1,945
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin) – can nanoparticles act as mutagenic agents?

, , , , , , & show all
Pages 823-839 | Received 21 Sep 2015, Accepted 28 Jan 2016, Published online: 18 Feb 2016

References

  • Roco MC. Broader societal issues of nanotechnology. J Nanoparticle Res. 2003;5(3–4):181–189.
  • Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126–134.
  • Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol. 2007;18(1):26–30.
  • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150(1):5–22.
  • Scrinis G, Lyons K. The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food. 2007;15(2):22–44.
  • Singh M, Singh S, Prasada S, et al. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct. 2008;3(3):115–122.
  • Nair R, Varghese SH, Nair BG, et al. Nanoparticulate material delivery to plants. Plant Sci. 2010;179(3):154–163.
  • Castiglione MR, Giorgetti L, Geri C, et al. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanoparticle Res. 2011;13(6):2443–2449.
  • Remédios C, Rosário F, Bastos V. Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot. 2012; 2012(Article ID 751686):1–8. doi:10.1155/2012/751686.
  • Masarovičová E, Kráľová K. Metal nanoparticles and plants. Ecol Chem Eng S. 2013;20(1):9–22.
  • Halder S, Mandal A, Das D, et al. Effective potentiality of synthesised CdS nanoparticles in inducing genetic variation on Macrotyloma uniflorum (Lam.) Verdc. BioNanoSci. 2015;5(3):171–180.
  • Halder S, Mandal A, Das D, et al. Copper nanoparticle induced macromutation in Macrotyloma uniflorum (Lam.) Verdc. (Family: Leguminosae): a pioneer report. Genet Resour Crop Evol. 2015;62(2):165–175.
  • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627.
  • Biswas P, Wu CY. Nanoparticles and the environment. J Air Waste Manag Assoc. 2005;55(6):708–746.
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR71.
  • Tervonen T, Linkov I, Figueira JR, et al. Risk-based classification system of nanomaterials. J Nanoparticle Res. 2009;11(4):757–766.
  • Lidén G. The European commission tries to define nanomaterials. Ann Occup Hyg. 2011;55(1):1–5.
  • Rico CM, Majumdar S, Duarte-Gardea M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59(8):3485–3498.
  • USEPA. Nanotechnology white paper; science policy council. Washington, DC: USEPA; 2007.
  • Doshi R, Braida W, Christodoulatos C, et al. Nano-aluminium: transport through sand columns and environmental effects on plants and soil communities. Environ Res. 2008;106(3):296–303.
  • Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221–3227.
  • Sheykhbaglou R, Sedghi M, Shishevan MT, et al. Effects of nano-iron oxide particles on agronomic traits of soyabean. Not Sci Biol. 2010;2(2):112–113.
  • Dhoke SK, Mahajan P, Kamble R, et al. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotech Develop. 2013;3(e1):1–5. doi: 10.4081/nd.2013.e1.
  • Lu CM, Zhang CY, Wen JQ, et al. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 2002;21(3):168–171.
  • Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158(2):122–132.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150(2):243–250.
  • Lee WM, An YJ, Yoon H, et al. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum) : plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 2008;27(9):1915–1921.
  • Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43(24):9473–9479.
  • Ma YH, Kuang LL, Xiao H, et al. Effect of rare earth oxide nanoparticles on root elongation of plants. Chemosphere. 2010;78(3):273–279.
  • Speranza A, Leopold K, Maier M, et al. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environ Pollut. 2010;158(3):873–882.
  • Mushtaq YK. Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seedlings germination. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2011;46(14):1732–1735.
  • Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 2009;407(19):5243–5246.
  • Shaymurat T, Gu J, Xu C, et al. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology. 2012;6(3):241–248.
  • Ghosh M, Sinha S JM, Chakraborty A, et al. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res. 2012;749(1–2):60–69.
