242
Views
8
CrossRef citations to date
0
Altmetric
Review

The evolution in our understanding of the genetics of rheumatoid arthritis and the impact on novel drug discovery

, , &
Pages 85-99 | Received 07 Mar 2019, Accepted 17 Oct 2019, Published online: 29 Oct 2019

References

  • Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320:1360–1372.
  • Myasoedova E, Crowson CS, Kremers HM, et al. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 2010;62:1576–1582.
  • Gabriel SE. The epidemiology of rheumatoid arthritis. Rheumatol Dis Clin North Am. 2001;27:269–281.
  • Mackie S, Quinn M, Emery P. CHAPTER 32 - rheumatoid arthritis. In: Rose NR, Mackay IR, editors. The autoimmune diseases. Fourth ed. St. Louis: Academic Press; 2006. p. 417–436.
  • Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11:234–250.
  • Aletaha D, Smolen JS. Joint damage in rheumatoid arthritis progresses in remission according to the disease activity score in 28 joints and is driven by residual swollen joints. Arthritis Rheum. 2011;63:3702–3711.
  • Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis. 2010;69:1580–1588.
  • Saad MN, Mabrouk MS, Eldeib AM, et al. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: a systematic review and meta-analysis. J Adv Res. 2016;7:1–16.
  • Singh JA, Saag KG, Bridges SL, et al. 2015 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheum. 2016;68:1–26.
  • Lima A, Monteiro J, Bernardes M, et al. Prediction of methotrexate clinical response in portugues rheumatoid arthritis patients: implication of MTHFR rs1801133 and ATIC rs4673993 polymorphisms. Biomed Res Int. 2014;2014:368681.
  • Chaabane S, Marzouk S, Akrout R, et al. Genetic determinants of methotrexate toxicity in tunisian patients with rheumatoid arthritis: a study of polymorphisms involved in the MTX metabolic pathway. Eur J Drug Metab Pharmacokinet. 2016;41:385–393.
  • Krieckaert CL, Nurmohamed MT, Wolbink GJ. Methotrexate reduces immunogenicity in adalimumab treated rheumatoid arthritis patients in a dose dependent manner. Ann Rheum Dis. 2012;71:1914–1915.
  • Garces S, Demengeot J, benito-garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systemic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72:1947–1955.
  • Smolen JS, Landewé R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76:960–977.
  • Terao C, Ikari K, Nakayamada S, et al. A twin study of rheumatoid arthritis in the Japanese population. Mod Rheumatol. 2016;26:685–689.
  • van der Woude D, Houwing-Duistermaat JJ, Toes REM, et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 2009;60:916–923.
  • MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43:30–37.
  • Silman AJ, MacGregor AJ, Thomson W, et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol. 1993;32:903–907.
  • Aho K, Koskenvuo M, Tuominen J, et al. Occurrence of rheumatoid arthritis in a nationwide series of twins. J Rheumatol. 1986;13:899–902.
  • Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–381.
  • Lenz TL, Deutsch AJ, Han B, et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet. 2015;47:1085–1090.
  • Weyand CM, Hicok KC, Conn DL, et al. The Influence of HLA-DRB1 Genes on Disease Severity in Rheumatoid Arthritis. Ann Intern Med. 1992;117:801–806.
  • Firestein GS, Zvaifler NJ. How important are T cells in chronic rheumatoid synovitis?: II. T cell-independent mechanisms from beginning to end. Arthritis Rheum. 2002;46:298–308.
  • Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44(3):291–296.
  • Génin E, Babron MC, McDermott MF, et al. Modelling the major histocompatibility complex susceptibility to RA using the MASC method. Genet Epidemiol. 1998;15:419–430.
  • Rigby AS, MacGregor AJ, Thomson G. HLA haplotype sharing in rheumatoid arthritis sibships: risk estimates subdivided by proband genotype. Genet Epidemiol. 1998;15:403–418.
  • du Montcel ST, Michou L, Petit-Teixeira E, et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum. 2005;52:1063–1068.
