165
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular hybridization: a powerful tool for multitarget drug discovery

, , &
Pages 451-470 | Received 24 Oct 2023, Accepted 21 Feb 2024, Published online: 08 Mar 2024

References

  • Masoudi-Nejad A, Mousavian Z, Bozorgmehr JH. Drug-target and disease networks: polypharmacology in the post-genomic era. Silico Pharmacol. 2013;1:17. doi: 10.1186/2193-9616-1-17
  • Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–730. doi: 10.1038/nrd892
  • Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–113. doi: 10.1038/nrg1272
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–690. doi: 10.1038/nchembio.118
  • Muthuramalingam P, Akassh S, Rithiga SB, et al. Integrated omics profiling and network pharmacology uncovers the prognostic genes and multi-targeted therapeutic bioactives to combat lung cancer. Eur J Pharmacol. 2023;940:175479. doi: 10.1016/j.ejphar.2022.175479
  • Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol. 2012;52:505–521. doi: 10.1146/annurev-pharmtox-010611-134520
  • Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. ChemMedchem. 2016;11:1190–1192. doi: 10.1002/cmdc.201600161
  • Viegas-Junior C, Barreiro EJ, Fraga CAM. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007;14:1829–1852. doi: 10.2174/092986707781058805
  • Fraga CAM. Drug Hybridization Strategies: before or after lead identification? Expert Opin Drug Discov. 2009;4:605–609. doi: 10.1517/17460440902956636
  • Ivasiv V, Albertini C, Gonçalves AE, et al. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr Top Med Chem. 2019;19:1694–1711. doi: 10.2174/1568026619666190619115735
  • Rees DC, Congreve M, Murray CW, et al. Fragment-based lead discovery. Nat Rev Drug Discov. 2004;3:660–672. doi: 10.1038/nrd1467
  • Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov. 2007;6:211–219. doi: 10.1038/nrd2220
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today. 2004;9:641–651. doi: 10.1016/S1359-6446(04)03163-0
  • Albertini C, Salerno A, de Sena Murteira Pinheiro P, et al. From combinations to multitarget‐directed ligands: a continuum in alzheimer’s disease polypharmacology. Med Res Rev. 2021;41:2606–2633. doi: 10.1002/med.21699
  • Morphy R. Selectively nonselective kinase inhibition: striking the right balance. J Med Chem. 2010;53:1413–1437. doi: 10.1021/jm901132v
  • Morphy R, Rankovic Z. Multi-Target Drugs. In: Wermuth C, editor. The practice of medicinal chemistry. 3rd ed. London: Elsevier; 2008. p. 549–571 doi: 10.1016/B978-0-12-374194-3.00027-5
  • Nyberg S, Eriksson B, Oxenstierna G, et al. Suggested minimal effective dose of risperidone based on PET-Measured D 2 and 5-HT 2A receptor occupancy in schizophrenic patients. Am J Psychiatry. 1999;156:869–875. doi: 10.1176/ajp.156.6.869
  • Lowe JA, Seeger TF, Nagel AA, et al. 1-naphthylpiperazine derivatives as potential atypical antipsychotic agents. J Med Chem. 1991;34:1860–1866. doi: 10.1021/jm00110a016
  • Howard HR, Lowe JA, Seeger TF, et al. 3-Benzisothiazolylpiperazine Derivatives as Potential Atypical Antipsychotic Agents. J Med Chem. 1996;39:143–148. doi: 10.1021/jm950625l
  • Rovin BH, Barratt J, Heerspink HJL, et al. Efficacy and safety of sparsentan versus Irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet. 2023;402:2077–2090. doi: 10.1016/S0140-6736(23)02302-4
  • Murugesan N, Tellew JE, Gu Z, et al. Discovery of N -isoxazolyl biphenylsulfonamides as potent dual angiotensin II and endothelin a receptor antagonists. J Med Chem. 2002;45:3829–3835. doi: 10.1021/jm020138n
