, and Biodiversity Loss. Science. 334:1124–7. doi:10.1126/science.1210199.
  • Hernandez PA, Graham CH, Master LL, Albert DL. 2006. The Effect of Sample Size and Species Characteristics on Performance of Different Species Distribution Modeling Methods. Ecography. 29(5):773–85. doi:10.1111/j.0906-7590.2006.04700.x.
  • Hilborn R, Amoroso RO, Anderson CM, Baum JK, Branch TA, Costello C, de Moor CL, Faraj A, Hively D, Jensen OP, et al. 2020. Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences. 117:2218–24. doi:10.1073/pnas.1909726116.
  • Honey KT, Moxley JH, Fujita RM. 2010. From rags to fishes: data-poor methods for fishery managers. Managing Data-Poor Fisheries: Case Studies, Models & Solutions. Models Solut. 1:159–84.
  • Houde ED. 1977. Abundance and potential yield of the scaled sardine, Harengula jaguana, and aspects of its early life history in the eastern Gulf of Mexico. Fishery Bulletin. 75:613–28.
  • Hsieh C, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G. 2006. Fishing elevates variability in the abundance of exploited species. Nature. 443:859–62. doi:10.1038/nature05232.
  • ICMBio. 2011. Boletim Estatístico da Pesca e Aquicultura.
  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge: Cambridge University Press.
  • Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP. 2021. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution / British Ecological Society. 12:1602–8. doi:10.1111/2041-210X.13628.
  • Knutsen H, Catarino D, Rogers L, Sodeland M, Mattingsdal M, Jahnke M, Hutchings JA, Mellerud I, Espeland SH, Johanneson K, et al. 2022. Combining population genomics with demographic analyses highlights habitat patchiness and larval dispersal as determinants of connectivity in coastal fish species. Molecular Ecology. 31:2562–77. doi:10.1111/mec.16415.
  • Lellouche JM, Greiner E, Le Galloudec O, Garric G, Regnier C, Drevillon M, Benkiran M, Testut CE, Bourdalle-Badie R, Gasparin F, Hernandez O. 2018. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12∘ high-resolution system. Ocean Science. 14(5):1093–126. doi:10.5194/os-14-1093-2018.
  • Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines S D, Airamé S, Warner RR. 2009. Biological effects within no-take marine reserves: A global synthesis. Marine Ecology Progress Series. 384:33–46. doi:10.3354/meps08029.
  • Lett C, Verley P, Mullon C, Parada C, Brochier T, Penven P, Blanke B. 2008. A Lagrangian tool for modelling ichthyoplankton dynamics. Environmental Modelling & Software. 23:1210–4. doi:10.1016/j.envsoft.2008.02.005.
  • Lima FD, Ángeles-González L, Maia H, Leite TS, Cahuich-López M, Mariño-Tapia I, Santana-Cisneros ML, Ardisson P, Lima SMQ. 2023. Molecular data, ecological niche, and dispersal models reveal a Trans-Atlantic shallow-water octopus species. Progress in Oceanography 213:1–11.
  • Little AG, Loughland I, Seebacher F. 2020. What do warming waters mean for fish physiology and fisheries? Journal of Fish Biology. 97:328–40. doi:10.1111/jfb.14402.
  • Lopes PFM, Mendes L, Fonseca V, Villasante S. 2017. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. Journal of Environmental Management. 200:123–34. doi:10.1016/j.jenvman.2017.05.080.
  • Lumpkin R, Garzoli SL. 2005. Near-surface circulation in the tropical Atlantic Ocean. Deep Sea Research. 52(3):495–518. doi:10.1016/j.dsr.2004.09.001.
  • MAPA. 2020. Diário Oficial da União, Instrução Normativa N° 53, de 1° de Setembro de 2020. https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-53-de-1-de-setembro-de-2020-275906964 (Accessed 04 Sept 2021).
