314
Views
3
CrossRef citations to date
0
Altmetric
Review

Assay development in leishmaniasis drug discovery: a comprehensive review

ORCID Icon &
Pages 151-166 | Received 20 May 2021, Accepted 02 Nov 2021, Published online: 24 Nov 2021

References

  • Gedda MR, Singh B, Kumar D, et al. Post kala-azar dermal leishmaniasis: a threat to elimination program. PLoS Negl Trop Dis. 2020 Jul;14(7):e0008221.
  • WHO. Leishmaniasis fact sheet 2020 Accessed 7 April 2021. Available from: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis
  • Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol. 2005;35(11–12):1169–1180.
  • Callahan HL, Portal IF, Bensinger SJ, et al. Leishmania spp: temperature sensitivity of promastigotes in vitro as a model for tropism in vivo. Exp Parasitol. 1996 Dec;84(3):400–409.
  • Hartley MA, Drexler S, Ronet C, et al. The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends Parasitol. 2014 Aug;30(8):412–422.
  • Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol. 2018 Mar 10;30(3):103–111.
  • Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007 Nov;5(11):873–882.
  • van Griensven J, Diro E. Visceral leishmaniasis: recent advances in diagnostics and treatment regimens. Infect Dis Clin. 2019;33(1):79–99.
  • Boité MC, Späth GF, Bussotti G, et al. Trans-Atlantic spill over: deconstructing the ecological adaptation of Leishmania infantum in the Americas. Genes (Basel). 2019 Dec 19 11(1):4.
  • Akhoundi M, Kuhls K, Cannet A, et al. A historical overview of the classification, evolution, and dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis. 2016 Mar;10(3):e0004349.
  • Kevric I, Ma C, Keeling JH. New world and old World Leishmania infections: a practical review. Dermatol Clin. 2015 Jul;33(3):579–93.
  • de Vries HJ, Reedijk SH, Schallig HD. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16(2):99–109.
  • David CV, Craft N. Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther. 2009;22(6):491–502.
  • Singh S, Sivakumar R. Recent advances in the diagnosis of leishmaniasis. J Postgrad Med. 2003;49(1):55.
  • Roque ALR, Jansen AM. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol. 2014;3(3):251–262.
  • Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol. 2001;55(1):453–483.
  • Cohen-Freue G, Holzer TR, Forney JD, et al. Global gene expression in Leishmania. Int J Parasitol. 2007;37(10):1077–1086.
  • de Menezes JP, Saraiva EM, da Rocha-azevedo B. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis. Parasit Vectors. 2016 May 04;9(1):264.
  • Serafim TD, Coutinho-Abreu IV, Oliveira F, et al. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol. 2018;3(5):548–555.
  • Galluzzi L, Ceccarelli M, Diotallevi A, et al. Real-time PCR applications for diagnosis of leishmaniasis. Parasit Vectors. 2018;11(1):273.
  • Sundar S, Singh OP. Molecular diagnosis of visceral leishmaniasis. Mol Diagn Ther. 2018;22(4):443–457.
  • Weng HB, Chen HX, Wang MW. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty. 2018 Jun 18;7(1):67.
  • Chulay JD, Fleckenstein L, Smith DH. Pharmacokinetics of antimony during treatment of visceral leishmaniasis with sodium stibogluconate or meglumine antimoniate. Trans R Soc Trop Med Hyg. 1988;82(1):69–72.
  • Mohapatra S. Drug resistance in leishmaniasis: newer developments. Trop Parasitol. 2014 Jan;4(1):4–9.
  • Furtado TA, Cisalpino EO, Santos UM. In vitro studies of the effect of amphotericin B on Leishmania brasiliensis. Antibiot Chemother (Northfield). 1960 Nov;10:692–693.
  • Prata A. Treatment of kala-azar with amphotericin B. Trans R Soc Trop Med Hyg. 1963 Jul;57:266–268.