  • Murugesan N, Gu Z, Fadnis L, et al. Dual angiotensin II and endothelin a receptor antagonists: synthesis of 2‘-substituted N-3-Isoxazolyl biphenylsulfonamides with improved potency and pharmacokinetics. J Med Chem. 2005;48:171–179. doi: 10.1021/jm049548x
  • Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51:347–372. doi: 10.1021/jm7009364
  • Zhou J, Jiang X, He S, et al. Rational design of multitarget-directed ligands: strategies and emerging paradigms. J Med Chem. 2019;62:8881–8914. doi: 10.1021/acs.jmedchem.9b00017
  • Kozicka Z, Thomä NH. Haven’t got a glue: protein surface variation for the design of molecular glue degraders. Cell Chem Biol. 2021;28:1032–1047. doi: 10.1016/j.chembiol.2021.04.009
  • Békés M, Langley DR, Crews CM. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nat Rev Drug Discov. 2022;21:181–200. doi: 10.1038/s41573-021-00371-6
  • Wang C, Zheng C, Wang H, et al. The state of the art of PROTAC technologies for drug discovery. Eur J Med Chem. 2022;235:114290. doi: 10.1016/j.ejmech.2022.114290
  • Gregoretti I, Lee Y-M, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31. doi: 10.1016/j.jmb.2004.02.006
  • Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277:8–21. doi: 10.1016/j.canlet.2008.08.016
  • Valenzuela-Fernández A, Cabrero JR, Serrador JM, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions. Trends Cell Biol. 2008;18:291–297. doi: 10.1016/j.tcb.2008.04.003
  • Barrett RRG, Nash C, Diennet M, et al. Dual-Function Antiandrogen/HDACi Hybrids Based on Enzalutamide and Entinostat. Bioorg Med Chem Lett. 2022;55:128441. doi: 10.1016/j.bmcl.2021.128441
  • Suzuki T, Ando T, Tsuchiya K, et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem. 1999;42:3001–3003. doi: 10.1021/jm980565u
  • Connolly RM, Rudek MA, Piekarz R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol. 2017;13:1137–1148. doi: 10.2217/fon-2016-0526
  • Welsbie DS, Xu J, Chen Y, et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 2009;69:958–966. doi: 10.1158/0008-5472.CAN-08-2216
  • Marrocco DL, Tilley WD, Bianco-Miotto T, et al. Suberoylanilide Hydroxamic Acid (Vorinostat) Represses Androgen Receptor Expression and Acts Synergistically with an Androgen Receptor Antagonist to Inhibit Prostate Cancer Cell Proliferation. Mol Cancer Ther. 2007;6:51–60. doi: 10.1158/1535-7163.MCT-06-0144
  • Liu X, Gomez-Pinillos A, Liu X, et al. Induction of bicalutamide sensitivity in prostate cancer cells by an epigenetic purα-mediated decrease in androgen receptor levels. Prostate. 2010;70:179–189. doi: 10.1002/pros.21051
  • Rangasamy L, Ortín I, Zapico JM, et al. New dual CK2/HDAC1 inhibitors with nanomolar inhibitory activity against both enzymes. ACS Med Chem Lett. 2020;11:713–719. doi: 10.1021/acsmedchemlett.9b00561
  • Martínez R, Di Geronimo B, Pastor M, et al. Multitarget anticancer agents based on histone deacetylase and protein kinase CK2 inhibitors. Molecules. 2020;25:1497. doi: 10.3390/molecules25071497
  • Purwin M, Hernández-Toribio J, Coderch C, et al. Design and synthesis of novel dual-target agents for HDAC1 and CK2 inhibition. RSC Adv. 2016;6:66595–66608. doi: 10.1039/C6RA09717K
  • Khan DH, He S, Yu J, et al. Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J Biol Chem. 2013;288:16518–16528. doi: 10.1074/jbc.M112.440446
  • Pluemsampant S, Safronova OS, Nakahama K, et al. Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. Int J Cancer. 2008;122:333–341. doi: 10.1002/ijc.23094
  • Grygier P, Pustelny K, Nowak J, et al. Silmitasertib (CX-4945), a clinically used ck2-kinase inhibitor with additional effects on GSK3β and DYRK1A kinases: a structural perspective. J Med Chem. 2023;66:4009–4024. doi: 10.1021/acs.jmedchem.2c01887
