416
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent advances in drug discovery for diabetic kidney disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 447-461 | Received 31 Jul 2020, Accepted 30 Sep 2020, Published online: 28 Oct 2020

References

  • Roelofs JJ, Vogt L. Diabetic Nephropathy: pathophysiology and Clinical Aspects. Springer International Publishing; 2018.
  • Kang JS, Lee SJ, Lee J-H, et al. Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Sci Rep. 2019;9(1):7679. 2019/05/22.
  • Sulaiman MK. Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetol Metab Syndr. 2019;11:7.
  • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015 Jan 10;385(9963):117–171.
  • Thomas B. The Global Burden of Diabetic Kidney Disease: time Trends and Gender Gaps. Curr Diab Rep. 2019;19(4):18. 2019/03/02.
  • Toth-Manikowski S, Atta MG. Diabetic Kidney Disease: pathophysiology and Therapeutic Targets. J Diabetes Res. 2015;2015:697010.
  • Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295–2306.
  • Heerspink HJL, Stefansson BV, Chertow GM, et al. Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant. 2020 Feb 1;35(2):274–282.
  • Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc. 2018 Aug;117(8):662–675.
  • Guan M, Keaton JM, Dimitrov L, et al. Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum Genomics. 2019 May 15;13(1):21.
  • McKnight AJ, McKay GJ, Maxwell AP. Genetic and epigenetic risk factors for diabetic kidney disease. Adv Chronic Kidney Dis. 2014 May;21(3):287–296.
  • Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015 Jul;30(1):15018.
  • Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab. 2020 Apr;22(Suppl 1):16–31.
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–1068. 2010/10/01.
  • Horsburgh S, Robson-Ansley P, Adams R, et al. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev. 2015;21:26–41.
  • Bell CG, Teschendorff AE, Rakyan VK, et al. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010 Aug 5;3:33.
  • D-A T, Groop P-H, McGinn S, et al. G/T Substitution in Intron 1 of the UNC13B Gene Is Associated With Increased Risk of Nephropathy in Patients With Type 1 Diabetes. Diabetes. 2008;57(10):2843–2850.
  • Bechtel W, McGoohan S, Zeisberg EM, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010 May;16(5):544–550.
  • Swan EJ, Maxwell AP, McKnight AJ. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with Type 1 diabetes. Diabet Med. 2015 Aug;32(8):1110–1115.
  • Marumo T, Yagi S, Kawarazaki W, et al. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J Am Soc Nephrol. 2015 Oct;26(10):2388–2397.
  • Sun G, Reddy MA, Yuan H, et al. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol. 2010 Dec;21(12):2069–2080.
  • Sun XY, Qin HJ, Zhang Z, et al. Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress‑induced apoptosis. Mol Med Rep. 2016 Jan;13(1):661–668.
  • Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol. 2014 Nov;73:127–139.
  • Advani A, Huang Q, Thai K, et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am J Pathol. 2011 May;178(5):2205–2214.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233.
  • Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3432–3437.
  • Kato M, Dang V, Wang M, et al. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal. 2013;6(278):ra43–ra43.
  • Kato M, Arce L, Wang M, et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011 Aug;80(4):358–368.
  • Deshpande SD, Putta S, Wang M, et al. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013 Sep;62(9):3151–3162.
  • Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun. 2016 Sep;30(7):12864.
  • Yoh K, Hirayama A, Ishizaki K, et al. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells. 2008 Nov;13(11):1159–1170.
  • Jiang T, Huang Z, Lin Y, et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010 Apr;59(4):850–860.
  • Xu X, Luo P, Wang Y, et al. Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) is a novel therapeutic target for diabetic complications. J Int Med Res. 2013 Feb;41(1):13–19.
  • Sharma D, Bhattacharya P, Kalia K, et al. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract. 2017 Jun;128:91–108.
  • Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets. 2019 Jul;23(7):579–591.
  • Yu SM, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis. 2018 Mar;25(2):166–180.
  • Wang XX, Levi J, Luo Y, et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: sglt2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J Biol Chem. 2017 Mar 31;292(13):5335–5348.
  • Nespoux J, Vallon V. SGLT2 inhibition and kidney protection. Clin Sci (Lond). 2018 Jun 29;132(12):1329–1339.
  • Sharma R, Sharma M, Reddy S, et al. Chronically increased intrarenal angiotensin II causes nephropathy in an animal model of type 2 diabetes. Front Biosci. 2006 Jan 1;11:968–976.