  • Gulati M, Bajad S, Singh S, et al. Development of liposomal amphotericin B formulation. J Microencapsul. 1998 Mar-Apr;15(2):137–151.
  • Chunge CN, Owate J, Pamba HO, et al. Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans R Soc Trop Med Hyg. 1990 Mar-Apr;84(2):221–225.
  • Chakravarty J, Sundar S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin Pharmacother. 2019 Jul;20(10):1251–1265.
  • Sindermann H, Engel J. Development of miltefosine as an oral treatment for leishmaniasis. Trans R Soc Trop Med Hyg. 2006 Dec;100(Suppl 1):S17–20.
  • Croft SL, Engel J. Miltefosine–discovery of the antileishmanial activity of phospholipid derivatives. Trans R Soc Trop Med Hyg. 2006 Dec;100(Suppl 1):S4–8.
  • Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018 Sep 15;392(10151):951–970.
  • Kimutai R, Musa AM, Njoroge S, et al. Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of visceral leishmaniasis in Eastern Africa: results from a pharmacovigilance programme. Clin Drug Investig. 2017;37(3):259–272.
  • Balasegaram M, Ritmeijer K, Lima MA, et al. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs. 2012;17(4):493–510.
  • Sundar S, Chakravarty J, Agarwal D, et al. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med. 2010;362(6):504–512.
  • Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother. 2015;16(2):237–252.
  • Adler-Moore JP, Gangneux J-P, Pappas PG. Comparison between liposomal formulations of amphotericin B. Sabouraudia. 2016;54(3):223–231.
  • Gonçalves SVCB, Costa CHN. Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. An Bras Dermatol. 2018;93:347–355.
  • Trinconi CT, Reimao JQ, Bonano VI, et al. Topical tamoxifen in the therapy of cutaneous leishmaniasis. Parasitology. 2018;145(4):490–496.
  • Altamura F, Rajesh R, Catta‐Preta CM, et al. The current drug discovery landscape for trypanosomiasis and leishmaniasis: challenges and strategies to identify drug targets. Drug Dev Res. 2020. doi: https://doi.org/10.1002/ddr.21664.
  • Alcântara LM, Ferreira TCS, Gadelha FR, et al. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):430–439.
  • Hendrickx S, Caljon G, Maes L. Need for sustainable approaches in antileishmanial drug discovery. Parasitol Res. 2019 Oct;118(10):2743–2752.
  • Gupta S. Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res. 2011 Jan;133(1):27–39.
  • De Muylder G, Ang KK, Chen S, et al. A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop Dis. 2011 Jul;5(7):e1253.
  • Siqueira-Neto JL, Song OR, Oh H, et al. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl Trop Dis. 2010 May 4;4(5):e675.
  • Bates PA. Axenic culture of Leishmania amastigotes. Parasitol Today. 1993 Apr;9(4):143–146.
  • Callahan HL, Portal AC, Devereaux R, et al. An axenic amastigote system for drug screening. Antimicrob Agents Chemother. 1997 Apr;41(4):818–822.
  • Holzer TR, McMaster WR, Forney JD. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol. 2006 Apr;146(2):198–218.
  • Pescher P, Blisnick T, Bastin P, et al. Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiol. 2011 Jul;13(7):978–991.
  • De Rycker M, Hallyburton I, Thomas J, et al. Comparison of a high-throughput high-content intracellular Leishmania donovani assay with an axenic amastigote assay. Antimicrob Agents Chemother. 2013 Jul;57(7):2913–2922.
  • Durieu E, Prina E, Leclercq O, et al. From drug screening to target deconvolution: a target-based drug discovery pipeline using Leishmania casein kinase 1 isoform 2 to identify compounds with antileishmanial activity. Antimicrob Agents Chemother. 2016 May;60(5):2822–2833.
  • Nuhs A, De Rycker M, Manthri S, et al. Development and validation of a novel leishmania donovani screening cascade for high-throughput screening using a novel axenic assay with high predictivity of Leishmanicidal intracellular activity. PLoS Negl Trop Dis. 2015 Sep;9(9):e0004094.
