247
Views
2
CrossRef citations to date
0
Altmetric
Review

The application of molecular topology for ulcerative colitis drug discovery

, &
Pages 89-101 | Received 02 Aug 2017, Accepted 20 Oct 2017, Published online: 01 Nov 2017

References

  • Ordás I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet. 2012;380:1606–1619.
  • Ananthakrishnan AN. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2013;9:367–374.
  • Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2010;6:339–346.
  • De Souza HSP. Etiopathogenesis of inflammatory bowel disease: today and tomorrow. Curr Opin Gastroenterol. 2017;33:222–229.
  • Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–167.
  • Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365:1713–1725.
  • Hindryckx P, Jairath V, D’ Haens G. Acute severe ulcerative colitis: from pathophysiology to clinical management. Nat Rev Gastroenterol Hepatol. 2016;13:654–664.
  • Fuss I, Strober W. Ulcerative colitis. In: Mucosal immunology. 4th ed.Boston (MA): Academic Press; 2015.
  • Pastorelli L, Pizarro TT, Cominelli F, et al. Emerging drugs for the treatment of ulcerative colitis. Expert Opin Emerging Drugs. 2009;14:505–521.
  • Dubinsky MC. Reviewing treatments and outcomes in the evolving landscape of ulcerative colitis. Postgrad Med. 2017;129:538–553.
  • Caprilli R, Cesarini M, Angelucci E, et al. The long journey of salicylates in ulcerative colitis: the past and the future. J Crohns Colitis. 2009;3:149–156.
  • Rosseaux C, Lefebvre L, Dubuquoy L, et al. Intestinal anti-inflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. 2005;201:1205–1215.
  • Dubuquoy L, Rosseaux C, Thueru X, et al. PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut. 2006;55:1341–1349.
  • Jannin V, Lemagnen G, Gueroult P, et al. Rectal route in the 21st Century to treat children. Adv Drug Deliv Rev. 2014;73:34–49.
  • Kornbluth A, Sachar DB; Practice Parameters Committee of the American College of Gastroenterology. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol. 2010;105:501–523.
  • Faubion WA Jr, Loftus EV Jr, Harmsen WS, et al. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology. 2001;121:255–260.
  • Toruner M, Loftus EV Jr, Harmsen WS, et al. Risk factors for opportunistic infections in patients with inflammatory bowel disease. Gastroenterology. 2008;134:929–936.
  • Park SC, Jeen YT. Current and emerging biologics for ulcerative colitis. Gut Liver. 2015;9:18–27.
  • Petkau JMV, Eksteen B. Selective biologics for ulcerative colitis and Crohn’s disease - clinical utility of vedolizumab. Biologics. 2016;10:33–52.
  • Stawowczyk E, Kawalec P. Cost-effectiveness of biological treatment of ulcerative colitis – a systematic review. Prz Gastroenterol. 2017;12:90–97.
  • Khanna R, Jairath V, Vande Casteele N, et al. Efficient early drug development for ulcerative colitis. Gastroenterology. 2016;150:1056–1060.
  • Gálvez J, Gálvez Llompart M, García-Domenech R. Molecular topology as a novel approach for drug discovery. Expert Opin Drug Discov. 2012;7:133–153.
  • Amigó JM, Gálvez J, Villar VM. A review on molecular topology: applying graph theory to drug discovery and design. Naturwissenschaften. 2009;96:749–761.
  • Gálvez J, García-Domenech R. On the contribution of molecular topology to drug design and discovery. Curr Comput Aided Drug Des. 2010;6:252–268.
  • Wang T, Wu M-B, Lin J-P, et al. Quantitative structure–activity relationship: promising advances in drug discovery platforms. Expert Opin Drug Discov. 2015;10:1283–1300.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;75:4977–5010.
  • García-Domenech R, Gálvez-Llompart M, Zanni R, et al. QSAR methods for the discovery of new inflammatory bowel disease drugs. Expert Opin Drug Discov. 2013;8:933–949.
  • Gálvez-Llompart M, Recio MC, García-Domenech R. Topological virtual screening: A way to find new compounds active in ulcerative colitis by inhibiting NF-κB. Mol Divers. 2011;15:917–926.
  • Gálvez-Llompart M, Recio Iglesias MC, Gálvez J, et al. Novel potential agents for ulcerative colitis by molecular topology: suppression of IL-6 production in Caco-2 and RAW264.7 cell lines. Mol Divers. 2013;17:573–593.
