83
Views
0
CrossRef citations to date
0
Altmetric
Review

Treatment of highly virulent mammarenavirus infections—status quo and future directions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 537-551 | Received 08 Jan 2024, Accepted 04 Apr 2024, Published online: 12 Apr 2024

References

  • Radoshitzky SR, Buchmeier MJ, de la Torre JC. Arenaviridae: the viruses and their replication. In: Howley P, Knipe D Whelan S, editors. Fields virology. 7th ed. Philadelphia (PA) USA: Wolters Kluwer/Lippincott Williams & Wilkins; 2020. p. 784–809.
  • Radoshitzky SR, Buchmeier MJ, Charrel RN, et al. ICTV virus taxonomy profile: Arenaviridae 2023. J Gen Virol. 2023 Sep;104(9):001891.
  • Mordecai GJ, Miller KM, Di Cicco E, et al. Endangered wild salmon infected by newly discovered viruses. Elife. 2019 Sep 3;8:e47615. doi: 10.7554/eLife.47615
  • Shi M, Lin X-D, Chen X, et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018 Apr;556(7700):197–202.
  • Grimwood RM, Holmes EC, Geoghegan JL. A novel rubi-like virus in the pacific electric ray (Tetronarce californica) reveals the complex evolutionary history of the Matonaviridae. Viruses. 2021 Mar 31;13(4):585. doi: 10.3390/v13040585
  • Hepojoki J, Hepojoki S, Smura T, et al. Characterization of haartman institute snake virus 1 (HISV-1) and HISV-like viruses—the representatives of genus Hartmanivirus, family Arenaviridae. PLoS Pathog. 2018 Nov;14(11):e1007415.
  • Hepojoki J, Salmenperä P, Sironen T, et al. Arenavirus coinfections are common in snakes with boid inclusion body disease. J Virol. 2015 Aug;89(16):8657–8660.
  • Alfaro-Alarcón A, Hetzel U, Smura T, et al. Boid inclusion body disease is also a disease of wild boa constrictors. Microbiol Spectr. 2022 Oct 26;10(5):e0170522. doi: 10.1128/spectrum.01705-22
  • Hetzel U, Sironen T, Laurinmäki P, et al. Isolation, identification, and characterization of novel arenaviruses, the etiological agents of boid inclusion body disease. J Virol. 2013 Oct;87(20):10918–10935.
  • Stenglein MD, Sanders C, Kistler AL, et al. Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. MBio. 2012;3(4):e00180–12. doi: 10.1128/mBio.00180-12
  • Abba Y, Hassim H, Hamzah H, et al. In vitro isolation and molecular identification of reptarenavirus in Malaysia. Virus Genes. 2016 Oct;52(5):640–650.
  • Chen Y-M, Sadiq S, Tian J-H, et al. RNA virome composition is shaped by sampling ecotype. SSRN Electron J. 2021. Available from: https://ssrn.com/abstract=3934022
  • Costa VA, Mifsud JCO, Gilligan D, et al. Metagenomic sequencing reveals a lack of virus exchange between native and invasive freshwater fish across the Murray-Darling Basin, Australia. Virus Evol. 2021 Jan;7(1):veab034.
  • Geoghegan JL, Di Giallonardo F, Wille M, et al. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol. 2021 Jan;7(1):veab005.
  • Chen Y-M, Hu S-J, Lin X-D, et al. Host traits shape virome composition and virus transmission in wild small mammals. Cell. 2023 Oct 12;186(21):4662–75 e12. doi: 10.1016/j.cell.2023.08.029
  • Downs WG, Anderson CR, Spence L, et al. Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg. 1963 Jul;12(4):640–646.
  • Bentim Góes LG, Fischer C, Almeida Campos AC, et al. Highly diverse arenaviruses in neotropical bats, Brazil. Emerg Infect Dis. 2022 Dec;28(12):2528–2533.