  • Mann BS, Johnson JR, Cohen MH, et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous t-cell lymphoma. Oncology. 2007;12:1247–1252. doi: 10.1634/theoncologist.12-10-1247
  • Luan Y, Li J, Bernatchez JA, et al. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J Med Chem. 2019;62:3171–3183. doi: 10.1021/acs.jmedchem.8b00189
  • Qian C, Lai C-J, Bao R, et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res. 2012;18:4104–4113. doi: 10.1158/1078-0432.CCR-12-0055
  • Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24. doi: 10.1038/nrc3860
  • Cushing TD, Metz DP, Whittington DA, et al. PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases. J Med Chem. 2012;55:8559–8581. doi: 10.1021/jm300847w
  • Wee S, Jagani Z, Xiang KX, et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009;69:4286–4293. doi: 10.1158/0008-5472.CAN-08-4765
  • Hopkins BD, Pauli C, Du X, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature. 2018;560:499–503. doi: 10.1038/s41586-018-0343-4
  • Shapiro GI, LoRusso P, Kwak E, et al. Phase ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors. Invest New Drugs. 2020;38:419–432. doi: 10.1007/s10637-019-00776-6
  • Rodrigues DA, Pinheiro PSM, Fraga CAM. Multitarget inhibition of Histone Deacetylase (HDAC) and phosphatidylinositol‐3‐kinase (PI3K): Current and future prospects. ChemMedchem. 2021;16:448–457. doi: 10.1002/cmdc.202000643
  • Rodrigues DA, Guerra FS, Sagrillo FS, et al. Design, synthesis, and pharmacological evaluation of first‐in‐class multitarget N ‐acylhydrazone derivatives as selective HDAC6/8 and PI3Kα inhibitors. ChemMedchem. 2020;15:539–551. doi: 10.1002/cmdc.201900716
  • Wu Y, Dai W, Chen X, et al. Synthesis and biological evaluation of 2,3-Dihydroimidazo[1,2-c]Quinazoline derivatives as novel phosphatidylinositol 3-kinase and histone deacetylase dual inhibitors. RSC Adv. 2017;7:52180–52186. doi: 10.1039/C7RA08835C
  • Peng F-W, Wu T-T, Ren Z-W, et al. Hybrids from 4-Anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg Med Chem Lett. 2015;25:5137–5141. doi: 10.1016/j.bmcl.2015.10.006
  • Ellis LM, Hicklin DJ. VEGF-Targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–591. doi: 10.1038/nrc2403
  • Attwood MM, Fabbro D, Sokolov AV, et al. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov. 2021;20:839–861. doi: 10.1038/s41573-021-00252-y
  • Sim MW, Cohen MS. The discovery and development of vandetanib for the treatment of thyroid cancer. Expert Opin Drug Discov. 2014;9:105–114. doi: 10.1517/17460441.2014.866942
  • Zheng H, Dai Q, Yuan Z, et al. Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents. Bioorg Med Chem. 2022;53:116524. doi: 10.1016/j.bmc.2021.116524
  • Xiong Y, Li F, Babault N, et al. Discovery of potent and selective inhibitors for G9a-like protein (GLP) lysine methyltransferase. J Med Chem. 2017;60:1876–1891. doi: 10.1021/acs.jmedchem.6b01645
  • Yang X, Li F, Konze KD, et al. Structure–activity relationship studies for enhancer of zeste homologue 2 (ezh2) and enhancer of zeste homologue 1 (EZH1) inhibitors. J Med Chem. 2016;59:7617–7633. doi: 10.1021/acs.jmedchem.6b00855
  • Anwar T, Gonzalez ME, Kleer CG. Noncanonical functions of the polycomb group protein EZH2 in breast cancer. Am J Pathol. 2021;191:774–783. doi: 10.1016/j.ajpath.2021.01.013
  • Kuntz KW, Campbell JE, Keilhack H, et al. The importance of being me: magic methyls, methyltransferase inhibitors, and the discovery of tazemetostat. J Med Chem. 2016;59:1556–1564. doi: 10.1021/acs.jmedchem.5b01501
  • Romanelli A, Stazi G, Fioravanti R, et al. Design of first-in-class dual EZH2/HDAC inhibitor: biochemical activity and biological evaluation in cancer cells. ACS Med Chem Lett. 2020;11:977–983. doi: 10.1021/acsmedchemlett.0c00014
  • Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–231. doi: 10.1016/j.cell.2012.02.013
  • Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:1119–1123. doi: 10.1038/nature09589
  • Zaware N, Zhou M-M. Bromodomain biology and drug discovery. Nat Struct Mol Biol. 2019;26:870–879. doi: 10.1038/s41594-019-0309-8
  • Nguyen TH, Maltby S, Eyers F, et al. Bromodomain and extra terminal (BET) inhibitor suppresses macrophage-driven steroid-resistant exacerbations of airway hyper-responsiveness and inflammation. PLoS One. 2016;11:e0163392. doi: 10.1371/journal.pone.0163392
  • Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-Fusion leukaemia. Nature. 2011;478:529–533. doi: 10.1038/nature10509
  • Wang ZQ, Zhang ZC, Wu YY, et al. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther. 2023;8:420. doi: 10.1038/s41392-023-01647-6
  • Boi M, Gaudio E, Bonetti P, et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-Cell tumor models and synergizes with targeted drugs. Clin Cancer Res. 2015;21:1628–1638. doi: 10.1158/1078-0432.CCR-14-1561
  • Gaudio E, Tarantelli C, Ponzoni M, et al. Bromodomain inhibitor OTX015 (MK-8628) combined with targeted agents shows strong in vivo antitumor activity in lymphoma. Oncotarget. 2016;7:58142–58147. doi: 10.18632/oncotarget.10983
  • Schäker-Hübner L, Warstat R, Ahlert H, et al. 4-acyl pyrrole capped HDAC inhibitors: a new scaffold for hybrid inhibitors of BET Proteins and Histone Deacetylases as antileukemia drug leads. J Med Chem. 2021;64:14620–14646. doi: 10.1021/acs.jmedchem.1c01119
  • Lucas X, Wohlwend D, Hügle M, et al. 4‐Acyl pyrroles: mimicking acetylated lysines in histone code reading. Angew Chem Int Ed. 2013;52:14055–14059. doi: 10.1002/anie.201307652
  • Zhao C, Zhang Y, Zhang J, et al. Discovery of novel fedratinib-based HDAC/JAK/BRD4 triple inhibitors with remarkable antitumor activity against Triple negative breast cancer. J Med Chem. 2023;66:14150–14174. doi: 10.1021/acs.jmedchem.3c01242
  • Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective jak2 inhibitor, in treatment of a murine model of JAK2V617F-Induced polycythemia vera. Cancer Cell. 2008;13:311–320. doi: 10.1016/j.ccr.2008.02.009
  • Ciceri P, Müller S, O’Mahony A, et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol. 2014;10:305–312. doi: 10.1038/nchembio.1471
  • Ember SWJ, Zhu J-Y, Olesen SH, et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem Biol. 2014;9:1160–1171. doi: 10.1021/cb500072z
  • Xin L, Min J, Hu H, et al. Structure-guided identification of novel dual-targeting estrogen receptor α degraders with aromatase inhibitory activity for the treatment of endocrine-resistant breast cancer. Eur J Med Chem. 2023;253:115328. doi: 10.1016/j.ejmech.2023.115328
  • Shen K, Yu H, Xie B, et al. Anticancer or carcinogenic? The role of estrogen receptor β in breast cancer progression. Pharmacol Ther. 2023;242:108350. doi: 10.1016/j.pharmthera.2023.108350
  • Fanning SW, Mayne CG, Dharmarajan V, et al. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. Elife. 2016;5. doi: 10.7554/eLife.12792
  • Zhao C, Tang C, Li C, et al. Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy. Bioorg Med Chem. 2021;40:116185. doi: 10.1016/j.bmc.2021.116185
  • Tang C, Li C, Zhang S, et al. Novel bioactive hybrid compound dual targeting estrogen receptor and Histone Deacetylase for the treatment of breast cancer. J Med Chem. 2015;58:4550–4572. doi: 10.1021/acs.jmedchem.5b00099