  • Lovshin JA, Boulet G, Lytvyn Y, et al. Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. JCI Insight. 2018 11;3(1):Jan.
  • Rincon-Choles H, Kasinath BS, Gorin Y, et al. Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int Suppl. 2002 Dec;(82):S8–11.
  • Vegter S, Perna A, Postma MJ, et al. Sodium intake, ACE inhibition, and progression to ESRD. J Am Soc Nephrol. 2012 Jan;23(1):165–173.
  • He J, Xu Y, Koya D, et al. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol. 2013 Aug;17(4):488–497.
  • Potenza MA, Gagliardi S, Nacci C, et al. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009;16(1):94–112.
  • de Zeeuw D, Coll B, Andress D, et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol. 2014 May;25(5):1083–1093.
  • King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004;122(4):333–338. 2004/10/01.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29;107(9):1058–1070.
  • Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003 Oct;112(7):1049–1057.
  • Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015 Mar;64(3):663–672.
  • Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016 Jan;12(1):13–26.
  • Bernhardt WM, Schmitt R, Rosenberger C, et al. Expression of hypoxia-inducible transcription factors in developing human and rat kidneys. Kidney Int. 2006 Jan;69(1):114–122.
  • Prabhakar SS. Role of nitric oxide in diabetic nephropathy. Semin Nephrol. 2004 Jul;24(4):333–344.
  • Phisitkul K, Hegazy K, Chuahirun T, et al. Continued smoking exacerbates but cessation ameliorates progression of early type 2 diabetic nephropathy. Am J Med Sci. 2008 Apr;335(4):284–291.
  • Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev. 2008 Feb;4(1):39–45.
  • Wilson PC, Wu H, Kirita Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19619–19625.
  • Park J, Guan Y, Sheng X, et al. Functional methylome analysis of human diabetic kidney disease. JCI Insight. 2019 Jun 6;4(11).
  • Flyvbjerg A. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol. 2017 May;13(5):311–318.
  • Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia. 2016 Aug;59(8):1624–1627.
  • Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013 Jun;83(6):1010–1016.
  • Bose M, Almas S, Prabhakar S. Wnt signaling and podocyte dysfunction in diabetic nephropathy. J Investig Med. 2017 Dec;65(8):1093–1101.
  • Kato H, Gruenwald A, Suh JH, et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem. 2011 Jul 22;286(29):26003–26015.
  • Stitt-Cavanagh E, MacLeod L, Kennedy C. The Podocyte in Diabetic Kidney Disease. ScientificWorldJournal. 2009;10/14(9):1127–1139.
  • Kravets I, Mallipattu SK. The Role of Podocytes and Podocyte-Associated Biomarkers in Diagnosis and Treatment of Diabetic Kidney Disease. J Endocr Soc. 2020 Apr 1;4(4):bvaa029.
  • Lin JS, Susztak K. Podocytes: the Weakest Link in Diabetic Kidney Disease? Curr Diab Rep. 2016 May;16(5):45.
  • Liu Y, Su H, Ma C, et al. IQGAP1 mediates podocyte injury in diabetic kidney disease by regulating nephrin endocytosis. Cell Signal. 2019;59:13–23. 2019/07/01/.
  • Zhang H, Luo W, Sun Y, et al. Wnt/β-Catenin Signaling Mediated-UCH-L1 Expression in Podocytes of Diabetic Nephropathy. Int J Mol Sci. 2016 Aug 25;17:9.
  • Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008 9;Sep(9):859–864.
  • Liu J, Li QX, Wang XJ, et al. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis. 2016;7(4):e2183–e83. 2016/04/01.
  • Kim WY, Nam SA, Song HC, et al. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology (Carlton). 2012 Feb;17(2):148–159.
  • Yang D, Livingston MJ, Liu Z, et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci. 2018 Feb;75(4):669–688.
  • Chertow GM, Pergola PE, Chen F, et al. Effects of Selonsertib in Patients with Diabetic Kidney Disease. J Am Soc Nephrol. 2019 Oct;30(10):1980–1990.
  • Huang SS, Ding DF, Chen S, et al. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep. 2017 4;Apr(7):45692.
  • Guo H, Wang Y, Zhang X, et al. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep. 2017 Jul 31;7(1):6852.
  • Feng Y, Huang R, Kavanagh J, et al. Efficacy and Safety of Dual Blockade of the Renin-Angiotensin-Aldosterone System in Diabetic Kidney Disease: A Meta-Analysis. Am J Cardiovasc Drugs. 2019 Jun;19(3):259–286.