  • Scally SW, Petersen J, Law SC, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med. 2013;210:2569–2582.
  • Law SC, Street S, Yu C-HA, et al. T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res Ther. 2012;14:R118.
  • Hill JA, Southwood S, Sette A, et al. cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol. 2003;171:538–541.
  • Anderson KM, Roark CL, Portas M, et al. A molecular analysis of the shared epitope hypothesis: binding of arthritogenic peptides to DRB1*04 alleles. Arthritis Rheum. 2016;68:1627–1636.
  • Okada Y, Terao C, Ikari K, et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet. 2012;44:511–516.
  • Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010;42:508–514.
  • Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183–196.
  • Orozco G, Viatte S, Bowes J, et al. Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended uk genome-wide association study. Arthritis Rheum. 2014;66:24–30.
  • McAllister K, Yarwood A, Bowes J, et al. Brief report: identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis Rheum. 2013;65:3058–3062.
  • Jiang L, Yin J, Ye L, et al. Novel risk loci for rheumatoid arthritis in han Chinese and congruence with risk variants in Europeans. Arthritis Rheum. 2014;66:1121–1132.
  • Kallberg H, Padyukov L, Plenge RM, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet. 2007;80:867–875.
  • Seddighzadeh M, Korotkova M, Källberg H, et al. Evidence for interaction between 5-hydroxytryptamine (serotonin) receptor 2A and MHC type II molecules in the development of rheumatoid arthritis. Eur J Hum Genet. 2010;18:821–826.
  • Diaz-Gallo L-M, Ramsköld D, Shchetynsky K, et al. Systematic approach demonstrates enrichment of multiple interactions between non-HLA risk variants and HLA-DRB1 risk alleles in rheumatoid arthritis. Ann Rheum Dis. 2018;77:1454–1462.
  • Kim K, Jiang X, Cui J, et al. Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheum. 2015;67:2611–2623.
  • López-Rodríguez R, Ferreiro-Iglesias A, Lima A, et al. Replication study of polymorphisms associated with response to methotrexate in patients with rheumatoid arthritis. Sci Rep. 2018;8(1):7342.
  • López-Rodríguez R, Ferreiro-Iglesias A, Lima A, et al. Evaluation of a clinical pharmacogenetics model to predict methotrexate response in patients with rheumatoid arthritis. Pharmacogenomics J. 2018;18(4):539–545.
  • Zhang LL, Yang S, Wei W, et al. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARs in rheumatoid arthritis. Pharmacogenet Genomics. 2014;24:531–538.
  • Kodidela S, Suresh CP, Dubashi B. Pharmacogenetics of methotrexate in acute lymphoblastic leukemia: why still at the bench level? Eur J Clin Pharmacol. 2014;70:253–260.
  • Malik F, Ranganathan P. Methotrexate pharmacogenetics in rheumatoid arthritis: a status report. Pharmacogenomics. 2013;14:305–314.
  • Ando Y, Shimada H, Matsumoto N, et al. Role of methotrexate polyglutamation and reduced fotale carrier 1 (RFC1) gene polymorphisms in clinical assessment indexes. Drug Metab Pharmacytokinet. 2013;28:442–445.
  • Hayashi H, Fujimaki C, Daimon T, et al. Genetic polymorphisms in folate pathway enzymes as a possible marker for predicting the outcome of methotrexate therapy in Japanese patients with rheumatoid arthritis. J Clin Pharm Ther. 2009;34:355–361.
  • Dervieux T, Greenstein N, Kremer J. Pharamcogenomic and metabolic biomarkers the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum. 2006;54:3095–3103.
  • Hughes LB, Danila MI, Bridges SL. Recent advances in personalizing rheumatoid arthritis therapy and management. Per Med. 2009;6:159–170.
  • Kung TN, Dennis J, Ma Y, et al. FRC1 80G>A is a genetic determinant of methotrexate efficacy in rheumatoid arthritis. Arthritis Rheum. 2014;66:1111–1120.
  • Drozdzik M, Rudas T, Pawlik A, et al. Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics J. 2007;7(6):404–407.
