616
Views
32
CrossRef citations to date
0
Altmetric
Review

MicroRNA-targeted therapeutics for lung cancer treatment

, , , &
Pages 141-157 | Received 16 Sep 2016, Accepted 17 Nov 2016, Published online: 28 Nov 2016

References

  • Morgensztern D, Campo MJ, Dahlberg SE, et al. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J Thorac Oncol. 2015;10:S1–S63. DOI:10.1097/JTO.0000000000000405
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. DOI:10.3322/caac.21332
  • Han F, He J, Li F, et al. Emerging roles of MicroRNAs in EGFR-targeted therapies for lung cancer. Biomed Res Int. 2015;2015:672759. DOI:10.1155/2015/672759
  • Yang J, Chen J, He J, et al. Wnt signaling as potential therapeutic target in lung cancer. Expert Opin Ther Targets. 2016;20:999–1015. DOI:10.1517/14728222.2016.1154945
  • Solomon BJ, Cappuzzo F, Felip E, et al. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from PROFILE 1014. J Clin Oncol. 2016;34:2858–2865. DOI:10.1200/JCO.2015.63.5888
  • Cui S, Zhao Y, Dong L, et al. Is there a progression-free survival benefit of first-line crizotinib versus standard chemotherapy and second-line crizotinib in ALK-positive advanced lung adenocarcinoma? A retrospective study of Chinese patients. Cancer Med. 2016;5:1013–1021. DOI:10.1002/cam4.659
  • Yang J, Chen J, Wei J, et al. Immune checkpoint blockade as a potential therapeutic target in non-small cell lung cancer. Expert Opin Biol Ther. 2016;16:1209–1223.
  • Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858.
  • Bader AG, Brown D, Stoudemire J, et al. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18:1121–1126.
  • Cho WC. Role of miRNAs in lung cancer. Expert Rev Mol Diagn. 2009;9:773–776. DOI:10.1586/erm.09.57
  • Wang F, Meng F, Wang L, et al. Associations of mRNA: microRNAfor the shared downstream molecules of EGFR and alternative tyrosine kinase receptors in non-small cell lung cancer. Front Genet. 2016;7:173. DOI:10.3389/fgene.2016.00173
  • Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 2016;76:3666–3670. DOI:10.1158/0008-5472.CAN-16-0359
  • Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70:7027–7030. DOI:10.1158/0008-5472.CAN-10-2010
  • Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107–110. DOI:10.1038/nature13905
  • Monroig Pdel C, Chen L, Zhang S, et al. Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev. 2015;81:104–116. DOI:10.1016/j.addr.2014.09.002
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201. DOI:10.1126/science.1178178
  • Elmén J, Lindow M, Schütz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–899. DOI:10.1038/nature06783
  • Beg MS, Brenner A, Sachdev J, et al. Safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors. Mol Cancer Ther. 2015;14:Abstract nr C43. DOI:10.1158/1535-7163.TARG-15-C43
  • Hong DS, Kang YK, Brenner AJ, et al. MRX34, a liposomal miR-34 mimic, in patients with advanced solid tumors: final dose-escalation results from a first-in-human phase I trial of microRNA therapy. J Clin Oncol. 2016;34:suppl:abstr2508.
  • Shi Y, Liu C, Liu X, et al. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. Plos One. 2014;9:e90022. DOI:10.1371/journal.pone.0090022
  • Guerrero A, Zhao J, Yu X, et al. miRNA combination therapy: in vitro anticancer synergy between miR-34a mimic and cytotoxic chemotherapy (CT) in NSCLC. Cancer Res. 2016;76:Abstract nr 4829. DOI:10.1158/0008-5472.CAN-16-0584
  • Sgambato A, Casaluce F, Sacco PC, et al. Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced non- small cell lung cancer (NSCLC): a review on toxicity profile and its management. Curr Drug Saf. 2016;11:62–68.