  • Matsuura Y. 1972. Egg development of scaled sardine Harengula pensacolae Goode & Bean (Pisces, Clupeidae). Boletim Do Instituto Oceanográfico. 21:129–35. doi:10.1590/S0373-55241972000100006.
  • Mendes LF, Lopes PF, Di Dario F, Lima SMQ, Coelho JFR, Bennemann ABA, Ferreira-Araújo T, Petean FF. 2020. O “conflito da sardinha”: a recente liberação da pesca de sardinhas no Parque Nacional Marinho do arquipélago de Fernando de Noronha. Sociedade Brasileira de Ictiologia, Technical report.
  • Morales NS, Fernández IC, Baca-González V. 2017. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ. 2017:1–16.
  • Munroe T, Aiken KA, Brown J, Grijalba Bendeck L. 2015. Harengula clupeola. The IUCN Red List of Threatened Species e.T16449654A16510257. Accessed 3 July 2023. doi:10.15468/dl.3z4egq10.2305/IUCN.UK.2015-4.RLTS.T16449654A16510257.en.
  • Munroe T, Aiken KA, Brown J, Grijalba Bendeck L, Vega-Cendejas M. 2019. Harengula jaguana. The IUCN Red List of Threatened Species 2019: e.T190478A86377366. Accessed 3 July 2023. doi:10.15468/dl.3z4egq10.2305/IUCN.UK.2015-4.RLTS.T16449654A16510257.en10.2305/IUCN.UK.2019-2.RLTS.T190478A86377366.en.
  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution / British Ecological Society. 5:1198–205. doi:10.1111/2041-210X.12261.
  • Osorio-Olvera L, Yañez-Arenas C, Martínez-Meyer E, Peterson AT. 2020. Relationships between population densities and niche-centroid distances in North American birds. Ecology Letters. 23:555–64. doi:10.1111/ele.13453.
  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. 2006. Predicting Species Distributions from Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar. Journal of Biogeography. 34(1):102–17. doi:10.1111/j.1365-2699.2006.01594.x.
  • Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate Change and Distribution Shifts in Marine Fishes. Science. New Series. 308:1912–5.
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190:231–59. doi:10.1016/j.ecolmodel.2005.03.026.
  • Pinheiro HT, Macena BC, Francini-Filho RB, Ferreira CE, Albuquerque FV, Bezerra NP, Carvalho-Filho A, Ferreira RC, Luiz OJ, Mello TJ, Mendonca SA. 2020. Fish biodiversity of Saint Peter and Saint Paul's Archipelago, Mid-Atlantic Ridge, Brazil: new records and a species database. Journal of Fish Biology. 97(4):1143–53. doi:10.1111/jfb.14484.
  • Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC, Costa PAS, Ferreira BP, Ferreira CEL, Floeter SR, et al. 2015. Fish Biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An Updated Database. PLoS One. 10:1–17. doi:10.1371/journal.pone.0118180.
  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte C. 2013. Global imprint of climate change on marine life. Nature Climate Change. 3:919–25. doi:10.1038/nclimate1958.
  • Pörtner HO, Knust R. 2007. Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance. Science. 315:95–7. doi:10.1126/science.1135471.
  • Queiroz CD, Souza RF, Silva SS, de Mattos Dias CA, Fecury AA, de Oliveira E, da Cunha DB, Schneider H, Sampaio I. 2020. Molecular phylogeny of Clupeiformes and the placement of some Western Atlantic and Amazonian taxa. Biota Amazônia. 10(2):14–9.
  • R Core Team. 2020. R: A language and environment for statistical computing.
  • Radovich J. 1982. The collapse of the California sardine fishery: what have we learned. CalCOFI Rep. 23:56–78.
  • Santana-Cisneros ML, Ardisson P, González ÁF, Mariño-Tapia I, Cahuich-López M, Ángeles-González LE, Ordoñez-López U, Velázquez-Abunader I. 2021. Dispersal modeling of octopoda paralarvae in the Gulf of Mexico. Fisheries Oceanography. 30:726–39. doi:10.1111/fog.12555.