  • Hayashi H, Tazoe Y, Tsuboi S, et al. A single nucleotide polymorphism of reduced folate carrier 1 predicts methotrexate in Japanese patients with rheumatoid arthritis. Drug Metab Pharmacytokinet. 2013;28:164–168.
  • Takatori R, Takahashi KA, Tokunaga D, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol. 2006;24:546–554.
  • Bohanec-Grabar P, Leonardo-Garcia LJ, Inglada-Perez L, et al. Genetic variation in the SLC19A1 gene and methotrexate toxicity in rheumatoid arthritis patients. Pharamcogenomics. 2012;13:1583–1594.
  • Zhu H, Deng FY, Mo XB, et al. Pharmacogenetics and pharmacogenomics for rheumatoid arthritis responsiveness to methotrexate treatment: the 2013 update. Pharamcogenomics. 2014;15:551–566.
  • Kooloos WM, Huizinga TW, Guchelaar HJ, et al. Pharmacogenetics in treatment of rheumatoid arthritis. Curr Pharm Des. 2010;16:164–175.
  • Kurzawski M, Pawlik A, Safranow K, et al. 677C>T and 1298A>C MTHFR polymorphisms affect methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics. 2007;8(11):1551–1559.
  • Pawlik A, Herczynska M, Kurzawski M, et al. The effect of exon (19C>A) dihydroorotate dehydrogenase gene polymorphism on rheumatoid arthritis treatment with leflunomide. Pharmacogenomics. 2009;10:303–309.
  • O’Doherty C, Schnabl M, Spargo L, et al. Association of DHODH haplotype variants and response to leflunomide treatment in rheumatoid arthritis. Pharmacogenomics. 2012;13:1427–1434.
  • Wiese MD, Alotaibi N, O’Doherty C, et al. Pharmacogenomics of NAT2 and ABCG2 influence thetoxicity and efficacy of sulphasalazine containing DMARD regimens in early rheumatoid arthritis. Pharmacogenomics J. 2014;14:350–355.
  • Braun N, Michel U, Ernst B, et al. Gene polymorphism at position −308 of the tumor-necrosisfactor alpha (TNF-alpha) in multiple sclerosis and it’s influence on the regulation of TNF-alpha production. Neurosci Lett. 1996;215:75–78.
  • Schaaf B, Seitzer U, Pravica V, et al. Tumor necrosis factor alpha promoter gene polymorphism and increased tumor necrosis factor serum bioactivity in farmer’s lung patients. Am J Respir Crit Care Med. 2001;163:379–382.
  • Verweij CL. Tumour necrosis factor gene polymorphisms as severity markers in rheumatoid arthritis. Ann Rheum Dis. 1999;58:120–126.
  • de Vries N, Tak PP. The response to anti-TNF-alpha treatment: gene regulation at the bedside. Rheumatology (Oxford). 2005;44:705–707.
  • Fonseca JE, Carvalho T, Cruz M, et al. Polymorphism at position −308 of the tumour necrosis factor alpha gene and rheumatoid arthritis pharmacogenetics. Ann Rheum Dis. 2005;64:793–794.
  • Maxwell JR, Potter C, Hyrich KL, et al. Association of the tumour necrosis factor-308 variant with differential response to anti-TNF agents in the treatment of rheumatoid arthritis. Hum Mol Genet. 2008;22:3532–3538.
  • de Jong TD, Sellam J, Agca R. A multi-parameter response prediction model for rituximab in rheumatoid arthritis. Joint Bone Spine. 2018;85(2):219–226.
  • Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6:859–866.
  • Tarnowski M, Paradowska-Gorycka A, Dąbrowska-Zamojcin E, et al. The effect of gene polymorphisms on patient responses to rheumatoid arthritis therapy. Expert Opin Drug Metab Toxicol. 2016;12(1):41–55.
  • Emery P, Fleischmann R, Filipowicz-Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 2006 May;54(5):1390–1400.