  • Del Vescovo V, Denti MA. microRNA and lung cancer. Adv Exp Med Biol. 2015;889:153–177. DOI:10.1007/978-3-319-23730-5_9
  • Li S, Gao M, Li Z, et al. Role of microRNAs in metastasis of non-small cell lung cancer. Front Biosci. 2016;21:998–1005. DOI:10.2741/4436
  • Chakraborty C, Chin K-Y, Das S. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumour Biol. 2016;37:13039–13048. DOI:10.1007/s13277-016-5156-1
  • Suresh R, Ali S, Ahmad A, et al. The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv Exp Med Biol. 2016;890:57–74. DOI:10.1007/978-3-319-24932-2_4
  • Naidu S, Garofalo M. microRNAs: an emerging paradigm in lung cancer chemoresistance. Front Med. 2015;2:77. DOI:10.3389/fmed.2015.00061
  • Jin J-Y, Kong FM. Personalized radiation therapy (PRT) for lung cancer. Adv Exp Med Biol. 2016;890:175–202. DOI:10.1007/978-3-319-24932-2_10
  • Sin TK, Wang F, Meng F, et al. Implications of MicroRNAs in the treatment of gefitinib-resistant non-small cell lung cancer. Int J Mol Sci. 2016;17:237. DOI:10.3390/ijms17020237
  • Langsch S, Baumgartner U, Haemmig S, et al. miR-29b mediates NF-kB signaling in KRAS-induced non-small cell lung cancers. Cancer Res. 2016. DOI:10.1158/0008-5472.CAN-15-2580
  • Wu Y, Crawford M, Mao Y, et al. Therapeutic delivery of MicroRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids. 2013;2:e84. DOI:10.1038/mtna.2013.14
  • Xie P, Li X, Tan X, et al. Sequential serum Let-7 is a novel biomarker to predict accelerated reproliferation during fractional radiotherapy in lung cancer. Clin Lung Cancer. 2016. 17:e95. DOI: 10.1016/j.cllc.2016.03.010
  • Li J, Guan J, Long X, et al. mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol Rep. 2016;35:3523–3531.
  • Zhang S, Gao L, Thakur A, et al. miRNA-204 suppresses human non-small cell lung cancer by targeting ATF2. Tumour Biol. 2016.37:11177–11186. Doi: 10.1007/s13277-016-4906-4
  • Chen Z, Wu Y, Meng Q, et al. Elevated microRNA-25 inhibits cell apoptosis in lung cancer by targeting RGS3. Vitro Cell Dev Biol Anim. 2016;52:62–67.
  • Yang T, Chen T, Li Y, et al. Downregulation of miR-25 modulates non-small cell lung cancer cells by targeting CDC42. Tumour Biol. 2015;36:1903–1911.
  • Luo W, Lin Y, Meng S, et al. miRNA-296-3p modulates chemosensitivity of lung cancer cells by targeting CX3CR1. Am J Transl Res. 2016;8:1848–1856.
  • Chen L, Kong G, Zhang C, et al. MicroRNA-432 functions as a tumor suppressor gene through targeting E2F3 and AXL in lung adenocarcinoma. Oncotarget. 2016.7:20041–20053. Doi: 10.18632/oncotarget.7884
  • Zheng D, Dai Y, Wang S, et al. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. Int J Clin Exp Pathol. 2015;8:10072–10081.
  • Ren P, Gong F, Zhang Y, et al. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol. 2016;37:3215–3225.
  • Shi H, Ji Y, Zhang D, et al. MiR-135a inhibits migration and invasion and regulates EMT-related marker genes by targeting KLF8 in lung cancer cells. Biochem Biophys Res Commun. 2015;465:125–130.
  • Zhang H, Zhao M, Lv Z, et al. MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cell Physiol Biochem. 2013;31:56–65.
  • Xu W, Hang M, Yuan CY, et al. MicroRNA-139-5p inhibits cell proliferation and invasion by targeting insulin-like growth factor 1 receptor in human non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8:3864–3870.
  • Xiao P, Liu WL. MiR-142-3p functions as a potential tumor suppressor directly targeting HMGB1 in non-small-cell lung carcinoma. Int J Clin Exp Pathol. 2015;8:10800–10807.
  • Chiou GY, Cherng JY, Hsu HS, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Controlled Release. 2012;159:240–250. DOI:10.1016/j.jconrel.2012.01.014
  • Karlsen TA, Brinchmann JE. Liposome delivery of microRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol Ther. 2013;21:1169–1181.