  • Gálvez-Llompart M, Recio MC, García-Domenech R, et al. Molecular topology: A strategy to identify novel compounds against ulcerative colitis. Mol Divers. 2017;21:219–234.
  • Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9:580–588.
  • Martins EA, Radhakrishan R, Badve RR. High-throughput screening: the hits and leads of drug discovery – an overview. J Appl Pharm Sci. 2011;1:2–10.
  • Fang Y, Ding Y, Feinstein WP, et al. GeuxDock: accelerating structure-based virtual screening with heterogeneous computing. PLoS One. 2016;11:e0158898.
  • Ge H, Wang Y, Li C, et al. Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing. J Chem Inf Model. 2013;53:2757–2764.
  • Kristensen TG, Nielsen J, Pedersen CNS. Methods for similarity-based virtual screening. Comput Struct Biotechnol J. 2013;5:e201302009.
  • Cereto-Messagué A, Ojeda MJ, Valls C, et al. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63.
  • Brown N, Lewis RA. Exploiting QSAR methods in lead optimization. Curr Opin Drug Discov Devel. 2006;9:419–424.
  • Miyao T, Kaneko H, Funatsu K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J Chem Inf Model. 2016;56:286–299.
  • McGaughey G, Sheridan R, Bayly C, et al. Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model. 2007;47(4):1504–1519.
  • Talevi A, Bellera C, Castro E, et al. A successful virtual screening application: prediction of anticonvulsant activity in MES test of widely used pharmaceutical and food preservatives methylparaben and propylparaben. J Comput Aid Mol Des. 2007;21(9):527–538.
  • Lara-Valderrábano L, Rocha L, Galván E. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels. NeuroToxicol. 2016;57:183–193.
  • Lara-Valderrábano L, Galván E, Rocha L. Propylparaben suppresses epileptiform activity in hippocampal CA1 pyramidal cells in vitro. Epilepsy Res. 2017;136:126–129.
  • Santana-Gómez C, Orozco-Suárez S, Talevi A, et al. Propylparaben applied after pilocarpine-induced status epilepticus modifies hippocampal excitability and glutamate release in rats. NeuroToxicol. 2017;59:110–120.
  • Bellera C, Balcazar D, Vanrell M, et al. Computer-guided drug repurposing: identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem. 2015;93:338–348.
  • Sbaraglini M, Bellera C, Fraccaroli L, et al. Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int J Antimicrob Agents. 2016;48(1):91–95.
  • Chen H, Yang Y, Engkvist O. Molecular topology analysis of the differences between drugs, clinical candidate compounds, and bioactive molecules. J Chem Inf Model. 2010;50(12):2141–2150.
  • Contrera J, Matthews E, Kruhlak N, et al. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose. Regul Toxicol Pharmacol. 2004;40(3):185–206.
  • Zanni R, Galvez-Llompart M, García-Domenech R, et al. Latest advances in molecular topology applications for drug discovery. Expert Opin Drug Discov. 2015;10:945–957.
  • Randic M. Characterization of molecular branching. J Am Chem Soc. 1975;97:6609–6615.
  • Wiener H. Structural determination of paraffin boiling points. J Am Chem Soc. 1947;69:17–20.
  • Talevi A, Bruno-Blanch LE. Virtual screening applications in the search of novel antiepileptic drug candidates. In: Talevi A, Rocha L. Antiepileptic drug discovery. New York (NY): Springer; 2016.
  • Guimarāes MC, Duarte MH, Silla JM. Is conformation a fundamental descriptor in QSAR? A case for halogenated anesthesics. Beilstein J Org Chem. 2016;12:760–768.
  • Furtula B, Lekishvili G, Gutman I. A graph theoretical approach to cis/trans isomerism. J Serbian Chemi Soc. 2014;79:805–813.
  • Todeschini R, Consonni V. Handbook of molecular descriptors. Weinheim: Wiley-VCH; 2008.
  • Hanser T, Barber C, Marchaland JF, et al. Applicability domain: towards a more formal definition. SAR QSAR Environ Res. 2016;27:893–909.
  • Ellison CM, Sherhod R, Cronin MT, et al. Assessment of methods to define the applicability domain of structural alert models. J Chem Inf Model. 2011;51:975–985.