  • Quartuccio L, Fabris M, Pontarini E, et al. The 158VV Fcgamma receptor 3A genotype is associated with response to rituximab in rheumatoid arthritis: results of an Italian multicentre study. Ann Rheum Dis. 2014;73(4):716–721.
  • Ruyssen-Witrand A, Rouanet S, Combe B, et al. Fcγ receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875–877.
  • Kastbom A, Coster L, Arlestig L, et al. Influence of FCGR3A genotype on the therapeutic response to rituximab in rheumatoid arthritis: an observational cohort study. BMJ Open. 2012;2:e001524.
  • Pál I, Szamosi S, Hodosi K, et al. Effect of Fcγ-receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. RMD Open. 2017;3(2):e000485.
  • Fabris M, Quartuccio L, Lombardi S, et al. Study on the possible role of the −174G>C IL-6 promoter polymorphism in predicting response to rituximab in rheumatoid arthritis. Reumatismo. 2010;62:253–258.
  • Robledo G, Dávila-Fajardo CL, Márquez A, et al. Association between −174 interleukin-6 gene polymorphism and biological response to rituximab in several systemic autoimmune diseases. DNA Cell Biol. 2012;31(9):1486–1491.
  • Fabris M, Quartuccio L, Lombardi S, et al. The CC homozygosis of the −174G>C IL-6 polymorphism predicts a lower efficacy of rituximab therapy in rheumatoid arthritis. Autoimmun Rev. 2012;11:315–320.
  • Fabris M, Quartuccio L, Vital E. The TTTT B lymphocyte stimulator promoter haplotype is associated with good response to rituximab therapy in seropositive rheumatoid arthritis resistant to tumor necrosis factor blockers. Arthritis Rheum. 2013;65(1):88–97.
  • Ruyssen-Witrand A, Rouanet S, Combe B, et al. Association between −871C>T promoter polymorphism in the B-cell activating factor gene and the response to rituximab in rheumatoid arthritis patients. Rheumatology. 2013;52(4):636–641.
  • McLaughlin M, Östör A. Safety of subcutaneous versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with rheumatoid arthritis. Expert Opin Drug Saf. 2015;14:429–437.
  • Avci AB, Feist E, Burmester GR. Targeting IL‑6 or IL‑6 receptor in rheumatoid arthritis: what’s the difference? BioDrugs. 2018;32(6):531–546.
  • June RR, Olsen NJ. Room for more IL-6 blockade? Sarilumab for the treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2016;16(10):1303–1309.
  • Ogata A, Amano K, Dobashi H, et al. Longterm safety and efficacy of subcutaneous tocilizumab monotherapy: results from the 2-year open-label extension of the MUSASHI study. J Rheumatol. 2015;42:799–809.
  • Maldonado-Montoro M, Cañadas-Garre M, González-Utrilla A, et al. Influence of IL6R gene polymorphisms in the effectiveness to treatment with tocilizumab in rheumatoid arthritis. Pharmacogenomics J. 2018;18(1):167–172.
  • Enevold C, Baslund B, Linde L, et al. Interleukin-6-receptor polymorphisms rs12083537, rs2228145, and rs4329505 as predictors of response to tocilizumab in rheumatoid arthritis. Pharmacogenet Genomics. 2014;24:401–405.
  • Harigai M, Ishiguro N, Inokuma S, et al. Safety and effectiveness of abatacept in Japanese non-elderly and elderly patients with rheumatoid arthritis in an all-cases post-marketing surveillance. Mod Rheumatol. 2018;25:1–9.
  • Szostak B, Machaj F, Rosik J, et al. CTLA4 antagonists in phase I and phase II clinical trials, current status and future perspectives for cancer therapy. Expert Opin Investig Drugs. 2019;28(2):149–159.
  • Takahashi N, Kojima T, Kida D, et al. Clinical effectiveness and long-term retention of abatacept in elderly rheumatoid arthritis patients: results from a multicenter registry system. Mod Rheumatol. 2018;15:1–23.
  • Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev. 2008;223:143–155.
