455
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Today’s drug discovery and the shadow of the rule of 5

ORCID Icon
Pages 965-972 | Received 12 Apr 2023, Accepted 19 Jun 2023, Published online: 28 Jun 2023

References

  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings [10.1016/S0169-409X(96)00423-1]. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi: 10.1016/S0169-409X(96)00423-1
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: s0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv Drug Delivery Rev. 2001 Mar 01;46(1–3):3–26.
  • Abad-Zapatero C. A sorcerer’s apprentice and the Rule of Five: from rule-of-thumb to commandment and beyond. Drug Discov Today. 2007 Dec;12(23–24):995–997. doi: 10.1016/j.drudis.2007.10.022
  • Benet LZ, Hosey CM, Ursu O, et al. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016 Jun 1;101:89–98. doi: 10.1016/j.addr.2016.05.007
  • Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. 2004 Dec 01;1(4):337–341.
  • Leeson PD, Young RJ. Molecular property design: does everyone get it? ACS Med Chem Lett. 2015 Jul 9;6(7):722–725. doi: 10.1021/acsmedchemlett.5b00157
  • Hartung IV, Huck BR, Crespo A, et al. Rules were made to be broken. Nat Rev Chem. 2023 Jan 01;7(1):3–4.
  • Stegemann S, Moreton C, Svanbäck S, et al. Trends in oral small-molecule drug discovery and product development based on product launches before and after the Rule of Five. Drug Discovery Today. 2023 Feb 01;28(2):103344. doi: 10.1016/j.drudis.2022.103344
  • Doak BC, Kihlberg J. Drug discovery beyond the rule of 5 - Opportunities and challenges. Expert Opin Drug Discov. 2017 Feb 01;12(2):115–119.
  • Leo AJ. Calculating log Poct from structures. Chem Rev. 1993 Jun 01;93(4):1281–1306.
  • Moriguchi I, Hirono S, Liu Q, et al. Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull (Tokyo). 1992;40(1):127–130. doi: 10.1248/cpb.40.127
  • Egbert M, Whitty A, Keseru GM, et al. Why some targets benefit from beyond rule of five drugs. J Med Chem. 2019 Nov 27;62(22):10005–10025. doi: 10.1021/acs.jmedchem.8b01732
  • Ermondi G, Vallaro M, Goetz G, et al. Updating the portfolio of physicochemical descriptors related to permeability in the beyond the rule of 5 chemical space. Eur J Pharm Sci. 2020 Apr 15;146:105274. doi: 10.1016/j.ejps.2020.105274
  • Shultz MD. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J Med Chem. 2019 Feb 28;62(4):1701–1714. doi: 10.1021/acs.jmedchem.8b00686
  • Brown DG, Wobst HJ. A Decade of FDA-Approved Drugs (2010–2019): trends and future directions. J Med Chem. 2021 Mar 11;64(5):2312–2338.
  • Leeson PD. Molecular inflation, attrition and the rule of five. Adv Drug Deliv Rev. 2016 Jun 1;101(Supplement C):22–33. doi: 10.1016/j.addr.2016.01.018
  • Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies [Analysis]. Nat Rev Drug Discov. 2015 Jul;14(7):475–486.