  • Patlolla AK, Berry A, May L, et al. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health. 2012;9(5):1649–1662.
  • Prokhorova IM, Kibrik BS, Pavlov AV, et al. Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles. Bull Exp Biol Med. 2013;156(2):255–259.
  • Abdel-Azeem EA, Elsayed BA. Phytotoxicity of silver nanoparticles on Vicia faba seedlings. New York Sci J. 2013;6(12):148–156.
  • Abou-Zeid HM, Moustafa Y. Physiological and cytogenetic responses of wheat and barley to silver nanopriming treatment. Int J Appl Biol Pharma Technol. 2014;5(4):265–278.
  • Raskar SV, Laware SL. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci. 2014;3(2):467–473.
  • Nagaonkar D, Shende S, Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog. 2015;31(2):557–565.
  • Rajeshwari A, Kavitha S, Alex SA, et al. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip–effects of oxidative stress generation and biouptake. Environ Sci Pollut Res Int. 2015;22(14):11057–11066.
  • Taranath TC, Patil BN, Santosh TU, et al. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.–a model approach. Environ Sci Pollut Res Int. 2015;22(11):8611–8617.
  • Selivanov VN, Zorin EV. Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt Materialy. 2001;4:66–69.
  • Raikova OP, Panichkin LA, Raikova NN. Studies on the effect of ultrafine metal powders produced by different methods on plant growth and development. Nanotechnologies and Information Technologies in the 21st Century. In Proceedings of the International Scientific and Practical Conference; pp. 108–111; Moscow, Russia, 2006.
  • Khataee A, Movafeghi A, Nazari F, et al. The toxic effects of L-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. J Nanoparticle Res. 2014;16:(2774):1–10.
  • Medintz IL, Uyeda HT, Goldman ER, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4:435–446.
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–544.
  • Shen YJ, Lee YL. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology. 2008;19(4):1–7.
  • Datta AK, Saha A, Bhattacharya A, et al. Black cumin (Nigella sativa L.) – a review. J Plant Dev Sci. 2012;4(1):1–43.
  • Saha A, Datta AK. Gamma-rays induced reciprocal translocation in black cumin (Nigella sativa L.). Cytologia. 2002;67(4):389–396.
  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, et al. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology. 2012;23(8):085103.
  • Marks GE. An aceto-carmine glycerol jelly for use in pollen-fertility counts. Stain Technol. 1954;29(5):277.
  • Lisiecki I, Pileni MP. Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc. 1993;115(10):3887–3896.
  • Domracheva NE, Vorobeva VE, Gruzdev MS, et al. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ -Fe2O3 nanoparticles formed in dendrimer. J Nanoparticle Res. 2015;17:(83):1–8.
  • Stroyuk AL, Kryukov AI, Kuchmii SY, et al. Quantum size effects in the photonics of semiconductor nanoparticles. Theor Exp Chem. 2005;41(2):67–91.
  • Lu X, Gao H, Chen J, et al. Poly(acrylic acid)-guided synthesis of helical polyaniline/CdS composite microwires. Nanotechnology. 2005;16:113–117.
  • Lu X, Yu Y, Chen L, et al. Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chem Commun. 2004;2004(13):1522–1523.
  • Khiew PS, Huang NM, Radiman S, et al. Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mat Lett. 2004;58(3–4):516–521.
  • Lee HL, Mohammed IA, Belmahi M, et al. Thermal and optical properties of CdS nanoparticles in thermotropic liquid crystal monomers. Materials. 2010;3(3):2069–2086.
  • Bagabas A, Alshammari A, Aboud MFA, et al. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res Lett. 2013;8(1/516):1–10.
  • Patel NH, Deshpande MP, Bhatt SV, et al. Structural and magnetic properties of undoped and Mn doped CdS nanoparticles prepared by chemical co-precipitation method. Adv Mat Lett. 2014;5(11):671–677.