  • Shi SB, Wang M, Tian J, et al. MicroRNA 25, microRNA 145, and microRNA 210 as biomarkers for predicting the efficacy of maintenance treatment with pemetrexed in lung adenocarcinoma patients who are negative for epidermal growth factor receptor mutations or anaplastic lymphoma kinase translocations. Transl Res. 2016;170:1–7.
  • Li S, Ma Y, Hou X, et al. MiR-185 acts as a tumor suppressor by targeting AKT1 in non-small cell lung cancer cells. Int J Clin Exp Pathol. 2015;8:11854–11862.
  • Chen G, Hu J, Huang Z, et al. MicroRNA-1976 functions as a tumor suppressor and serves as a prognostic indicator in non-small cell lung cancer by directly targeting PLCE1. Biochem Biophys Res Commun. 2016;473:1144–1151.
  • Zhen Q, Liu J, Gao L, et al. MicroRNA-200a targets EGFR and c-Met to inhibit migration, invasion, and gefitinib resistance in non-small cell lung cancer. Cytogenet Genome Res. 2015;146:1–8.
  • Bai J, Zhu X, Ma J, et al. miR-205 regulates A549 cells proliferation by targeting PTEN. Int J Clin Exp Pathol. 2015;8:1175–1183.
  • Zhang YJ, Xu F, Li HB, et al. miR-206 inhibits non small cell lung cancer cell proliferation and invasion by targeting SOX9. Int J Clin Exp Med. 2015;8:9107–9113.
  • Zhao Z, Liu J, Wang C, et al. MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol. 2014;7:7726–7734.
  • Lu L, Zhang X, Zhang B, et al. Synaptic acetylcholinesterase targeted by microRNA-212 functions as a tumor suppressor in non-small cell lung cancer. Int J Biochem Cell Biol. 2013;45:2530–2540. DOI:10.1016/j.biocel.2013.08.007
  • Iaboni M, Russo V, Fontanella R, et al. Aptamer-miRNA-212 conjugate sensitizes NSCLC cells to TRAIL. Mol Ther Nucleic Acids. 2016;5:e289. DOI:10.1038/mtna.2016.5
  • Jiang X, Chen X, Chen L, et al. Upregulation of the miR-212/132 cluster suppresses proliferation of human lung cancer cells. Oncol Rep. 2015;33:705–712. DOI:10.3892/or.2014.3637
  • Xu C, Li S, Chen T, et al. miR-296-5p suppresses cell viability by directly targeting PLK1 in non-small cell lung cancer. Oncol Rep. 2016;35:497–503.
  • Li J, Yu J, Zhang H, et al. Exosomes-derived MiR-302b suppresses lung cancer cell proliferation and migration via TGFbetaRII inhibition. Cell Physiol Biochem. 2016;38:1715–1726.
  • Sun CC, Li SJ, Zhang F, et al. Hsa-miR-329 exerts tumor suppressor function through down-regulation of MET in non-small cell lung cancer. Oncotarget. 2016.7:21510–21526. DOI: 10.18632/oncotarget.7517
  • Cho CY, Huang JS, Shiah SG, et al. Negative feedback regulation of AXL by miR-34a modulates apoptosis in lung cancer cells. Rna. 2016;22:303–315.
  • Liu F, Wang X, Li J, et al. miR-34c-3p functions as a tumour suppressor by inhibiting eIF4E expression in non-small cell lung cancer. Cell Prolif. 2015;48:582–592.
  • Fernandez S, Risolino M, Mandia N, et al. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene. 2015;34:3240–3250. DOI:10.1038/onc.2014.267
  • Fernandez S, Risolino M, Verde P. A novel miRNA-mediated STOP sign in lung cancer: miR-340 inhibits the proliferation of lung cancer cells through p27(KIP1). Mol Cell Oncol. 2015;2:e977147. DOI:10.4161/23723556.2014.977147
  • Liu F, Yu X, Huang H, et al. Upregulation of microRNA-450 inhibits the progression of lung cancer in vitro and in vivo by targeting interferon regulatory factor 2. Int J Mol Med. 2016.38:283–290. DOI: 10.3892/ijmm.2016.2612
  • Zhang Y, Xu X, Zhang M, et al. MicroRNA-663a is downregulated in non-small cell lung cancer and inhibits proliferation and invasion by targeting JunD. BMC Cancer. 2016;16:315.