  • Valente M, Bhandari S. Renal function after new treatment with renin-angiotensin system blockers. Bmj. 2017 Mar;9(356):j1122.
  • Ahmed A, Jorna T, Should BS. We STOP Angiotensin Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Advanced Kidney Disease? Nephron. 2016;133(3):147–158.
  • Bhandari S, Ives N, Brettell E, et al. Multicentre randomized controlled trial of angiotensinconverting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dialysis Transplantation. 2015;31:gfv346. 09/30.
  • Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, et al. Horizon 2020 in Diabetic Kidney Disease: the Clinical Trial Pipeline for Add-On Therapies on Top of Renin Angiotensin System Blockade. J Clin Med. 2015 Jun 18;4(6):1325–1347.
  • Bakris GL, Agarwal R, Anker SD, et al. Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am J Nephrol. 2019;50(5):333–344.
  • Ruilope LM, Agarwal R, Anker SD, et al. Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial. Am J Nephrol. 2019;50(5):345–356.
  • Hou J, Xiong W, Cao L, et al. Spironolactone Add-on for Preventing or Slowing the Progression of Diabetic Nephropathy: A Meta-analysis. Clin Ther. 2015 Sep;37(9):2086–103.e10.
  • Bakris GL, Agarwal R, Chan JC, et al. Effect of Finerenone on Albuminuria in Patients With Diabetic Nephropathy: A Randomized Clinical Trial. Jama. 2015 Sep 1;314(9):884–894.
  • Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014 Feb 4;129(5):587–597.
  • van Bommel EJM, Muskiet MHA, van Baar MJB, et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020 Jan;97(1):202–212.
  • Heerspink HJL, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019 Jul;62(7):1154–1166.
  • Cassis P, Locatelli M, Cerullo D, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018 Aug 9;3(15).
  • van Raalte DH, Cherney DZI. Sodium glucose cotransporter 2 inhibition and renal ischemia: implications for future clinical trials. Kidney Int. 2018 Sep;94(3):459–462.
  • Wanner C, Inzucchi SE, Zinman B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016 Nov 3;375(18):1801–1802.
  • Mahaffey KW, Jardine MJ, Bompoint S, et al. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups. Circulation. 2019 Aug 27;140(9):739–750.
  • Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019 Aug;7(8):606–617.
  • Boels MG, Avramut MC, Koudijs A, et al. Atrasentan Reduces Albuminuria by Restoring the Glomerular Endothelial Glycocalyx Barrier in Diabetic Nephropathy. Diabetes. 2016 Aug;65(8):2429–2439.
  • Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010 Mar;21(3):527–535.
  • Al-Onazi AS, Al-Rasheed NM, Attia HA, et al. Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways. J Pharm Pharmacol. 2016 Feb;68(2):219–232.
  • Tuttle KR, McGill JB, Bastyr EJ 3rd, et al. Effect of ruboxistaurin on albuminuria and estimated GFR in people with diabetic peripheral neuropathy: results from a randomized trial. Am J Kidney Dis. 2015 Apr;65(4):634–636.
  • Yin W, Jiang Y, Xu S, et al. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats. J Diabetes Investig. 2019 May;10(3):613–625.
  • Zhou T, He X, Cheng R, et al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia. 2012;55(1):255–266. 2012/01/01.
  • Tsimihodimos V, Elisaf M. Effects of incretin-based therapies on renal function. Eur J Pharmacol. 2018 Jan;5(818):103–109.
  • Sharkovska Y, Reichetzeder C, Alter M, et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens. 2014 Nov;32(11):2211–2223. discussion 23.
  • Park CW, Kim HW, Ko SH, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol. 2007 Apr;18(4):1227–1238.
  • Liljedahl L, Norlin J, McGuire JN, et al. Effects of insulin and the glucagon-like peptide 1 receptor agonist liraglutide on the kidney proteome in db/db mice. Physiol Rep. 2017 Mar;5(6).
  • Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes. 2014 Jun;63(6):2120–2131.
  • Li L, Lian X, Wang Z, et al. The dipeptidyl peptidase-4 inhibitor sitagliptin ameliorates renal injury in type 1 diabetic mice via inhibiting the TGF-β/Smad signal pathway. Pharmazie. 2019;04/01(74):239–242.