  • Hendrickx S, Eberhardt E, Mondelaers A, et al. Lack of correlation between the promastigote back-transformation assay and miltefosine treatment outcome. J Antimicrob Chemother. 2015 Nov;70(11):3023–3026.
  • Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp.Res Microbiol. 2004 May 01;155(4):224–230.
  • Forestier C-L, Späth GF, Prina E, et al. Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: a high content imaging-based method enabling sound drug discovery process. Microb Pathog. 2015 November 01;88:103–108.
  • Bushway PJ, Mercola M, Price JH. A comparative analysis of standard microtiter plate reading versus imaging in cellular assays. Assay Drug Dev Technol. 2008;6(4):557–567.
  • Zulfiqar B, Shelper TB, Avery VM. Leishmaniasis drug discovery: recent progress and challenges in assay development. Drug Discov Today. 2017 Oct;22(10):1516–1531.
  • Berman JD. Leishmania tropica: quantitation of in vitro activity of antileishmanial agents by Giemsa staining, viability, and 3H-formycin B incorporation. J Parasitol. 1984 Aug;70(4):561–562.
  • Calvo-Álvarez E, Álvarez-Velilla R, Fernández-Prada C, et al. Trypanosomatids see the light: recent advances in bioimaging research. Drug Discov Today. 2015 Jan;20(1):114–121.
  • Bhattacharya A, Corbeil A, do Monte-Neto RL, et al. Of drugs and trypanosomatids: new tools and knowledge to reduce bottlenecks in drug discovery. Genes (Basel). 2020 Jun 29;11:7.
  • Dagley MJ, Saunders EC, Simpson KJ, et al. High-content assay for measuring intracellular growth of Leishmania in human macrophages. Assay Drug Dev Technol. 2015 Sep;13(7):389–401.
  • Tegazzini D, Diaz R, Aguilar F, et al. A replicative in vitro assay for drug discovery against Leishmania donovani. Antimicrob Agents Chemother. 2016 Jun;60(6):3524–3532.
  • Giraud E, Martin O, Yakob L, et al. Quantifying Leishmania metacyclic promastigotes from individual sandfly bites reveals the efficiency of vector transmission. Commun Biol. 2019;2:84.
  • Duffy S, Sykes ML, Jones AJ, et al. Screening the medicines for malaria venture pathogen box across multiple pathogens reclassifies starting points for open-source drug discovery. Antimicrob Agents Chemother. 2017 Sep;61(9). doi: https://doi.org/10.1128/AAC.00379-17.
  • Zulfiqar B, Jones AJ, Sykes ML, et al. Screening a natural product-based library against kinetoplastid parasites. Molecules (Basel, Switzerland). 2017 Oct 12;22(10):1715.
  • Gomes-Alves AG, Maia AF, Cruz T, et al. Development of an automated image analysis protocol for quantification of intracellular forms of Leishmania spp. PLoS One. 2018;13(8):e0201747.
  • Terreros MJS, de Luna LAV, Giorgio S. Evaluation of antileishmanial drugs activities in an ex vivo model of leishmaniasis. Parasitol Int. 2019;71:163–166.
  • Balaña-Fouce R, Pérez Pertejo MY, Domínguez-Asenjo B, et al. Walking a tightrope: drug discovery in visceral leishmaniasis. Drug Discov Today. 2019 May 01;24(5):1209–1216.
  • Saini S, Rai AK. Hamster, a close model for visceral leishmaniasis: opportunities and challenges. Parasite Immunol. 2020;42(10):e12768.
  • Mears ER, Modabber F, Don R, et al. A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PLoS Negl Trop Dis. 2015;9(9):e0003889.
  • Cruz-Chan JV, Aguilar-Cetina Adel C, Villanueva-Lizama LE, et al. A canine model of experimental infection with Leishmania (L.) mexicana. Parasites Vectors. 2014 Aug;9(7):361.