  • Wu N, Zhang C, Bai C, et al. MiR-4782-3p inhibited non-small cell lung cancer growth via USP14. Cell Physiol Biochem. 2014;33:457–467.
  • Shao Y, Shen YQ, Li YL, et al. Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer. Oncotarget. 2016.7:34011–34021. Doi: 10.18632/oncotarget.8514
  • Tong XD, Liu TQ, Wang GB, et al. MicroRNA-570 promotes lung carcinoma proliferation through targeting tumor suppressor KLF9. Int J Clin Exp Pathol. 2015;8:2829–2834.
  • Yan A, Yang C, Chen Z, et al. MiR-761 promotes progression and metastasis of non-small cell lung cancer by targeting ING4 and TIMP2. Cell Physiol Biochem. 2015;37:55–66.
  • Wu L, Pu X, Wang Q, et al. miR-96 induces cisplatin chemoresistance in non-small cell lung cancer cells by downregulating SAMD9. Oncol Lett. 2016;11:945–952. DOI:10.3892/ol.2015.4000
  • Cao J, He Y, Liu H-Q, et al. MicroRNA 192 regulates chemo-resistance of lung adenocarcinoma for gemcitabine and cisplatin combined therapy by targeting Bcl-2. Int J Clin Exp Med. 2015;8:12397–12403.
  • Li W, Wang W, Ding M, et al. MiR-1244 sensitizes the resistance of non-small cell lung cancer A549 cell to cisplatin. Cancer Cell Int. 2016;16:30. DOI:10.1186/s12935-016-0305-6
  • Wang X, Chen Z. MicroRNA-19a functions as an oncogenic microRNA in non-small cell lung cancer by targeting the suppressor of cytokine signaling 1 and mediating STAT3 activation. Int J Mol Med. 2015;35:839–846. DOI:10.3892/ijmm.2015.2071
  • Yang B, Jia L, Guo Q, et al. MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3. Biochem Biophys Res Commun. 2015;467:690–696. DOI:10.1016/j.bbrc.2015.10.082
  • Liu H, Wu X, Huang J, et al. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int J Exp Pathol. 2015;96:240–247. DOI:10.1111/iep.12131
  • Zhao Z, Zhang L, Yao Q, et al. miR-15b regulates cisplatin resistance and metastasis by targeting PEBP4 in human lung adenocarcinoma cells. Cancer Gene Ther. 2015;22:108–114. DOI:10.1038/cgt.2014.73
  • Li B, Ren S, Li X, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83:146–153. DOI:10.1016/j.lungcan.2013.11.003
  • Pan B, Chen Y, Song H, et al. Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A. Oncotarget. 2015;6:317–331. DOI:10.18632/oncotarget.2787
  • Xu S, Wang T, Yang Z, et al. miR-26a desensitizes non-small cell lung cancer cells to tyrosine kinase inhibitors by targeting PTPN13. Oncotarget. 2016. Epub ahead of print. Doi: 10.18632/oncotarget.9920
  • Liang N, Zhou X, Zhao M, et al. Down-regulation of microRNA-26b modulates non-small cell lung cancer cells chemoresistance and migration through the association of PTEN. Acta Biochim Biophys Sin (Shanghai). 2015;47:530–538. DOI:10.1093/abbs/gmv046
  • Li J, Wang Y, Song Y, et al. miR-27a regulates cisplatin resistance and metastasis by targeting RKIP in human lung adenocarcinoma cells. Mol Cancer. 2014;13:193. DOI:10.1186/1476-4598-13-193
  • Ye Z, Yin S, Su Z, et al. Downregulation of miR-101 contributes to epithelial-mesenchymal transition in cisplatin resistance of NSCLC cells by targeting ROCK2. Oncotarget. 2016.7:37524–37535. Doi: 10.18632/oncotarget.6852
  • Zhang Z, Zhang L, Yin Z-Y, et al. miR-107 regulates cisplatin chemosensitivity of A549 non small cell lung cancer cell line by targeting cyclin dependent kinase 8. Int J Clin Exp Pathol. 2014;7:7236–7241.