  • Matsui T, Higashimoto Y, Nishino Y, et al. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy. Diabetes. 2017 Jun;66(6):1683–1695.
  • Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004 Jan-Feb;24(1):32–40.
  • Boels MGS, Koudijs A, Avramut MC, et al. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy. Am J Pathol. 2017 Nov;187(11):2430–2440.
  • Menne J, Eulberg D, Beyer D, et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dial Transplant. 2017 Feb 1;32(2):307–315.
  • Tuttle KR, Brosius FC 3rd, Adler SG, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant. 2018 Nov 1;33(11):1950–1959.
  • Donate-Correa J, Tagua VG, Ferri C, et al. Pentoxifylline for Renal Protection in Diabetic Kidney Disease. A Model of Old Drugs for New Horizons. J Clin Med. 2019 Feb 27;8:3.
  • Goicoechea M, García de Vinuesa S, Quiroga B, et al. Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: a randomized trial. J Nephrol. 2012;25(6):969–975. Nov-Dec.
  • Leporini C, Pisano A, Russo E, et al. Effect of pentoxifylline on renal outcomes in chronic kidney disease patients: A systematic review and meta-analysis. Pharmacol Res. 2016;107:315–332.
  • Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol. 2015 Jan;26(1):220–229.
  • Navarro JF, Mora C, Muros M, et al. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J Am Soc Nephrol. 2005 Jul;16(7):2119–2126.
  • Danta CC, Piplani P. The discovery and development of new potential antioxidant agents for the treatment of neurodegenerative diseases. Expert Opin Drug Discov. 2014 Oct;9(10):1205–1222.
  • Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm Metab Res. 2015 Aug;47(9):686–692.
  • Xiao L, Xu X, Zhang F, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297–311.
  • Gorin Y, Cavaglieri RC, Khazim K, et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol. 2015 Jun 1;308(11):F1276–87.
  • Tan SM, Sharma A, Yuen DY, et al. The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One. 2013;8(7):e69193.
  • Bolignano D, Cernaro V, Gembillo G, et al. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS One. 2017;12(6):e0178699.
  • Koning AM, Frenay AR, Leuvenink HG, et al. Hydrogen sulfide in renal physiology, disease and transplantation–the smell of renal protection. Nitric Oxide. 2015 Apr;30(46):37–49.
  • Zhou X, Feng Y, Zhan Z, et al. Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem. 2014 Oct 17;289(42):28827–28834.
  • Sun HJ, Wu ZY, Cao L, et al. Hydrogen Sulfide: recent Progression and Perspectives for the Treatment of Diabetic Nephropathy. Molecules. 2019 Aug 6;24:15.
  • Li Y, Li L, Zeng O, et al. H(2)S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression. Ren Fail. 2017 Nov;39(1):265–272.
  • Ahmed HH, Taha FM, Omar HS, et al. Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy. Mol Cell Biochem. 2019 Jul;457(1–2):1–9.
  • Zeng B, Chen GL, Garcia-Vaz E, et al. ORAI channels are critical for receptor-mediated endocytosis of albumin. Nat Commun. 2017 Dec 4;8(1):1920.
  • Li P, Rubaiy HN, Chen GL, et al. Mibefradil, a T-type Ca(2+) channel blocker also blocks Orai channels by action at the extracellular surface. Br J Pharmacol. 2019 Oct;176(19):3845–3856.
  • Zeng B, Chen GL, Daskoulidou N, et al. The ryanodine receptor agonist 4-chloro-3-ethylphenol blocks ORAI store-operated channels. Br J Pharmacol. 2014 Mar;171(5):1250–1259.
  • Daskoulidou N, Zeng B, Berglund LM, et al. High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. J Mol Med (Berl). 2015 May;93(5):511–521.
  • Farmer LK, Rollason R, Whitcomb DJ, et al. TRPC6 Binds to and Activates Calpain, Independent of Its Channel Activity, and Regulates Podocyte Cytoskeleton, Cell Adhesion, and Motility. J Am Soc Nephrol. 2019 Oct;30(10):1910–1924.
  • Xu SZ, Sukumar P, Zeng F, et al. TRPC channel activation by extracellular thioredoxin. Nature. 2008 Jan 3;451(7174):69–72.
  • Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens. 2006 Oct;24(10):2047–2055.
  • Iso K, Tada H, Kuboki K, et al. Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in Type 2 diabetic patients. J Diabetes Complications. 2001;15(5):241–244. Sep-Oct.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.