  • Talotta R, Bagnato GL, Atzeni F, et al. Polymorphic alleles in exon 1 of the CTLA4 gene do not predict the response to abatacept. Clin Exp Rheumatol. 2013;31(5):813.
  • Trynka G, Sandor C, Han B, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2013;45(2):124–130.
  • Kim K, Bang SY, Yoo DH, et al. Imputing variants in HLA-DR beta genes reveals that HLA-DRB1 is solely associated with rheumatoid arthritis and systemic lupus erythematosus. PLoS One. 2016;11(2):e0150283.
  • Okada Y, Suzuki A, Ikari K, et al. Contribution of a non-classical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am J Hum Genet. 2016;99(2):366–374.
  • Fairfax BP, Humburg P, Makino S, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343(6175):1246949.
  • Davison LJ, Wallace C, Cooper JD, et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet. 2012;21(2):322–333.
  • Mifsud B, Tavares-Cadete F, Young AN, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598–606.
  • Martin P, McGovern A, Orozco G, et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun. 2015;6:10069.
  • Khosravi A, Kouhsar M, Goliaei B, et al. Systematic analysis of genes and diseases using PheWAS-associated networks. Comput Biol Med. 2019;109:311–321.
  • Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26(9):1205–1210.
  • Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31(12):1102–1110.
  • Diogo D, Bastarache L, Liao KP, et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One. 2015;10(4):e0122271.
  • Karagianni N, Kranidioti K, Fikas N, et al. An integrative transcriptome analysis framework for drug efficacy and similarity reveals drug-specific signatures of anti-TNF treatment in a mouse model of inflammatory polyarthritis. PLoS Comput Biol. 2019;15(5):e1006933.
  • Yarwood A, Eyre S, Worthington J. Genetic susceptibility to rheumatoid arthritis and its implications for novel drug discovery. Expert Opin Drug Discov. 2016;11(8):805–813.
  • Pratt AG, Isaacs JD. Genotyping in rheumatoid arthritis: a game changer in clinical management? Expert Rev Clin Immunol. 2015;11(3):303–305.
  • Sekine C, Sugihara T, Miyake S, et al. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. J Immunol. 2008;180(3):1954–1961.
  • Hosoya T, Iwai H, Yamaguchi Y, et al. Cell cycle regulation therapy combined with cytokine blockade enhances antiarthritic effects without increasing immune suppression. Ann Rheum Dis. 2016;75(1):253–259.
  • Vang T, Liu WH, Delacroix L, et al. LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol. 2012;8(5):437–446.
  • Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10(10):602–611.
  • Chang HH, Ho CH, Tomita B, et al. Utilizing a PTPN22 gene signature to predict response to targeted therapies in rheumatoid arthritis. J Autoimmun. 2019;101:121–130.
  • Abbasi Z, Kazemi Nezhad SR, Pourmahdi-Broojeni M, et al. Association of PTPN22 rs2476601 polymorphism with rheumatoid arthritis and celiac disease in Khuzestan Province, Southwestern Iran. Iran Biomed J. 2017;21(1):61–66.
  • Rodriguez-Rodriguez L, Taib WR, Topless R, et al. The PTPN22 R263Q polymorphism is a risk factor for rheumatoid arthritis in caucasian case-control samples. Arthritis Rheum. 2011;63(2):365–372.
  • Lopez-Cano DJ, Cadena-Sandoval D, Beltran-Ramirez O, et al. The PTPN22 R263Q polymorphism confers protection against systemic lupus erythematosus and rheumatoid arthritis, while PTPN22 R620W confers susceptibility to Graves’ disease in a Mexican population. Inflamm Res. 2017;66(9):775–781.
  • Carmona FD, Martín J. The potential of PTPN22 as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets. 2018;22(10):879–891.
  • Zheng P, Kissler S. PTPN22 silencing in the NOD model indicates the type 1 diabetes associated allele is not a loss-of-function variant. Diabetes. 2013;62:896–904.
  • Yu X, Sun JP, He Y, et al. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci U S A. 2007;104(50):19767–19772.