  • Roskoski R. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2023 May 01;191:106774. doi: 10.1016/j.phrs.2023.106774
  • Doak BC, Over B, Giordanetto F, et al. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014 Sep 18;21(9):1115–1142. doi: 10.1016/j.chembiol.2014.08.013
  • Poongavanam V, Doak BC, Kihlberg J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr Opin Chem Biol. 2018 Jun;44:23–29. doi: 10.1016/j.cbpa.2018.05.010
  • DeGoey DA, Chen HJ, Cox PB, et al. Beyond the rule of 5: lessons learned from abbvie’s drugs and compound collection. J Med Chem. 2018 Apr 12;61(7):2636–2651. doi: 10.1021/acs.jmedchem.7b00717
  • Tinworth CP, Young RJ. Facts, patterns, and principles in drug discovery: appraising the rule of 5 with measured physicochemical data. J Med Chem. 2020 Sep 24;63(18):10091–10108. doi: 10.1021/acs.jmedchem.9b01596
  • Young RJ, Green DV, Luscombe CN, et al. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov Today. 2011 Sep;16(17–18):822–830. doi: 10.1016/j.drudis.2011.06.001
  • Garcia Jimenez D, Poongavanam V, Kihlberg J. Macrocycles in drug discovery─learning from the past for the future. J Med Chem. 2023 Apr 05;66(8):5377–5396. doi: 10.1021/acs.jmedchem.3c00134
  • Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem. 2009 Nov 12;52(21):6752–6756. doi: 10.1021/jm901241e
  • Leeson PD, Bento AP, Gaulton A, et al. Target-based evaluation of “drug-like” properties and ligand efficiencies. J Med Chem. 2021 Jun 10;64(11):7210–7230. doi: 10.1021/acs.jmedchem.1c00416
  • Ritchie TJ, Macdonald SJF. The impact of aromatic ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discov Today. 2009 Nov;14(21–22):1011–1020. doi: 10.1016/j.drudis.2009.07.014
  • Ritchie TJ, Macdonald SJ, Young RJ, et al. The impact of aromatic ring count on compound developability: further insights by examining carbo-and hetero-aromatic and-aliphatic ring types. Drug Discovery Today. 2011;16(3–4):164–171. doi: 10.1016/j.drudis.2010.11.014
  • Fessard TC, Goncharenko K, Lefebvre Q, et al. Pushing the frontiers of accessible chemical space to unleash design creativity and accelerate drug discovery. CHIMIA Int J Chem. 2020;74(10):803–807. doi: 10.2533/chimia.2020.803
  • Shearer J, Castro JL, Lawson ADG, et al. Rings in clinical trials and drugs: present and future. J Med Chem. 2022 Jul 14;65(13):8699–8712.
  • Winiwarter S, Ridderström M, Ungell AL, et al. 5.22 -use of molecular descriptors for absorption, distribution, metabolism, and excretion predictions. In: Taylor J Triggle D, editors. Comprehensive Medicinal Chemistry II. Oxford: Elsevier; 2007. p. 531–554.
  • Rossi Sebastiano M, Doak BC, Backlund M, et al. Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem. 2018 May 10;61(9):4189–4202. doi: 10.1021/acs.jmedchem.8b00347
  • Goetz GH, Philippe L, Shapiro MJ. EPSA: a novel supercritical fluid chromatography technique enabling the design of permeable cyclic peptides. ACS Med Chem Lett. 2014 Oct 9;5(10):1167–1172. doi: 10.1021/ml500239m
  • Davis AM, Leeson PD. Physicochemical Properties. In: Ward S, and Davis A, editors. The handbook of medicinal chemistry. The Royal Society of Chemistry; 2023. p. 1–39. doi: 10.1039/9781788018982-00001
  • Leeson PD, St-Gallay SA, Wenlock MC. Impact of ion class and time on oral drug molecular properties [10.1039/c0md00157k]. Med Chem Commun. 2011;2(2):91–105. doi: 10.1039/C0MD00157K
  • Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol. 2011 Sep 19;24(9):1420–1456. doi: 10.1021/tx200211v
  • Young RJ. Physical Properties in Drug Design. In: Meanwell N, editor. Tactics in Contemporary Drug Design. Topics in Medicinal Chemistry. Berlin Heidelberg, Germany: Springer Berlin Heidelberg; 2014. p. 1–68. doi: 10.1007/7355_2013_35.
  • Miller RR, Madeira M, Wood HB, et al. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J Med Chem. 2020 Nov 12;63(21):12156–12170.
  • Di L, Kerns E, editors. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. 2nd ed. Boston, MA, USA: Academic Press; 2016.
  • Ermondi G, Vallaro M, Goetz G, et al. Experimental lipophilicity for beyond Rule of 5 compounds. Future Drug Dis. 2019;1(1):FDD10. doi: 10.4155/fdd-2019-0002
  • Caron G, Vallaro M, Ermondi G, et al. A fast chromatographic method for estimating lipophilicity and ionization in nonpolar membrane-like environment. Mol Pharm. 2016 Mar 7;13(3):1100–1110. doi: 10.1021/acs.molpharmaceut.5b00910
  • Bunally S, Young RJ. The role and impact of high throughput biomimetic measurements in drug discovery. ADMET And DMPK. 2018;6(2):74–84. doi: 10.5599/admet.530
  • Landry ML, Crawford JJ. LogD contributions of substituents commonly used in medicinal chemistry. ACS Med Chem Lett. 2020 Jan 09;11(1):72–76.