  • Kitamura K, Seike M, Okano T, et al. MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther. 2014;13:444–453. DOI:10.1158/1535-7163.MCT-13-0448
  • Sui C, Meng F, Li Y, et al. miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J Transl Med. 2015;13:132. DOI:10.1186/s12967-015-0541-x
  • Chiu CF, Chang YW, Kuo KT, et al. NF-kappaB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proc Natl Acad Sci U S A. 2016;113:E2526–E2535. DOI:10.1073/pnas.1522612113
  • Ning F-L, Wang F, Li M-L, et al. MicroRNA-182 modulates chemosensitivity of human non-small cell lung cancer to cisplatin by targeting PDCD4. Diagn Pathol. 2014;9:143. DOI:10.1186/1746-1596-9-143
  • Wang Y-S, Wang Y-H, Xia H-P, et al. MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev. 2012;13:255–260.
  • Wang RT, Xu M, Xu CX, et al. Decreased expression of miR216a contributes to non-small-cell lung cancer progression. Clin Cancer Res. 2014;20:4705–4716. DOI:10.1158/1078-0432.CCR-14-0517
  • Xie J, Yu F, Li D, et al. MicroRNA-218 regulates cisplatin (DPP) chemosensitivity in non-small cell lung cancer by targeting RUNX2. Tumour Biol. 2016;37:1197–1204. DOI:10.1007/s13277-015-3831-2
  • Han J, Zhao F, Zhang J, et al. miR-223 reverses the resistance of EGFR-TKIs through IGF1R/PI3K/Akt signaling pathway. Int J Oncol. 2016;48:1855–1867. DOI:10.3892/ijo.2016.3401
  • Wang H, Zhu LJ, Yang YC, et al. MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G(1)/S transition and apoptosis by targeting p21(WAF1/CIP1). Br J Cancer. 2014;111:339–354. DOI:10.1038/bjc.2014.157
  • Chen D, Huang J, Zhang K, et al. MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur J Cancer. 2014;50:3050–3067. DOI:10.1016/j.ejca.2014.09.008
  • Jin Z, Guan L, Song Y, et al. MicroRNA-138 regulates chemoresistance in human non-small cell lung cancer via epithelial mesenchymal transition. Eur Rev Med Pharmacol Sci. 2016;20:1080–1086.
  • Nishijima N, Seike M, Soeno C, et al. miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells. Int J Oncol. 2016;48:937–944. DOI:10.3892/ijo.2016.3331
  • Mao JT, Xue B, Smoake J, et al. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer. J Nutr Biochem. 2016;34:118–125. DOI:10.1016/j.jnutbio.2016.05.003
  • Lin L, Tu H-B, Wu L, et al. MicroRNA-21 regulates non-small cell lung cancer cell invasion and chemo-sensitivity through SMAD7. Cell Physiol Biochem. 2016;38:2152–2162. DOI:10.1159/000445571
  • Ren L, Huang C, Liu YH, et al. [The effect and mechanism of microRNA-21 on cis-dichlorodiamineplatinum resistance in lung cancer cell strain]. Zhonghua Yi Xue Za Zhi. 2016;96:1454–1458.