  • Liang Y, Pan HF, Ye DQ. Therapeutic potential of STAT4 in autoimmunity. Expert Opin Ther Targets. 2014;18(8):945–960.
  • Ali AM, Vino S. Genetic markers as therapeutic target in rheumatoid arthritis: a game changer in clinical therapy? Rheumatol Int. 2016;36(11):1601–1607.
  • Kobayashi S, Ikari K, Kaneko H, et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum. 2008;58(7):1940–1946.
  • Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–986.
  • Lee HS, Remmers EF, Le JM, et al. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med. 2007;13(9–10):455–460.
  • Walker JG, Ahern MJ, Coleman M, et al. Changes in synovial tissue Jak-STAT expression in rheumatoid arthritis in response to successful DMARD treatment. Ann Rheum Dis. 2006;65(12):1558–1564.
  • Márquez A, Vidal-Bralo L, Rodríguez-Rodríguez L, et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 2017;76(1):286–294.
  • Kim K, Bang SY, Lee HS, et al. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis. 2015;74(3):e13.
  • Zhi L, Yao S, Ma W, et al. Polymorphisms of RAD51B are associated with rheumatoid arthritis and erosion in rheumatoid arthritis patients. Sci Rep. 2017;7:45876.
  • Wang MJ, Yang HY, Zhang H, et al. TNFAIP3 gene rs10499194, rs13207033 polymorphisms decrease the risk of rheumatoid arthritis. Oncotarget. 2016;7(50):82933–82942.
  • He X, Chen X, Zhang H, et al. Selective Tyk2 inhibitors as potential therapeutic agents: a patent review (2015–2018). Expert Opin Ther Pat. 2019 Feb;29(2):137–149.
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;17(1):78.
  • Shaik NA, Banaganapalli B. Computational molecular phenotypic analysis of PTPN22 (W620R), IL6R (D358A), and TYK2 (P1104A) gene mutations of rheumatoid arthritis. Front Genet. 2019;10:168.
  • Eyre S, Bowes J, Diogo D, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336–1340.
  • Li Z, Gakovic M, Ragimbeau J, et al. Two rare disease-associated tyk2 variants are catalytically impaired but signaling competent. J Immunol. 2013;190:2335–2344.
  • Xie Q, Wang SC, Li J. IRAK1, a potential therapeutic target for rheumatoid arthritis? Rheumatol Int. 2013;33(12):3069–3070.
  • Yang XK, Li P, Zhang C, et al. Association between IRAK1 rs3027898 and miRNA-499 rs3746444 polymorphisms and rheumatoid arthritis: a case control study and meta-analysis. Z Rheumatol. 2017;76(7):622–629.
  • Zhu J, Mohan C. Toll-like receptor signaling pathways—therapeutic opportunities. Mediators Inflamm. 2010;2010:781235.
  • Haseeb A, Chen D, Haqqi TM. Delphinidin inhibits IL-1β-induced activation of NF-κB by modulating the phosphorylation of IRAK-1Ser376 in human articular chondrocytes. Rheumatology (Oxford). 2013;52(6):998–1008.
  • Han TU, Cho SK, Kim T, et al. Association of an activity-enhancing variant of IRAK1 and an MECP2-IRAK1 haplotype with increased susceptibility to rheumatoid arthritis. Arthritis Rheum. 2013;65(3):590–598.
  • Abdul-Sater AA, Edilova MI, Clouthier DL, et al. The signaling adaptor TRAF1 negatively regulates toll-like receptor signaling and this underlies its role in rheumatic disease. Nat Immunol. 2017;18(1):26–35.
  • Hu Z, Li H, Xie R, et al. Genomic variant in porcine TNFRSF1A gene and its effects on TNF signaling pathway in vitro. Gene. 2019;700:105–109.
  • Pickens SR, Chamberlain ND, Volin MV, et al. Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum. 2011;63(4):914–922.
  • Liu C, Zheng Y, Tang J, et al. Stimulation of DC-CIK with PADI4 protein can significantly elevate the therapeutic efficiency in esophageal cancer. J Immunol Res. 2019;2019:6587570.