  • Souza-Lemos C, De-campos SN, Teva A, et al. In situ characterization of the granulomatous immune response with time in nonhealing lesional skin of Leishmania braziliensis-infected rhesus macaques (Macaca mulatta). Vet Immunol Immunopathol. 2011 Aug 15;142(3–4):147–155.
  • Sacks DL, Melby PC. Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol. 2015 Feb 02;108:19–2, 1–24.
  • Melo GD, Goyard S, Lecoeur H, et al. New insights into experimental visceral leishmaniasis: real-time in vivo imaging of Leishmania donovani virulence. PLoS Negl Trop Dis. 2017;11(9):e0005924–e0005924.
  • Rouault E, Lecoeur H, Meriem AB, et al. Imaging visceral leishmaniasis in real time with golden hamster model: monitoring the parasite burden and hamster transcripts to further characterize the immunological responses of the host. Parasitol Int. 2017 Feb;66(1):933–939.
  • Oliveira JC, Da Silva AC, Oliveira RA, et al. In vivo near-infrared fluorescence imaging of Leishmania amazonensis expressing infrared fluorescence protein (iRFP) for real-time monitoring of cutaneous leishmaniasis in mice. J Microbiol Methods. 2016 Nov;130:189–195.
  • Ferreira LLG, Andricopulo AD. Chemoinformatics strategies for leishmaniasis drug discovery [review]. Front Pharmacol. 2018 Nov 01; 9(1278). doi: https://doi.org/10.3389/fphar.2018.01278
  • Dar KB, Bhat AH, Amin S, et al. Modern computational strategies for designing drugs to curb human diseases: a prospect. Curr Top Med Chem. 2018;18(31):2702–2719.
  • Van Montfort RL, Workman P. Structure-based drug design: aiming for a perfect fit. Essays Biochem. 2017;61(5):431–437.
  • Raj S, Sasidharan S, Balaji S, et al. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol Res. 2020;119:2025–2037.
  • Dos Santos RN, Ferreira LG, and Andricopulo AD. Practices in molecular docking and structure-based virtual screening M. Walker, John. In: Computational drug discovery and design. United States: Springer. 2018. p. 31–50.
  • Chen -CY-C. A novel integrated framework and improved methodology of computer-aided drug design. Curr Top Med Chem. 2013;13(9):965–988.
  • Yousefinejad S, Hemmateenejad B. Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemometr Intell Lab Syst. 2015;149:177–204.
  • Ochoa R, Watowich SJ, Flórez A, et al. Drug search for leishmaniasis: a virtual screening approach by grid computing. J Comput Aided Mol Des. 2016 May 01;30(7):541–552.
  • Ben Khalaf N, Pham S, Romeo G, et al. A computer-aided approach to identify novel Leishmania major protein disulfide isomerase inhibitors for treatment of leishmaniasis. J Comput Aided Mol Des. 2021 Mar;35(3):297–314.
  • Stolf BS, Smyrnias I, Lopes LR, et al. Protein disulfide isomerase and host-pathogen interaction. Sci World J. 2011;11:1749–1761.
  • Sun H, Tawa G, Wallqvist A. Classification of scaffold-hopping approaches. Drug Discov Today. 2012 Apr;17(7–8):310–324.
  • Waugh B, Ghosh A, Bhattacharyya D, et al. In silico work flow for scaffold hopping in Leishmania. BMC Res Notes. 2014;7(1):1–21.
  • Eren RO, Kopelyanskiy D, Moreau D, et al. Development of a semi-automated image-based high-throughput drug screening system. Front Biosci (Elite Ed). 2018 1;Jan(10):242–253.
  • Dermine JF, Goyette G, Houde M, et al. Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol. 2005 Sep;7(9):1263–1270.
  • Muñoz DL, Robledo SM, Kolli BK, et al. Leishmania (Viannia) panamensis: an in vitro assay using the expression of GFP for screening of antileishmanial drug. Exp Parasitol. 2009;122(2):134–139.