  • Qin C, Zhang C, Xu F, et al. Theraeutic target database update 2014: A resource for targeted therapeutics. Nucleic Acids Res. 2014;42:D1118–D1123.
  • Sandborn WJ, Su C, Sands BE. Tolfacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376:1723–1736.
  • Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61(6):918–932.
  • Cătană C, Neagoe I, Cozma V, et al. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2015;21(19):5823–5830.
  • Teng M, Bowman E, McElwee J, et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015;21(7):719–729.
  • Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.
  • Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.
  • Langer T, Byrant SD. 3D quantitative structure-property relationships. In: Wermuth C. The practice of medicinal chemistry. London: Academic Press; 2008.
  • Sippl W. 3D QSAR: applications, recent advances, and limitations. In: Puzyn T, Leszczynski J, Cronin MT. Recent advances in QSAR studies. Method and applications. Dordrecht: Springer; 2010.
  • Roy K, Kar S, Das RN. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. London (UK): Academic Press; 2015. Chapter 1, Background of QSAR and historical developments, p. 1-46.
  • Alagarsamy V. Textbook in medicinal chemistry. Vol. 1. New Delhi (India): Elsevier; 2013. Chapter 4, Structure-activity relationship and quantitative structure-activity relationship, p. 56-65.
  • Nikolic K, Agbaba D. QSAR study and design of novel organoselenium and α-tocopherol derivatives with enhanced chemotherapeutic activity. Lett Drug Des Discov. 2009;6:228–235.
  • Bello-Ramirez AM, Buendía-Orozco J, Nava-Ocampo AA. A QSAR analysis to explain the analgesic properties of aconitum alkaloids. Fundam Clin Pharmacol. 2003;17:575–580.
  • Patel SR, Gangwal R, Sangamwar AT, et al. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur J Med Chem. 2014;85:255–267.
  • Richard AM, Benigni R. AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR QSAR Environ Res. 2002;13:1–19.
  • Myshkin E, Brennan R, Khasanova T, et al. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Chem Biol Drug Des. 2012;80:406–416.
  • Tasso SM, Moon S, Bruno-Blanch LE, et al. Characterization of the anticonvulsant profile of valpromide derivatives. Bioorg Med Chem. 2004;12:3857–3869.
  • Shen M, LeTiran A, Xiao Y, et al. Quantitative structure−activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J Med Chem. 2002;45:2811–2823.
  • Talevi A, Enrique AV, Bruno-Blanch LE. Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors. Bioorg Med Chem Lett. 2012;22:4072–4074.
  • Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3:353–359.
  • Bianchi MT, Pathmanathan J, Cash SS. From ion channels to complex networks: magic bullet versus magic shotgun approaches to anticonvulsant pharmacotherapy. Med Hypotheses. 2009;72:297–305.
  • Talevi A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol. 2015;6:20564.
  • Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today. 2005;10:139–147.
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–690.
  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–519.
  • Muraro D, Simmons A. An integrative analysis of gene expression and molecular interaction data to identify dys-regulated sub-networks in inflammatory bowel disease. BMC Bioinformatics. 2016;17(1):art. no. 42.
  • Emig D, Ivliev A, Pustovalova O, et al. Drug target prediction and repositioning using an integrated network-based approach. PLoS ONE. 2013;8(4):art. no. e60618.
  • De Julian Ortiz JV, Galvez J, Muñoz-Collado C, et al. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J Med Chem. 1999;42:3308–3314.
  • Bruno-Blanch LE, Galvez J, García-Domenech R. Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity. Bioorg Med Chem Lett. 2003;13:2749–2754.
  • Rios-Santamarina I, García-Domenech R, Galvez J. New bronchodilators selected by molecular topology. Bioorg Med Chem Lett. 1998;8:477–482.
  • Galvez J, García-Domenech R, Gomez-Lechon M, et al. Use of molecular topology in the selection of new cytostatic drugs. J Mol Struct Theochem. 2000;504:241–248.
  • De Gregorio Alapont C, García-Domenech R, Galvez J, et al. Molecular topology: a useful tool for the search of new antibacterials. Bioorg Med Chem Lett. 2000;10:2033–2036.
  • García-Domenech R, Ríos-Santamarina I, Catalá A, et al. Application of molecular topology to the prediction of antifungal activity for a set of dication-substituted carbazols, furans and benzimidazoles. J Mol Struct Theochem. 2003;624:97–107.