  • Sayler KA, Barbet AF, Chamberlain C, et al. Isolation of Tacaribe virus, a Caribbean arenavirus, from host-seeking Amblyomma americanum ticks in Florida. PLoS One. 2014;9(12):e115769. doi: 10.1371/journal.pone.0115769
  • Reuter G, Boros Á, Takáts K, et al. A novel mammarenavirus (family Arenaviridae) in hedgehogs (Erinaceus roumanicus) in Europe. Arch Virol. 2023 Jun 8;168(7):174. doi: 10.1007/s00705-023-05804-8
  • Luo X-L, Lu S, Qin C, et al. Emergence of an ancient and pathogenic mammarenavirus. Emerg Microbes Infect. 2023 Dec;12(1):e2192816.
  • Cui X, Fan K, Liang X, et al. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat Commun. 2023 Apr 29;14(1):2488. doi: 10.1038/s41467-023-38202-4
  • Bowen MD, Peters CJ, Nichol ST. Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol. 1997 Dec;8(3):301–316. doi: 10.1006/mpev.1997.0436
  • Hugot JP, Gonzalez JP, Denys C. Evolution of the old world Arenaviridae and their rodent hosts: generalized host-transfer or association by descent? Infect Genet Evol. 2001 Jul;1(1):13–20. doi: 10.1016/S1567-1348(01)00003-X
  • Wu Z, Du J, Lu L, et al. Detection of hantaviruses and arenaviruzses [sic] in three-toed jerboas from the Inner Mongolia Autonomous Region, China. Emerg Microbes Infect. 2018 Mar 21;7(1):35. doi: 10.1038/s41426-018-0036-y
  • Kuhn JH, Radoshitzky SR, Jahrling PB. Pathogens causing viral hemorrhagic fevers. In: Katz R, and Zilinskas R, editors. Encyclopedia of bioterrorism defense. 2nd ed. Hoboken (NJ) USA: Wiley-Blackwell; 2011. p. 489–498.
  • Smither AR, Bell-Kareem AR. Ecology of Lassa virus. Curr Top Microbiol Immunol. 2023 Feb 11;440:67–86.
  • Tapia-Ramírez G, Lorenzo C, Navarrete D, et al. A review of mammarenaviruses and rodent reservoirs in the Americas. Ecohealth. 2022 Mar;19(1):22–39.
  • Briese T, Paweska JT, McMullan LK, et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 2009 May;5(5):e1000455.
  • Vilibic-Cavlek T, Savic V, Ferenc T, et al. Lymphocytic choriomeningitis—emerging trends of a neglected virus: a narrative review. Trop Med Infect Dis. 2021 May 25;6(2):88. doi: 10.3390/tropicalmed6020088
  • World Health Organization. International classification of diseases 11th revision. 2023. Available from: https://icd.who.int/browse11/l-m/en
  • World Health Organization. R&D Blueprint. 2023. Available from: https://www.who.int/teams/blueprint/
  • U.S. Department of Health and Human Services, Public Health Service, Centers for disease control and prevention, health NIo. Biosafety in microbiological and biomedical laboratories (BMBL). 6th ed. 2020. Available from: https://www.cdc.gov/labs/BMBL.html
  • The Australia Group. List of human and animal pathogens and toxins for export control. 2022. Available from: https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/human_animal_pathogens.html
  • U.S. Centers for Disease Control and Prevention. Bioterrorism agents/diseases. 2018. Available from: https://emergency.cdc.gov/agent/agentlist-category.asp
  • U.S. Department of Health and Human Services, U.S. Department of Agriculture. HHS and USDA select agents and toxins. 7CFR Part 331, 9 CFR Part 121, and 42 CFR Part 73. 2023. Available from: https://www.selectagents.gov/sat/list.htm
  • U.S. National Institute of Allergy and Infectious Diseases. NIAID emerging infectious diseases/pathogens. 2018. Available from: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens
  • Redding DW, Gibb R, Dan-Nwafor CC, et al. Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria. Nat Commun. 2021 Oct 1;12(1):5759. doi: 10.1038/s41467-021-25910-y
  • Redding DW, Moses LM, Cunningham AA, et al. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol Evol. 2016 Jun;7(6):646–655.