  • Zhang AQ, Tan QZ, Li HJ, et al. pH-dependent shape changes of water-soluble CdS nanoparticles. J Nanoparticle Res. 2014;16(Article id 2197):1–13.
  • Prabhu RR, Khadar MA. Characterization of chemically synthesized CdS nanoparticles. Pramana. 2005;65(5):801–807.
  • Dieckmann Y, Cölfen H, Hofmann H, et al. Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal Chem. 2009;81(10):3889–3895.
  • Liu HH, Surawanvijit S, Rallo R, et al. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number monte carlo simulation. Environ Sci Technol. 2011;45(21):9284–9292.
  • Mercy A, Selvaraj RS, Boaz BM, et al. Synthesis, structural and optical characterisation of cadmium sulphide nanoparticles. Indian J Pure Appl Phys. 2013;51(6):448–452.
  • Datta AK, Biswas AK. X-ray sensitivity in Nigella sativa L. Cytologia. 1983;48(2):293–303.
  • Datta AK, Biswas AK, Sen S. Gamma radiation sensitivity in Nigella sativa L. Cytologia. 1986;51(3):609–615.
  • Kumar S, Dubey DK. Effect of gamma rays, EMS and dES on meiosis in Lathyrus sativus. J Cytol Genet. 1998;33:139–147.
  • Rang S, Datta AK. Influence of some physical and chemical factors on gamma radiation sensitivity in Nigella sativa L. (black cumin). J Natl Bot Soc. 1998;52:17–22.
  • Datta SK, Chakrabarty D, Verma AK, et al. Gamma ray induced chromosomal aberrations and enzyme related defense mechanism in Allium cepa L. Caryologia. 2011;64(4):388–397.
  • Mukherjee S, Datta AK. Mitotic and meiotic consequences of gamma irradiations on dry seeds of Nigella sativa L. (black cumin). J Plant Dev Sci. 2011;3(3–4):233–238.
  • Kamble GC, Patil AS. Comparative mutagenicity of EMS and gamma radiation in wild chickpea. Int J Sci Environ Technol. 2014;3(1):166–180.
  • Babu K, Deepa MA, Shankar SG, et al. Effect of nano-silver on cell division and mitotic chromosomes: A prefatory siren. Int J Nanotechnol. 2008;2(2):1–7.
  • Corneanu M, Corneanu G, Ardelean A, et al. The radiobiological effect of the TiO2 – cyclodextrin suspension. Paper presented at: The Fifth International Conference on Quantum, Nano and Micro Technologies; 2011, August 21–27; Nice/Saint Laurent du Var, France.
  • D'Amato F. The cytological study of chemical mutagens. Genet Iber. 1952;4:3–20.
  • Sparrow AH, Mosses MJ, Steel R. A cytological and cytochemical approach to an understanding of radiation damage in dividing cells. Brit J Radiol. 1952;25(292):182–188.
  • Alexander P, Stacey KA. Comparison of the changes produced by ionizing radiations and by the alkylating agents: evidence for a similar mechanism at the molecular level. Ann Acad Sci. 1958;68(3):1225–1237.
  • Stacey KA, Cobb M, Concens SF, et al. The reactions of the radiomimetic alkylating agents with macromolecules in vitro. Ann Acad Sci. 1958;68(3):682–701.
  • Freese E. Molecular mechanism of mutations. In: Hollaender A, editor. Chemical Mutagens. New York: Plenum Press; 1971. p.1–56.
  • Koller PC. The cytological effects of irradiation at low intensities. J Heredity. 1953;6:5–22.
  • Lea DE. Action of radiations on living cells. 2nd ed. Cambridge: Cambridge Univ. Press; 1955.
  • Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere. 2010;81(10):1253–1262.
  • Rodriguez E, Azevedo R, Fernandes P, et al. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol. 2011;24(7):1040–1047.
  • Atha DH, Wang H, Petersen EJ, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012;46(3):1819–1827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.