  • Zhang W, Zhang K, Yao Y, et al. Dual nicotinamide phosphoribosyltransferase and epidermal growth factor receptor inhibitors for the treatment of cancer. Eur J Med Chem. 2021;211:113022. doi: 10.1016/j.ejmech.2020.113022
  • Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;5:203–220. doi: 10.1158/1541-7786.MCR-06-0404
  • Juchum M, Günther M, Laufer SA. Fighting cancer drug resistance: opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat. 2015;20:12–28. doi: 10.1016/j.drup.2015.05.002
  • Sampath D, Zabka TS, Misner DL, et al. Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol Ther. 2015;151:16–31. doi: 10.1016/j.pharmthera.2015.02.004
  • Chiarugi A, Dölle C, Felici R, et al. The NAD metabolome — a key determinant of cancer cell biology. Nat Rev Cancer. 2012;12:741–752. doi: 10.1038/nrc3340
  • Zhang B, Liu Z, Xia S, et al. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur J Med Chem. 2021;216:113300. doi: 10.1016/j.ejmech.2021.113300
  • Swinson DEB, O’Byrne KJ. Interactions between hypoxia and epidermal growth factor receptor in non–small-Cell lung cancer. Clin Lung Cancer. 2006;7:250–256. doi: 10.3816/CLC.2006.n.002
  • Wang K, Ye K, Zhang X, et al. Dual nicotinamide phosphoribosyltransferase (NAMPT) and indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors for the treatment of drug-resistant nonsmall-cell lung cancer. J Med Chem. 2023;66:1027–1047. doi: 10.1021/acs.jmedchem.2c01954
  • Prendergast GC, Malachowski WJ, Mondal A, et al. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int rev cell mol biol. 2018;336:175–203. doi: 10.1016/bs.ircmb.2017.07.004
  • Smith C, Chang MY, Parker KH, et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2012;2:722–735. doi: 10.1158/2159-8290.CD-12-0014
  • Platten M, Nollen EAA, Röhrig UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18:379–401. doi: 10.1038/s41573-019-0016-5
  • Feng X, Liao D, Liu D, et al. Development of indoleamine 2,3-dioxygenase 1 inhibitors for cancer therapy and beyond: a recent perspective. J Med Chem. 2020;63:15115–15139. doi: 10.1021/acs.jmedchem.0c00925
  • Khan JA, Tao X, Tong L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol. 2006;13:582–588. doi: 10.1038/nsmb1105
  • Zheng X, Bauer P, Baumeister T, et al. Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. J Med Chem. 2013;56:6413–6433. doi: 10.1021/jm4008664
  • Lewis-Ballester A, Pham KN, Batabyal D, et al. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1. Nat Commun. 2017;8:1693. doi: 10.1038/s41467-017-01725-8
  • Li Y, Ye T, Xu L, et al. Discovery of 4-piperazinyl-2-aminopyrimidine derivatives as dual inhibitors of JAK2 and FLT3. Eur J Med Chem. 2019;181:111590. doi: 10.1016/j.ejmech.2019.111590
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544
  • Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Sci (1979). 2002;296:1653–1655. doi: 10.1126/science.1071545
  • Grunwald MR, Levis MJ. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol. 2013;97:683–694. doi: 10.1007/s12185-013-1334-8
  • Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9:387–398. doi: 10.1038/nrd2896
  • Bolognesi ML, Matera R, Minarini A, et al. Alzheimer’s Disease: New Approaches to Drug Discovery. Curr Opin Chem Biol. 2009;13:303–308. doi: 10.1016/j.cbpa.2009.04.619
  • Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in alzheimer’s disease. Nature. 2016;537:50–56. doi: 10.1038/nature19323
  • Yang P, Sun F. Aducanumab: the first targeted alzheimer’s therapy. Drug Discov Ther. 2021;15. doi: 10.5582/ddt.2021.01061
  • Larkin HD. Lecanemab gains FDA approval for early Alzheimer disease. JAMA. 2023;329:363. doi: 10.1001/jama.2022.24490
  • Mullard A. Anti-Amyloid Failures Stack up as Alzheimer Antibody Flops. Nat Rev Drug Discov. doi: 10.1038/d41573-019-00064-1