  • Loayza Mafayle R, Morales-Betoulle ME, Romero C, et al. Chapare hemorrhagic fever and virus detection in rodents in Bolivia in 2019. N Engl J Med. 2022 Jun 16;386(24):2283–2294. doi: 10.1056/NEJMoa2110339
  • Raabe VN, Kann G, Ribner BS, et al. Favipiravir and ribavirin treatment of epidemiologically linked cases of Lassa fever. Clin Infect Dis. 2017 Sep 1;65(5):855–859. doi: 10.1093/cid/cix406
  • Salu OB, Amoo OS, Shaibu JO, et al. Monitoring of Lassa virus (LASV) infection in suspected and confirmed cases in Ondo State, Nigeria. Pan Afr Med J. 2020;36(1):253. doi: 10.11604/pamj.2020.36.253.22104
  • Thielebein A, Ighodalo Y, Taju A, et al. Virus persistence after recovery from acute Lassa fever in Nigeria: a 2-year interim analysis of a prospective longitudinal cohort study. Lancet Microbe. 2022 Jan;3(1):e32–e40. doi: 10.1016/S2666-5247(21)00178-6
  • Delgado S, Erickson BR, Agudo R, et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 2008 Apr 18;4(4):e1000047. doi: 10.1371/journal.ppat.1000047
  • Salas R, Pacheco ME, Ramos B, et al. Venezuelan haemorrhagic fever. Lancet. 1991 Oct 26;338(8774):1033–1036. doi: 10.1016/0140-6736(91)91899-6
  • Silva-Ramos CR, Montoya-Ruíz C, Faccini-Martínez ÁA, et al. An updated review and current challenges of Guanarito virus infection, Venezuelan hemorrhagic fever. Arch Virol. 2022 Sep;167(9):1727–1738. doi: 10.1007/s00705-022-05453-3
  • Ryder RW, Gandsman EJ. Laboratory-acquired Sabiá virus infection. N Engl J Med. 1995 Dec 21;333(25):1716. doi: 10.1056/NEJM199512213332516
  • de Mello Malta F, Amgarten D, Nastri A, et al. Sabiá virus–like mammarenavirus in patient with fatal hemorrhagic fever, Brazil, 2020. Emerg Infect Dis. 2020 Jun;26(6):1332–1334.
  • Nastri AC, Duarte-Neto AN, Casadio LVB, et al. Understanding Sabiá virus infections (Brazilian mammarenavirus). Travel Med Infect Dis. 2022 Jul;48:102351. doi: 10.1016/j.tmaid.2022.102351
  • Maiztegui J, Feuillade M, Briggiler A. Progressive extension of the endemic area and changing incidence of Argentine hemorrhagic fever. Med Microbiol Immunol. 1986;175(2–3):149–152. doi: 10.1007/BF02122437
  • García Gili MI, Zampetti A, Asencio MD, et al. Fiebre hemorrágica argentina: comunicación de dos casos en zona no endémica. Medicina (B Aires). 2023;83(1):129–132.
  • Mackenzie RB. Epidemiology of Machupo virus infection. I. Pattern of human infection, San Joaquín, Bolivia, 1962-1964. Am J Trop Med Hyg. 1965 Sep;14(5):808–813. doi: 10.4269/ajtmh.1965.14.808
  • Centers for Disease Control and Prevention. Bolivian hemorrhagic fever - El Beni Department, Bolivia, 1994. MMWR Morb Mortal Wkly Rep. 1994 Dec 23;43(50):943–946.
  • Aguilar PV, Camargo W, Vargas J, et al. Reemergence of Bolivian hemorrhagic fever, 2007–2008. Emerg Infect Dis. 2009 Sep;15(9):1526–1528.