  • Sbrocco EJ, Barber PH. 2013. MARSPEC: ocean climate layers for marine spatial ecology: Ecological Archives E094-086 Ecology 94:979.
  • SCFO. 2005. Northern cod: a failure of Canadian fisheries management. Ottawa, Canada: Report of the Standing Committee on Fisheries and Oceans.
  • Scheffers BR, Pecl G. 2019. Persecuting, protecting or ignoring biodiversity under climate change. Nature Climate Change. 9:581–6. doi:10.1038/s41558-019-0526-5.
  • Seebacher F, White CR, Franklin CE. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change. 5:61–6. doi:10.1038/nclimate2457.
  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, et al. 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience. 57:573–83. doi:10.1641/B570707.
  • speciesLink. 2022a. Download 20220110110224-0003976 (Harengula clupeola).
  • speciesLink. 2022b. Download 20220110111822-0017518 (Harengula jaguana).
  • Stramma L, England M. 1999. On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research. 104:20863–83. doi:10.1029/1999JC900139.
  • Sumaila UR, Cheung WWL, Lam VWY, Pauly D, Herrick S. 2011. Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change. 1:449–56. doi:10.1038/nclimate1301.
  • Swearer SE, Treml EA, Shima JS. 2019. A review of biophysical models of marine larval dispersal. In: Hawkins SJ, Allcock AL, Bates AE, Firth LB, Smith IP, Swearer SE, Todd PA, editor. Oceanography and Marine Biology: An Annual Review 57. London: Taylor & Francis; p. 325–56.
  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography. 21:272–81. doi:10.1111/j.1466-8238.2011.00656.x.
  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, et al. 2011. The representative concentration pathways: an overview. Climatic Change. 109:5–31. doi:10.1007/s10584-011-0148-z.
  • Vasconcellos M, Diegues AC, Kalikoski DC. 2011. Coastal fisheries of Brazil. In: S. Salas, R. Chuenpagdee, A. Charles, J.C. Seijo, editor. Coastal fisheries of Latin America and the Caribbean. FAO Fisheries and Aquaculture Technical Paper. No. 544. Rome: FAO; p. 73–116.
  • Verba JT, Pennino MG, Coll M, Lopes PF. 2020. Assessing drivers of tropical and subtropical marine fish collapses of Brazilian Exclusive Economic Zone. Science of the Total Environment. 702:134940. doi:10.1016/j.scitotenv.2019.134940.
  • Vilar CC, Joyeux J-C. 2021. Brazil’s marine protected areas fail to meet global conservation goals. Animal Conservation. 24:1013–20. doi:10.1111/acv.12703.
  • Waldock C, Stuart-Smith RD, Edgar GJ, Bird TJ, Bates AE. 2019. The shape of abundance distributions across temperature gradients in reef fishes. Ecology Letters. 22:685–96. doi:10.1111/ele.13222.
  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature. 416:389–95. doi:10.1038/416389a.
  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Group NPSDW. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions. 14:763–73. doi:10.1111/j.1472-4642.2008.00482.x.
  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ, Ault TR. 2012. Warming experiments underpredict plant phenological responses to climate change. Nature. 485:494–7. doi:10.1038/nature11014.
  • Zizka A, Antunes Carvalho F, Calvente A, Rocio Baez-Lizarazo M, Cabral A, Coelho JFR, Colli-Silva M, Fantinati MR, Fernandes MF, Ferreira-Araújo T, et al. 2020. No one-size-fits-all solution to clean GBIF. PeerJ. 8:e9916. doi:10.7717/peerj.9916.
  • Zwolinski JP, Emmett RL, Demer DA. 2011. Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES Journal of Marine Science. 68:867–79. doi:10.1093/icesjms/fsr038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.