  • Bosshart H, Heinzelmann M. THP-1cells as a model for human monocytes. Ann Transl Med. 2016 Nov;4(21):438.
  • Pan C, Kumar C, Bohl S, et al. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics. 2009 Mar;8(3):443–450.
  • Tostões RM, Leite SB, Serra M, et al. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology. 2012 Apr;55(4):1227–1236.
  • Baek K-H, Piel L, Rosazza T, et al. infectivity and drug susceptibility profiling of different Leishmania-host cell combinations. Pathogens. 2020;9(5):393.
  • Daigneault M, Preston JA, Marriott HM, et al. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 2010 Jan 13;5(1):e8668.
  • O’Keeffe A, Hale C, and Cotton JA, et al. Novel 2D and 3D assays to determine the activity of anti-leishmanial drugs. Microorganisms. 2020;8(6):831.
  • Rojo D, Canuto GA, Castilho-Martins EA, et al. A multiplatform metabolomic approach to the basis of antimonial action and resistance in Leishmania infantum. PLoS One. 2015;10(7):e0130675.
  • Brotherton MC, Bourassa S, Leprohon P, et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One. 2013;8(11):e81899.
  • Vincent IM, Barrett MP. Metabolomic-based strategies for anti-parasite drug discovery. J Biomol Screen. 2015 Jan;20(1):44–55.
  • Glaser TA, Baatz JE, Kreishman GP, et al. pH homeostasis in Leishmania donovani amastigotes and promastigotes. Proc Nat Acad Sci. 1988 85(20):7602–7606.
  • Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 1994;48:449–471.
  • Aulner N, Danckaert A, Rouault-Hardoin E, et al. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl Trop Dis. 2013;7(4):e2154.
  • Lamotte S, Aulner N, Späth GF, et al. Discovery of novel hit compounds with broad activity against visceral and cutaneous Leishmania species by comparative phenotypic screening. Sci Rep. 2019;9(1):1–11.
  • Braian C, Svensson M, Brighenti S, et al. A 3D human lung tissue model for functional studies on Mycobacterium tuberculosis infection. J Vis Exp. 2015;5:104.
  • Ng S, Schwartz RE, March S, et al. Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep. 2015 Mar 10;4(3):348–359.
  • Petropolis DB, Faust DM, Deep Jhingan G, et al. A new human 3D-liver model unravels the role of galectins in liver infection by the parasite Entamoeba histolytica. PLoS Pathog. 2014 Sep;10(9):e1004381.
  • Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014 May;12(4):207–218.
  • Chitrangi S, Nair P, Khanna A. 3D engineered In vitro hepatospheroids for studying drug toxicity and metabolism. Toxicol In Vitro. 2017 Feb;38:8–18.
  • Wege AK, Florian C, Ernst W, et al. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response. PLoS Negl Trop Dis. 2012;6(7):e1741–e1741.
  • Helm CL, Zisch A, Swartz MA. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng. 2007 Jan 1;96(1):167–176.
  • Regnault C, Punyani K, Holm S, et al., editors. Microfluidic separation of parasites and parasite-infected cells from blood for the diagnosis of leishmaniasis. 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016; 2016; Chemical and Biological Microsystems Society.
  • Bakshi RP, Nenortas E, Tripathi AK, et al. Model system to define pharmacokinetic requirements for antimalarial drug efficacy. Sci Transl Med. 2013 Oct 2;5(205):205ra135.
  • Cui ZF, Xu X, Trainor N, et al. Application of multiple parallel perfused microbioreactors and three-dimensional stem cell culture for toxicity testing. Toxicol In Vitro. 2007 Oct;21(7):1318–1324.
  • O’Keeffe A, Hyndman L, McGinty S, et al. Development of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS One. 14(7): e0219985. 2019.
  • DNDi. R&D portfolio December 2020 Accessed7 April 2021. Available from: https://dndi.org/research-development/portfolio.