  • Hua J, Huang W. Peptidylarginine deiminase 4-104C/T polymorphism and risk of rheumatoid arthritis: a pooled analysis based on different populations. PLoS One. 2018;13(3):e0193674.
  • Muthana M, Hawtree S, Wilshaw A, et al. C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2015;112(37):11618–11623.
  • Onuora S. Rheumatoid arthritis: C5orf30 regulates severity of tissue destruction in RA. Nat Rev Rheumatol. 2015;11(11):622.
  • Dorris ER, Tazzyman SJ, Moylett J, et al. The autoimmune susceptibility gene C5orf30 regulates macrophage-mediated resolution of inflammation. J Immunol. 2019;202(4):1069–1078.
  • Zanin-Zhorov A, Dustin ML, Blazar BR. PKC-θ function at the immunological synapse: prospects for therapeutic targeting. Trends Immunol. 2011;32(8):358–363.
  • Healy AM, Izmailova E, Fitzgerald M, et al. PKC-theta-deficient mice are protected from Th1-dependent antigen-induced arthritis. J Immunol. 2006;177(3):1886–1893.
  • Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266(1):72–92.
  • Kobayashi T, Kim TS, Jacob A, et al. TRAF6 is required for generation of the B-1a B cell compartment as well as T cell-dependent and -independent humoral immune responses. PLoS One. 2009;4(3):e4736.
  • Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350.
  • Dengler HS, Baracho GV, Omori SA, et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9(12):1388–1398.
  • Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine. Immunol Lett. 2018;196:22–32.
  • Brownlie RJ, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol. 2013;13(4):257–269.
  • Galloway A, Saveliev A, Łukasiak S, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453–459.
  • Hinks A, Cobb J, Marion MC, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45:664–669.
  • Skinningsrud B, Lie BA, Husebye ES, et al. A CLEC16A variant confers risk for juvenile idiopathic arthritis and anti-cyclic citrullinated peptide antibody negative rheumatoid arthritis. Ann Rheum Dis. 2010;69:1471–1474.
  • Li J, Jørgensen SF, Maggadottir SM, et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat Commun. 2015;6:6804.
  • Messemaker TC, Huizinga TW, Kurreeman F. Immunogenetics of rheumatoid arthritis: understanding functional implications. J Autoimmun. 2015;64:74–81.
  • Li G, Diogo D, Wu D, et al. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway. PLoS Genet. 2013;9:e1003487.
  • Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res. 2018;11:407–419.
  • Fan L, Zong M, Gong R, et al. PADI4 epigenetically suppresses p21 transcription and inhibits cell apoptosis in fibroblast-like synoviocytes from rheumatoid arthritis patients. Int J Biol Sci. 2017;13(3):358–366.
  • McHugh J. Rheumatoid arthritis: reduced TRAF1 exacerbates inflammation. Nat Rev Rheumatol. 2017;13(1):4.
  • Ansboro S, Roelofs AJ, De Bari C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol. 2017;29(2):201–207.
  • Uccelli A, de Rosbo NK. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci. 2015;1351:114–126.
  • Abdelmawgoud H, Saleh A. of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018;27(7):873–880.
  • Shadmanfar S, Labibzadeh N, Emadedin M, et al. Intra-articular knee implantation of autologous bone marrow-derived mesenchymal stromal cells in rheumatoid arthritis patients with knee involvement: results of a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy. 2018;20(4):499–506.
  • Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–1266.
  • Wang L, Wang L, Cong X, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22(24):3192–3202.
  • Karouzakis E, Gay RE, Gay S, et al. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol. 2009;5(5):266–272.
  • Vojinovic J, Damjanov N. HDAC inhibition in rheumatoid arthritis and juvenile idiopathic arthritis. Mol Med. 2011;17(5–6):397–403.
  • Klein K, Kabala PA, Grabiec AM, et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis. 2016;75(2):422–429.
  • Liu S, Maeyama K. Gene therapy for rheumatoid arthritis. Crit Rev Immunol. 2016;36(2):149–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.