  • Silva-Ramos CR, Faccini-Martinez AA, Calixto OJ, et al. Bolivian hemorrhagic fever: a narrative review. Travel Med Infect Dis. 2021 Mar;40:102001. doi: 10.1016/j.tmaid.2021.102001
  • Simons D. Lassa fever cases suffer from severe underreporting based on reported fatalities. Int Health. 2023 Sep 1;15(5):608–610. doi: 10.1093/inthealth/ihac076
  • Richmond JK, Baglole DJ. Lassa fever: epidemiology, clinical features, and social consequences. BMJ. 2003 Nov 29;327(7426):1271–1275. doi: 10.1136/bmj.327.7426.1271
  • Escalera-Antezana JP, Rodriguez-Villena OJ, Arancibia-Alba AW, et al. Clinical features of fatal cases of Chapare virus hemorrhagic fever originating from rural La Paz, Bolivia, 2019: a cluster analysis. Travel Med Infect Dis. 2020 Jul;36:101589. doi: 10.1016/j.tmaid.2020.101589
  • Coimbra TLM, Nassar ES, Burattini MN, et al. New arenavirus isolated in Brazil. Lancet. 1994 Feb 12;343(8894):391–392. doi: 10.1016/S0140-6736(94)91226-2
  • de Manzione N, Salas RA, Paredes H, et al. Venezuelan hemorrhagic fever: clinical and epidemiological studies of 165 cases. Clin Infect Dis. 1998 Feb;26(2):308–313.
  • Arribalzaga RA. Una nueva enfermedad epidémica a germen desconocido: hipertermia nefrotóxica, leucopénica y enantemática. Día Méd. 1955 Jun 16;27(40):1204–1210.
  • Harrison LH, Halsey NA, McKee Jr KT Jr., et al. Clinical case definitions for Argentine hemorrhagic fever. Clin Infect Dis. 1999 May;28(5):1091–1094.
  • Molteni HD, Guarinos HC, Petrillo CO, et al. Estudio clínico estadístico sobre 338 pacientes afectados por la fiebre hemorrágica epidémica del noroeste de la provincia de Buenos Aires. Sem Méd. 1961 Apr 24;118:839–855.
  • Pirosky I, Zuccarini J, Molinelli EA, et al. Virosis hemorrágica del noroeste bonaerense. Endemo-epidémica, febril, enantémática, y leucopenica. Buenos Aires, Argentina: Ministerio de Asistencia Social y Salud Pública. Instituto Nacional de Microbiología; 1959.
  • Ruggiero HR, Parodi AS, Ruggiero HG, et al. Fiebre hemorrágica argentina. Periodo de incubación e invasión. Rev Asoc Med Argent. 1964 May;78:221–226.
  • Rugiero HR, Cintora FA, Magnoni C, et al. Fiebre hemorrágica argentina. IV. Formas clínicas. Rev Asoc Med Argent. 1964 Sep;78:500–510.
  • Rugiero HR, Ruggiero H, González Cambaceres C, et al. Fiebre hemorrágica argentina. II. Estudio clínico descriptivo. Rev Asoc Med Argent. 1964 Jun;78:281–294.
  • Schwarz ER, Mando OG, Maiztegui JI, et al. Síntomas y signos iniciales de mayor valor diagnóstico en la fiebre hemorrágica argentina. Medicina (B Aires). 1970 Sep;30(Suppl 1):8–14.
  • Sewlall NH, Richards G, Duse A, et al. Clinical features and patient management of Lujo hemorrhagic fever. PLoS Negl Trop Dis. 2014;8(11):e3233. doi: 10.1371/journal.pntd.0003233
  • Stinebaugh BJ, Schloeder FX, Johnson KM, et al. Bolivian hemorrhagic fever. A report of four cases. Am J Med. 1966 Feb;40(2):217–230.