  • Bunally SB, Luscombe CN, Young RJ. Using physicochemical measurements to influence better compound design. SLAS Discov. 2019 Sep;24(8):791–801. doi: 10.1177/2472555219859845
  • Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov. 2010 Mar;5(3):235–248. doi: 10.1517/17460441003605098
  • Kawasaki Y, Freire E. Finding a better path to drug selectivity. Drug Discovery Today. 2011 Nov 01;16(21):985–990.
  • Young RJ, Flitsch SL, Grigalunas M, et al. The time and place for nature in drug discovery. JACS Au. 2022 Nov 28;2(11):2400–2416. doi: 10.1021/jacsau.2c00415
  • Wager TT, Hou X, Verhoest PR, et al. Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci. 2016 Jun 15;7(6):767–775.
  • Kenny PW. Hydrogen- bond donors in drug design. J Med Chem. 2022 Nov 10;65(21):14261–14275. doi: 10.1021/acs.jmedchem.2c01147
  • Goetz GH, Farrell W, Shalaeva M, et al. High throughput method for the indirect detection of intramolecular hydrogen bonding. J Med Chem. 2014 Apr 10;57(7):2920–2929. doi: 10.1021/jm401859b
  • Di LI, Kerns EH. Solubility issues in early discovery and HTS. In: Augustijns P Brewster M, editors Solvent systems and their selection in pharmaceutics and biopharmaceutics. biotechnology: pharmaceutical aspects. (NY): NY: Springer New York; 2007. p. 111–136.
  • Barrett JA, Yang W, Skolnik SM, et al. Discovery solubility measurement and assessment of small molecules with drug development in mind. Drug Discovery Today. 2022 Jan 31;27(5):1315–1325.
  • Bergström CAS, Avdeef A. Perspectives in solubility measurement and interpretation. ADMET And DMPK. 2019;7(2):88–105. doi: 10.5599/admet.686
  • Sou T, Bergstrom CAS. Automated assays for thermodynamic (equilibrium) solubility determination. Drug Discov Today Technol. 2018 Jul;27:11–19. doi: 10.1016/j.ddtec.2018.04.004
  • Jain N, Yalkowsky SH. Estimation of the aqueous solubility I: application to organic nonelectrolytes. J Pharm Sci. 2001 Feb;90(2):234–252. doi: 10.1002/1520-6017(200102)90:2<234:AID-JPS14>3.0.CO;2-V
  • Bergstrom CA, Wassvik CM, Johansson K, et al. Poorly soluble marketed drugs display solvation limited solubility. J Med Chem. 2007 Nov 15;50(23):5858–5862. doi: 10.1021/jm0706416
  • Walz M-M, van der Spoel D. Systematically improved melting point prediction: a detailed physical simulation model is required [10.1039/C9CC06177K]. Chem Commun. 2019;55(80):12044–12047. doi: 10.1039/C9CC06177K
  • Hill AP, Young RJ. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov Today. 2010 Aug;15(15–16):648–655. doi: 10.1016/j.drudis.2010.05.016
  • Walters P The solubility forecast index. http://practicalcheminformaticsblogspotcom/2022/01/the-solubility-forecast-indexhtml.
  • Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? [Perspective]. Nat Rev Drug Discov. 2008 Mar;7(3):205–220. doi: 10.1038/nrd2438
  • Di L, Artursson P, Avdeef A, et al. The critical role of passive permeability in designing successful drugs. ChemMedchem. 2020;15(20):1862–1874. doi: 10.1002/cmdc.202000419
  • Sugano K, Kansy M, Artursson P, et al. Coexistence of passive and carrier-mediated processes in drug transport [Perspective]. Nat Rev Drug Discov. 2010 Aug;9(8):597–614. doi: 10.1038/nrd3187
  • Price E, Kalvass JC, DeGoey D, et al. Global analysis of models for predicting human absorption: qSAR, in vitro, and preclinical models. J Med Chem. 2021 Jun 21;64(13):9389–9403.
  • Waring MJ. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability [10.1016/j.Bmcl.2009.03.109]. Bioorg Med Chem Lett. 2009 May 15;19(10):2844–2851.