  • Yeo-Teh NSL, Tang BL. A review of scientific ethics issues associated with the Recently approved drugs for alzheimer’s disease. Sci Eng Ethics. 2023;29:2. doi: 10.1007/s11948-022-00422-0
  • Farina R, Pisani L, Catto M, et al. Structure-based design and optimization of multitarget-directed 2 H -chromen-2-one derivatives as potent inhibitors of monoamine oxidase B and cholinesterases. J Med Chem. 2015;58:5561–5578. doi: 10.1021/acs.jmedchem.5b00599
  • Huang W, Tang L, Shi Y, et al. Searching for the multi-target-directed ligands against alzheimer’s disease: discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorg Med Chem. 2011;19:7158–7167. doi: 10.1016/j.bmc.2011.09.061
  • Huang W, Yu H, Sheng R, et al. Identification of pharmacophore model, synthesis and biological evaluation of N-Phenyl-1-arylamide and N-Phenylbenzenesulfonamide derivatives as BACE 1 inhibitors. Bioorg Med Chem. 2008;16:10190–10197. doi: 10.1016/j.bmc.2008.10.059
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–372. doi: 10.1038/nrn3880
  • AlFadly ED, Elzahhar PA, Tramarin A, et al. Tackling neuroinflammation and cholinergic deficit in alzheimer’s disease: multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem. 2019;167:161–186. doi: 10.1016/j.ejmech.2019.02.012
  • Qin P, Ran Y, Xie F, et al. Synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChe inhibitors for alzheimer’s disease. Bioorg Med Chem. 2023;80:117178. doi: 10.1016/j.bmc.2023.117178
  • Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x
  • Waiker DK, Verma A, Akhilesh AGT, et al. Design, synthesis, and biological evaluation of piperazine and N -benzylpiperidine hybrids of 5-phenyl-1,3,4-oxadiazol-2-thiol as potential multitargeted ligands for alzheimer’s disease therapy. ACS Chem Neurosci. 2023;14:2217–2242. doi: 10.1021/acschemneuro.3c00245
  • Sharma P, Tripathi A, Tripathi PN, et al. Novel molecular hybrids of N -benzylpiperidine and 1,3,4-oxadiazole as multitargeted therapeutics to treat alzheimer’s disease. ACS Chem Neurosci. 2019;10:4361–4384. doi: 10.1021/acschemneuro.9b00430
  • Kreitzer A. Retrograde Signaling by Endocannabinoids. Curr Opin Neurobiol. 2002;12:324–330. doi: 10.1016/S0959-4388(02)00328-8
  • Hwang J, Adamson C, Butler D, et al. Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci. 2010;86:615–623. doi: 10.1016/j.lfs.2009.06.003
  • Papa A, Cursaro I, Pozzetti L, et al. Pioneering first‐in‐class FAAH‐HDAC inhibitors as potential multitarget neuroprotective agents. Arch Pharm (Weinheim). 2023;356. doi: 10.1002/ardp.202300410
  • Butini S, Brindisi M, Gemma S, et al. Discovery of potent inhibitors of human and mouse fatty acid amide hydrolases. J Med Chem. 2012;55:6898–6915. doi: 10.1021/jm300689c
  • Papa A, Pasquini S, Galvani F, et al. Development of potent and selective FAAH inhibitors with improved drug-like properties as potential tools to treat neuroinflammatory conditions. Eur J Med Chem. 2023;246:114952. doi: 10.1016/j.ejmech.2022.114952
  • Brindisi M, Cavella C, Brogi S, et al. Phenylpyrrole-based HDAC inhibitors: synthesis, molecular modeling and biological studies. Future Med Chem. 2016;8:1573–1587. doi: 10.4155/fmc-2016-0068
  • Zajdel P, Grychowska K, Mogilski S, et al. Structure-based design and optimization of FPPQ, a dual-acting 5-HT 3 and 5-HT 6 receptor antagonist with antipsychotic and procognitive properties. J Med Chem. 2021;64:13279–13298. doi: 10.1021/acs.jmedchem.1c00224
  • Canale V, Grychowska K, Kurczab R, et al. A dual-acting 5-HT6 receptor inverse agonist/MAO-B inhibitor displays glioprotective and pro-cognitive properties. Eur J Med Chem. 2020;208:112765. doi: 10.1016/j.ejmech.2020.112765