  • Barry M, Russi M, Armstrong L, et al. Treatment of a laboratory-acquired Sabiá virus infection. N Engl J Med. 1995 Aug 3;333(5):294–296. doi: 10.1056/NEJM199508033330505
  • Frank MG, Beitscher A, Webb CM, et al. South American hemorrhagic fevers: a summary for clinicians. Int J Infect Dis. 2021 Apr;105:505–515. doi: 10.1016/j.ijid.2021.02.046
  • Peters CJ. Human infection with arenaviruses in the Americas. Curr Top Microbiol Immunol. 2002;262:65–74.
  • Vainrub B, Salas R. Latin American hemorrhagic fever. Infect Dis Clin North Am. 1994 Mar;8(1):47–59. doi: 10.1016/S0891-5520(20)30573-0
  • Bausch DG, Demby AH, Coulibaly M, et al. Lassa fever in Guinea: I. Epidemiology of human disease and clinical observations. Vector Borne Zoonotic Dis. 2001 Winter;1(4):269–281.doi: 10.1089/15303660160025903
  • Cummins D, Bennett D, Fisher-Hoch SP, et al. Lassa fever encephalopathy: clinical and laboratory findings. J Trop Med Hyg. 1992 Jun;95(3):197–201.
  • Cummins D, McCormick JB, Bennett D, et al. Acute sensorineural deafness in Lassa fever. J Am Med Assoc. 1990 Oct 24-31;264(16):2093–2096. doi: 10.1001/jama.1990.03450160063030
  • Frame JD. Clinical features of Lassa fever in Liberia. Rev Infect Dis. 1989 May;11(Suppl 4):S783–9. doi: 10.1093/clinids/11.Supplement_4.S783
  • Frame JD, Baldwin JM Jr., Gocke DJ, et al. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am J Trop Med Hyg. 1970 Jul;19(4):670–676. doi: 10.4269/ajtmh.1970.19.670
  • Garry RF. Lassa fever - the road ahead. Nat Rev Microbiol. 2023 Feb;21(2):87–96. doi: 10.1038/s41579-022-00789-8
  • Knobloch J, McCormick JB, Webb PA, et al. Clinical observations in 42 patients with Lassa fever. Tropenmed Parasitol. 1980 Dec;31(4):389–398.
  • Monson MH, Cole AK, Frame JD, et al. Pediatric Lassa fever: a review of 33 Liberian cases. Am J Trop Med Hyg. 1987 Mar;36(2):408–415.
  • Okokhere P, Colubri A, Azubike C, et al. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. Lancet Infect Dis. 2018 Jun;18(6):684–695. doi: 10.1016/S1473-3099(18)30121-X
  • Buchmeier MJ. Arenaviruses: protein structure and function. Curr Top Microbiol Immunol. 2002;262:159–173.
  • Li S, Sun Z, Pryce R, et al. Acidic pH-induced conformations and LAMP1 binding of the Lassa virus glycoprotein spike. PLoS Pathog. 2016 Feb;12(2):e1005418.
  • Neuman BW, Adair BD, Burns JW, et al. Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol. 2005 Mar;79(6):3822–3830.
  • Hass M, Westerkofsky M, Müller S, et al. Mutational analysis of the Lassa virus promoter. J Virol. 2006 Dec;80(24):12414–12419.
  • Auperin DD, Compans RW, Bishop DHL. Nucleotide sequence conservation at the 3’ termini of the virion RNA species of New World and Old World arenaviruses. Virology. 1982 Aug;121(1):200–203. doi: 10.1016/0042-6822(82)90130-1
  • Harnish DG. Arenavirus replication. In: Salvato M, editor. The Arenaviridae. New York (NY) USA: Plenum Press; 1993. p. 157–174.
  • Hastie KM, Kimberlin CR, Zandonatti MA, et al. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2396–2401. doi: 10.1073/pnas.1016404108
  • Hastie KM, Liu T, Li S, et al. Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci USA. 2011 Nov 29;108(48):19365–19370. doi: 10.1073/pnas.1108515108
  • Martínez-Sobrido L, Emonet S, Giannakas P, et al. Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol. 2009 Nov;83(21):11330–11340.