  • Shen H, Zhu F, Liu J, et al. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. Plos One. 2014;9:e103305. DOI:10.1371/journal.pone.0103305
  • Cho WC. MicroRNAs as therapeutic targets for lung cancer. Expert Opin Ther Targets. 2010;14:1005–1008. DOI:10.1517/14728222.2010.522399
  • Barger JF, Nana-Sinkam SP. MicroRNA as tools and therapeutics in lung cancer. Respir Med. 2015;109:803–812. DOI:10.1016/j.rmed.2015.02.006
  • Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70:5923–5930. DOI:10.1158/0008-5472.CAN-10-0655
  • Craig VJ, Tzankov A, Flori M, et al. Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia. 2012;26:2421–2424. DOI:10.1038/leu.2012.110
  • Zhao J, Kelnar K, Bader AG. In-depth analysis shows synergy between erlotinib and miR-34a. Plos One. 2014;9:e89105. DOI:10.1371/journal.pone.0089105
  • Jiao A, Sui M, Zhang L, et al. MicroRNA-200c inhibits the metastasis of non-small cell lung cancer cells by targeting ZEB2, an epithelial-mesenchymal transition regulator. Mol Med Rep. 2016;13:3349–3355. DOI:10.3892/mmr.2016.4901
  • Mutlu M, Raza U, Saatci O, et al. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl). 2016;94:629–644. DOI:10.1007/s00109-016-1420-5
  • Shan W, Zhang X, Li M, et al. Over expression of miR-200c suppresses invasion and restores methotrexate sensitivity in lung cancer A549 cells. Gene. 2016;593:265–271. DOI:10.1016/j.gene.2016.07.038
  • Zhong Z, Dong Z, Yang L, et al. Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp Ther Med. 2012;4:267–272. DOI:10.3892/etm.2012.580
  • Zhao B, Han H, Chen J, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 2014;342:43–51. DOI:10.1016/j.canlet.2013.08.030
  • Chatterjee A, Chattopadhyay D, Chakrabarti G. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell Signal. 2015;27:189–203. DOI:10.1016/j.cellsig.2014.11.023
  • Gu Y, Wang XD, Lu JJ, et al. Effect of mir-16 on proliferation and apoptosis in human A549 lung adenocarcinoma cells. Int J Clin Exp Med. 2015;8:3227–3233.
  • Takeshita F, Patrawala L, Osaki M, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18:181–187. DOI:10.1038/mt.2009.207
  • Wang QZ, Lv YH, Gong YH, et al. Double-stranded Let-7 mimics, potential candidates for cancer gene therapy. J Physiol Biochem. 2012;68:107–119. DOI:10.1007/s13105-011-0124-0
  • Stahlhut C, Slack FJ. Combinatorial action of MicroRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle. 2015;14:2171–2180.
  • Dai X, Fan W, Wang Y, et al. Combined delivery of Let-7b MicroRNA and paclitaxel via biodegradable nanoassemblies for the treatment of KRAS mutant cancer. Mol Pharm. 2016;13:520–533.
  • Young DD, Connelly CM, Grohmann C, et al. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc. 2010;132:7976–7981.
  • Kwekkeboom RF, Lei Z, Doevendans PA, et al. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond). 2014;127:351–365.
  • Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.
  • Agostini M, Knight RA. miR-34: from bench to bedside. Oncotarget. 2014;5:872–881.
  • Zhao J, Guerrero A, Kelnar K, et al. miRNA combination therapy: in vitro anticancer synergy between miR-34a mimic and next generation EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. Cancer Res. 2016;76:Abstract nr 4814.
  • Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets. 2016;20:737–753.
  • Li Y-J, Zhang Y-X, Wang P-Y, et al. Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol Rep. 2012;27:129–134. DOI:10.3892/or.2011.1466
  • Cortez MA, Valdecanas D, Zhang X, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther. 2014;22:1494–1503. DOI:10.1038/mt.2014.79
  • Esquela-Kerscher A, Trang P, Wiggins JF, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7:759–764. DOI:10.4161/cc.7.6.5834
  • Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29:1580–1587. DOI:10.1038/onc.2009.445
  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Controlled Release. 2013;172:962–974. DOI:10.1016/j.jconrel.2013.09.015
  • Wang H, Jiang Y, Peng H, et al. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev. 2015;81:142–160. DOI:10.1016/j.addr.2014.10.031
  • Trang P, Wiggins JF, Daige CL, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19:1116–1122. DOI:10.1038/mt.2011.48
  • Cortez MA, Ivan C, Valdecanas D, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2016;108:djv303. Doi: 10.1093/jnci/djv303
  • Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 2012;72:5576–5587. DOI:10.1158/0008-5472.CAN-12-2001
  • Monroig-Bosque Pdel C, Rivera CA, Calin GA. MicroRNAs in cancer therapeutics: “from the bench to the bedside”. Expert Opin Biol Ther. 2015;15:1381–1385. DOI:10.1517/14712598.2015.1074999