  • Bhattacharya A, Corbeil A, Do Monte-neto RL, et al. Of drugs and trypanosomatids: new tools and knowledge to reduce bottlenecks in drug discovery. Genes (Basel). 2020;11(7):722.
  • Field MC, Horn D, Fairlamb AH, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature Rev Microbiol. 2017;15(4):217–231.
  • Baragaña B, Hallyburton I, Lee MC, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315–320.
  • Kato N, Comer E, Sakata-Kato T, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344–349.
  • Khare S, Nagle AS, Biggart A, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 537(7619): 229–233. 2016.
  • Wyllie S, Brand S, Thomas M, et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc Nat Acad Sci. 2019 116(19):9318–9323.
  • Mowbray CE, Braillard S, Speed W, et al. Novel Amino-pyrazole ureas with potent in vitro and in vivo antileishmanial activity. J Med Chem. 2015 Dec 24;58(24):9615–9624.
  • van den Kerkhof M, Mabille D, Chatelain E, et al. In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. Int J Parasitol Drugs Drug Resist. 2018 Apr;8(1):81–86.
  • Kermanizadeh A, Brown DM, Stone V. The variances in cytokine production profiles from non-or activated THP-1, Kupffer cell and human blood derived primary macrophages following exposure to either alcohol or a panel of engineered nanomaterials. PloS One. 2019;14(8):e0220974.
  • Maes L, Beyers J, Mondelaers A, et al. In vitro ‘time-to-kill’ assay to assess the cidal activity dynamics of current reference drugs against Leishmania donovani and Leishmania infantum. J Antimicrob Chemother. 2017 Feb;72(2):428–430.
  • Horta MF, Andrade LO, Martins-Duarte ÉS, et al. Cell invasion by intracellular parasites – the many roads to infection. J Cell Sci. 2020;133:4.
  • Von Stebut E, Tenzer S. Cutaneous leishmaniasis: distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol. 2018 Jan;308(1):206–214.
  • Macedo-Ramos H, Campos FS, Carvalho LA, et al. Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res. 2011;69(4):308–313.
  • Bermejo-Jambrina M, Eder J, Helgers LC, et al. C-type lectin receptors in antiviral immunity and viral escape. Front Immunol. 2018;9:590.
  • Vargas-Inchaustegui DA, Tai W, Xin L, et al. Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun. 2009;77(7):2948–2956.
  • Guerra CS, Macedo Silva RM, Carvalho LOP, et al. Histopathological analysis of initial cellular response in TLR‐2 deficient mice experimentally infected by Leishmania (L.) amazonensis. Int J Exp Pathol. 2010;91(5):451–459.
  • de Veer MJ, Curtis JM, Baldwin TM, et al. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll‐like receptor 2 signaling. Eur J Immunol. 2003;33(10):2822–2831.
  • Kropf P, Freudenberg N, Kalis C, et al. Infection of C57BL/10ScCr and C57BL/10ScNCr mice with Leishmania major reveals a role for Toll‐like receptor 4 in the control of parasite replication. J Leukoc Biol. 2004;76(1):48–57.
  • Polari LP, Carneiro PP, Macedo M, et al. Leishmania braziliensis infection enhances toll-like receptors 2 and 4 expression and triggers TNF-α and IL-10 production in human cutaneous leishmaniasis. Front Cell Infect Microbiol. 2019;9:120.
  • Mandell MA, Beverley SM. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A. 2017 Jan 31; 114(5):E801–E810.
  • Kloehn J, Saunders EC, O’Callaghan S, et al. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog. 2015 Feb;11(2):e1004683.
  • Alcântara LM, Ferreira TCS, Fontana V, et al. A multi-species phenotypic screening assay for leishmaniasis drug discovery shows that active compounds display a high degree of species-Specificity. Molecules. 2020 May 30;25(11):2551.
  • Hefnawy A, Cantizani J, Peña I, et al. Importance of secondary screening with clinical isolates for anti-leishmania drug discovery. Sci Rep. 2018;8(1):1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.