  • Calabuig C, Antón-Fos GM, Galvez J, et al. New hypoglycaemic agents selected by molecular topology. Int J Pharm. 2004;278:111–118.
  • Talevi A. Network pharmacology and epilepsy. In: Talevi A, Rocha L. Antiepileptic drug discovery. New York (NY): Springer; 2016.
  • Marrero-Ponce Y, Ivarreta-Veitía M, Montero-Torres A, et al. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. J Chem Inf Model. 2005;45:1082–1100.
  • Gavernet L, Talevi A, Castro E, et al. A combined virtual screening 2D and 3D QSAR methodology for the selection of new anticonvulsant candidates from a natural product library. QSAR Comb Sci. 2008;27(9):1120–1129.
  • Speck-Panche A, Cordeiro MN. Multitasking models for quantitative structure-biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin Drug Discov. 2015;10:245–256.
  • Cronin MTD. Quantitative structure-activity relationships (QSARs) – applications and methodology. In: Puzyn T, Leszczynski J, Cronin MT. Recent advances in QSAR studies. Method and applications. Dordrecht: Springer; 2010.
  • Matsumoto S, Hara T, Hori T, et al. Probiotic Lactobacillus induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propia mononuclear cells. Clin Exp Immunol. 2005;140:417–426.
  • Waldner MJ, Neurath MF. Novel cytokine-targeted therapies and intestinal inflammation. Curr Opin Pharmacol. 2009;9:702–707.
  • Venkiteshwaran A. Tocilizumab. MAbs. 2009;1:432–438.
  • Szeto MCH, Yalcin MD, Khan A, et al. Successful use of tocilizumab in a patient with coexisting rheumatoid arthritis and ulcerative colitis. Case Report Immunol. 2016;2016:7562123.
  • Atreya R, Billmeier U, Rath T, et al. First case reporto f exacerbated ulcerative colitis after anti-interleukin-6R salvage therapy. World J Gastroenterol. 2015;21:12963–12969.
  • Pourbasheer E, Riahi S, Ganiali MR, et al. Quantitative structure-activity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activity by the genetic algorithm and multiple linear regression (GA-MLR) method. J Enzyme Inhib Med Chem. 2010;25:844–853.
  • Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell. 2003;11:293–302.
  • Asadollahi T, Dadfarnia S, Shabani AMH, et al. QSAR models for CXCR2 receptor antagonists based on the genetic algorithm for data preprocessing prior to application of the PLS linear regression method and design of the new compounds using in silico virtual screening. Molecules. 2011;16:1928–1955.
  • Ghasemi JB, Zohrabi P, Khajehsharif H. Quantitative structure-activity relationship study of nonpeptide antagonists of CXCR2 using stepwise multiple linear regression analysis. Monatsch Chem. 2010;141:111–118.
  • Jain HK, Agrawal RK. Topological descriptors in modeling tumor necrosis factor alpha inhibitory activity of xanthines, pteridinediones and related compounds. Internet Electron J Mol Des. 2007;6:218–228.
  • Zhang Y, Zhao L, Wu J, et al. Synthesis and evaluation of a series of novel asymmetrical curcumin analogs for the treatment of inflammation. Molecules. 2014;19:7287–7307.
  • Jalali-Heravi M, Mani Varnosfaderani A. QSAR modelling of integrin antagonists using enhanced Bayesian regularised genetic neural networks. SAR QSAR Environ Res. 2011;22:293–314.
  • Pourbasheer E, Aalizadeh R, Ganjali MR, et al. QSAR study of α1β4 integrin inhibitors by GA-MLR and GA-SVM methods. Struct Chem. 2014;25:355–370.
  • Bhonde MR, Gupte RD, Dadarkar SD, et al. A novel mTOR inhibitor is efficacious in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1237–1245.
  • Hu S, Chen M, Wang Y. mTOR inhibition attenuates dextran sulfate sodium-induced colitis by suppressing T cell proliferation and balancing TH1/TmTOR inhibition attenuates dextran sulfate sodium-induced colitis by suppressing T cell proliferation and balancing TH1/TH17/Treg Profile. PLoS ONE. 2016;11:e0154564.
  • Lakhlili W, Yasri A, Ibrahimi A. Structure–activity relationships study of mTORkinase inhibition using QSAR and structure-based drug design approaches. Onco Targets Ther. 2016;9:7345–7353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.