  • Christopher AF, Kaur RP, Kaur G, et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7:68–74. DOI:10.4103/2229-3485.179431
  • Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012;199:407–412. DOI:10.1083/jcb.201208082
  • Reid G, Pel ME, Kirschner MB, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24:3128–3135. DOI:10.1093/annonc/mdt412
  • Kasinski AL, Kelnar K, Stahlhut C, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene. 2015;34:3547–3555. DOI:10.1038/onc.2014.282
  • Sul J, Blumenthal GM, Jiang X, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist. 2016;21:643–650. DOI:10.1634/theoncologist.2015-0498
  • Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014;5:5241. DOI:10.1038/ncomms5972
  • Purow B. The elephant in the room: do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma? J Neurooncol. 2011;103:429–436. DOI:10.1007/s11060-010-0449-5
  • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–689. DOI:10.1038/nature04303
  • Gao Y, Gao F, Ma JL, et al. The potential clinical applications and prospects of microRNAs in lung cancer. Onco Targets Ther. 2014;7:901–906. DOI:10.2147/OTT.S62227
  • Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Current Biol. 2010;20:R858–R861. DOI:10.1016/j.cub.2010.08.052
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–726. DOI:10.1038/nmeth1079
  • Landen CN Jr., Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005;65:6910–6918. DOI:10.1158/0008-5472.CAN-05-0530
  • Ibrahim AF, Weirauch U, Thomas M, et al. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71:5214–5224. DOI:10.1158/0008-5472.CAN-10-4645
  • Hu QL, Jiang QY, Jin X, et al. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials. 2013;34:2265–2276. DOI:10.1016/j.biomaterials.2012.12.016
  • Sun Y, Ye X, Cai M, et al. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery. ACS Nano. 2016;10:5759–5768. DOI:10.1021/acsnano.5b07828
  • Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–1017. DOI:10.1016/j.cell.2009.04.021
  • Xie J, Ameres SL, Friedline R, et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods. 2012;9:403–409. DOI:10.1038/nmeth.1903
  • Scomparin A, Polyak D, Krivitsky A, et al. Achieving successful delivery of oligonucleotides–from physico-chemical characterization to in vivo evaluation. Biotechnol Adv. 2015;33:1294–1309. DOI:10.1016/j.biotechadv.2015.04.008
  • Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67. DOI:10.1038/nrc2966
  • Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18:1650–1656. DOI:10.1038/mt.2010.136
  • Esposito CL, Catuogno S, De Franciscis V. Aptamer-MiRNA conjugates for cancer cell-targeted delivery. Methods Mol Biol. 2016;1364:197–208. DOI:10.1007/978-1-4939-3112-5_16
  • Perepelyuk M, Maher C, Lakshmikuttyamma A, et al. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int J Nanomedicine. 2016;11:3533–3544. DOI:10.2147/IJN.S110488
  • Wang H, Zhao X, Guo C, et al. Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. Plos One. 2015;10:e0139136. DOI:10.1371/journal.pone.0139136
  • Jiang L, Huang Q, Zhang S, et al. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer. 2010;10:318. DOI:10.1186/1471-2407-10-663
  • Barber GN. Cytoplasmic DNA innate immune pathways. Immunol Rev. 2011;243:99–108. DOI:10.1111/j.1600-065X.2011.01051.x
  • Olejniczak M, Galka-Marciniak P, Polak K, et al. RNAimmuno: a database of the nonspecific immunological effects of RNA interference and microRNA reagents. Rna. 2012;18:930–935. DOI:10.1261/rna.025627.110
  • Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122:23–36. DOI:10.1182/blood-2013-01-306647
  • Singh S, Narang AS, Mahato RI. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res. 2011;28:2996–3015. DOI:10.1007/s11095-011-0608-1
  • Judge A, MacLachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther. 2008;19:111–124. DOI:10.1089/hum.2007.179
  • Yokoi T, Nakajima M. microRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol. 2013;53:377–400. DOI:10.1146/annurev-pharmtox-011112-140250
  • Tasaka S, Kamata H, Miyamoto K, et al. Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response. Respir Res. 2009;10:84. DOI:10.1186/1465-9921-10-31
  • Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851–864. DOI:10.15252/emmm.201100899
  • Yu HW, Cho WC. The emerging role of miRNAs in combined cancer therapy. Expert Opin Biol Ther. 2015;15:923–925. DOI:10.1517/14712598.2015.1030390

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.