  • O’ Donovan DH, De Fusco C, Kuhnke L, et al. Trends in molecular properties, bioavailability, and permeability across the bayer compound collection. J Med Chem. 2023 Feb 23;66(4):2347–2360.
  • Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion [Review]. Front Pharmacol. 2014 Oct 31;5:231. doi: 10.3389/fphar.2014.00231
  • O’Hagan S, Kell DB. Consensus rank orderings of molecular fingerprints illustrate the most genuine similarities between marketed drugs and small endogenous human metabolites, but highlight exogenous natural products as the most important ‘natural’ drug transporter substrates. ADMET And DMPK. 2017;5(2):85–125. doi: 10.5599/admet.5.2.376
  • O′hagan S, Swainston N, Handl J, et al. A ‘rule of 0.5’ for the metabolite-likeness of approved pharmaceutical drugs. Metabolomics. 2015 Apr 01;11(2):323–339.
  • Gally J-M, Pahl A, Czodrowski P, et al. Pseudonatural products occur frequently in biologically relevant compounds. J Chem Inf Model. 2021 Nov 22;61(11):5458–5468. doi: 10.1021/acs.jcim.1c01084
  • Ivanenkov YA, Zagribelnyy BA, Aladinskiy VA. Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? J Med Chem. 2019 Nov 27;62(22):10026–10043. doi: 10.1021/acs.jmedchem.9b00004
  • Hann MM, Keseru GM. Finding the sweet spot: the role of nature and nurture in medicinal chemistry [10.1038/nrd3701]. Nat Rev Drug Discov. 2012 Apr 30;11(5):355–365.
  • Tommasi R, Brown DG, Walkup GK, et al. Eskapeing the labyrinth of antibacterial discovery. Nat Rev Drug Discov. 2015 Aug 01;14(8):529–542.
  • Payne DJ, Gwynn MN, Holmes DJ, et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007 01;16(1):29–40. doi: 10.1038/nrd2201
  • Kellenberger E, Hofmann A, Quinn RJ. Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs [10.1039/C1NP00026H]. Nat Prod Rep. 2011 Sep;28(9):1483–1492. doi: 10.1039/c1np00026h
  • Fullam E, Young RJ. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? [10.1039/D0MD00265H]. RSC Med Chem. 2021;12(1):43–56. doi: 10.1039/D0MD00265H
  • O’Hagan S, Kell DB. Generation of a small library of natural products designed to cover chemical space inexpensively. Pharm Front. 2019;1(1):e190005.
  • Lou K, Wassarman DR, Yang T, et al. IFITM proteins assist cellular uptake of diverse linked chemotypes. Science. 2022;378(6624):1097–1104. doi: 10.1126/science.abl5829
  • Hansch C, Bjorkroth JP, Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design [10.1002/jps.2600760902]. J Pharm Sci. 1987 Sep;76(9):663–687. doi: 10.1002/jps.2600760902
  • Murray CW, Erlanson DA, Hopkins AL, et al. Validity of ligand efficiency metrics. ACS Med Chem Lett. 2014 Jun 12;5(6):616–618. doi: 10.1021/ml500146d
  • Johnson TW, Gallego RA, Edwards MP. Lipophilic efficiency as an important metric in drug design. J Med Chem. 2018 Aug 9;61(15):6401–6420. doi: 10.1021/acs.jmedchem.8b00077
  • Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov Today. 2004 May 15;9(10):430–431. doi: 10.1016/S1359-6446(04)03069-7
  • Hopkins AL, Keseru GM, Leeson PD, et al. The role of ligand efficiency metrics in drug discovery [Analysis]. Nat Rev Drug Discov. 2014 Feb;13(2):105–121.
  • Young RJ, Leeson PD. Mapping the efficiency and physicochemical trajectories of successful optimizations. J Med Chem. 2018 Aug 9;61(15):6421–6467. doi: 10.1021/acs.jmedchem.8b00180
  • Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discovery Today. 2021 Feb 01;26(2):511–524. doi: 10.1016/j.drudis.2020.12.009
  • Karageorgis G, Foley DJ, Laraia L, et al. Pseudo natural products—chemical evolution of natural product structure. Angew Chem Int Ed. 2021;60(29):15705–15723. doi: 10.1002/anie.202016575
  • Grigalunas M, Brakmann S, Waldmann H. Chemical evolution of natural product structure. J Am Chem Soc. 2022 Mar 02;144(8):3314–3329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.