  • Xu L, Zhou S, Yu K, et al. Molecular modeling of the 3D structure of 5-HT 1A R: discovery of novel 5-HT 1A R agonists via dynamic pharmacophore-based virtual screening. J Chem Inf Model. 2013;53:3202–3211. doi: 10.1021/ci400481p
  • Zhu C, Li X, Zhao B, et al. Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy. Eur J Med Chem. 2020;193:112214. doi: 10.1016/j.ejmech.2020.112214
  • Petri S, Körner S, Kiaei M. Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int. 2012;2012:1–7. doi: 10.1155/2012/878030
  • Martín-Cámara O, Arribas M, Wells G, et al. Multitarget hybrid fasudil derivatives as a new approach to the potential treatment of amyotrophic lateral sclerosis. J Med Chem. 2022;65:1867–1882. doi: 10.1021/acs.jmedchem.1c01255
  • Albertini C, Salerno A, Atzeni S, et al. Riluzole–rasagiline hybrids: toward the development of multi-target-directed ligands for amyotrophic lateral sclerosis. ACS Chem Neurosci. 2022;13:2252–2260. doi: 10.1021/acschemneuro.2c00261
  • Mohamed A, Salah M, Tahoun M, et al. Dual targeting of steroid sulfatase and 17β-hydroxysteroid dehydrogenase type 1 by a novel drug-prodrug approach: a potential therapeutic option for the treatment of endometriosis. J Med Chem. 2022;65:11726–11744. doi: 10.1021/acs.jmedchem.2c00589
  • Sinreih M, Knific T, Anko M, et al. The significance of the sulfatase pathway for local estrogen formation in endometrial cancer. Front Pharmacol. 2017;8. doi: 10.3389/fphar.2017.00368
  • Dumont M, Luu-The V, de Launoit Y, et al. Expression of human 17β-hydroxysteroid dehydrogenase in mammalian cells. J Steroid Biochem Mol Biol. 1992;41:605–608. doi: 10.1016/0960-0760(92)90391-U
  • Šmuc T, Pucelj MR, Šinkovec J, et al. Expression analysis of the genes involved in estradiol and progesterone action in human ovarian endometriosis. Gynecol Endocrinol. 2007;23:105–111. doi: 10.1080/09513590601152219
  • VerNooy R, Mangrum JA. A novel oral class III antiarrhythmic for both supraventricular and ventricular arrhythmias. Cardiovasc Hematol disord - drug targets. 2005;5:75–84. doi: 10.2174/1568006053004985
  • Du L, Li M, Yang Q, et al. Molecular hybridization, synthesis, and biological evaluation of novel chroman IKr and IKs dual blockers. Bioorg Med Chem Lett. 2009;19:1477–1480. doi: 10.1016/j.bmcl.2009.01.022
  • Naesdal J, Brown K. NSAID-Associated adverse effects and acid control aids to prevent them. drug saf. 2006;29:119–132. doi: 10.2165/00002018-200629020-00002
  • Cravatt BF, Giang DK, Mayfield SP, et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–87. doi: 10.1038/384083a0
  • Bracey MH, Hanson MA, Masuda KR, et al. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Sci (1979). 2002;298:1793–1796. doi: 10.1126/science.1076535
  • Migliore M, Habrant D, Sasso O, et al. Potent multitarget FAAH-COX inhibitors: design and structure-activity relationship studies. Eur J Med Chem. 2016;109:216–237. doi: 10.1016/j.ejmech.2015.12.036
  • Palermo G, Favia AD, Convertino M, et al. The molecular basis for dual fatty acid amide hydrolase (Faah)/cyclooxygenase (COX) inhibition. ChemMedchem. 2016;11:1252–1258. doi: 10.1002/cmdc.201500507
  • Meirer K, Rödl CB, Wisniewska JM, et al. Synthesis and structure–activity relationship studies of novel dual inhibitors of soluble epoxide hydrolase and 5-lipoxygenase. J Med Chem. 2013;56:1777–1781. doi: 10.1021/jm301617j
  • Liu J-Y, Yang J, Inceoglu B, et al. Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model. Biochem Pharmacol. 2010;79:880–887. doi: 10.1016/j.bcp.2009.10.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.