  • Bederka LH, Bonhomme CJ, Ling EL, et al. Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio. 2014 Oct 28;5(6):e02063. doi: 10.1128/mBio.02063-14
  • Kunz S, Edelmann KH, de la Torre J-C, et al. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology. 2003 Sep 15;314(1):168–178. doi: 10.1016/S0042-6822(03)00421-5
  • Pennington HN, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep. 2022 Feb 25;42(2):BSR20211930. doi: 10.1042/BSR20211930
  • Burri DJ, da Palma JR, Kunz S, et al. Envelope glycoprotein of arenaviruses. Viruses. 2012 Oct 17;4(10):2162–2181. doi: 10.3390/v4102162
  • Kranzusch PJ, Schenk AD, Rahmeh AA, et al. Assembly of a functional Machupo virus polymerase complex. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20069–20074. doi: 10.1073/pnas.1007152107
  • Xu X, Peng R, Peng Q, et al. Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nat Microbiol. 2021 Jul;6(7):921–931. doi: 10.1038/s41564-021-00916-w
  • Perez M, Craven RC, de la Torre JC. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA. 2003 Oct 28;100(22):12978–12983. doi: 10.1073/pnas.2133782100
  • Fehling SK, Lennartz F, Strecker T. Multifunctional nature of the arenavirus RING finger protein Z. Viruses. 2012 Nov 9;4(11):2973–3011. doi: 10.3390/v4112973
  • Hastie KM, Zandonatti M, Liu T, et al. Crystal structure of the oligomeric form of Lassa virus matrix protein Z. J Virol. 2016 May;90(9):4556–4562.
  • Radoshitzky SR, Kuhn JH, de Kok-Mercado F, et al. Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses. Expert Opin Drug Discov. 2012 Jul;7(7):613–632.
  • Vela EM, Zhang L, Colpitts TM, et al. Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology. 2007 Dec 5;369(1):1–11. doi: 10.1016/j.virol.2007.07.014
  • Cao W, Henry MD, Borrow P, et al. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998 Dec 11;282(5396):2079–2081. doi: 10.1126/science.282.5396.2079
  • Sheikh MO, Capicciotti CJ, Liu L, et al. Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nat Commun. 2022 Jun 24;13(1):3617. doi: 10.1038/s41467-022-31205-7
  • Raaben M, Jae LT, Herbert AS, et al. NRP2 and CD63 are host factors for Lujo virus cell entry. Cell Host Microbe. 2017 Nov 8;22(5):688–96 e5. doi: 10.1016/j.chom.2017.10.002
  • Radoshitzky SR, Abraham J, Spiropoulou CF, et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 2007 Mar 1;446(7131):92–96. doi: 10.1038/nature05539
  • Flanagan ML, Oldenburg J, Reignier T, et al. New World clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol. 2008 Jan;82(2):938–948.
  • Radoshitzky SR, Kuhn JH, Spiropoulou CF, et al. Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci USA. 2008 Feb 19;105(7):2664–2669. doi: 10.1073/pnas.0709254105
  • Jae LT, Raaben M, Herbert AS, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014 Jun 27;344(6191):1506–1510. doi: 10.1126/science.1252480
  • Meyer BJ, de la Torre JC, Southern PJ. Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol. 2002;262:139–157.
  • Meyer BJ, Southern PJ. Concurrent sequence analysis of 5‘and 3’ RNA termini by intramolecular circularization reveals 5‘nontemplated bases and 3’ terminal heterogeneity for lymphocytic choriomeningitis virus mRnas. J Virol. 1993 May;67(5):2621–2627. doi: 10.1128/jvi.67.5.2621-2627.1993
  • Eichler R, Strecker T, Kolesnikova L, et al. Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res. 2004 Mar 15;100(2):249–255. doi: 10.1016/j.virusres.2003.11.017
  • Strecker T, Eichler R, Ter Meulen J, et al. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. J Virol. 2003 Oct;77(19):10700–10705.
  • U.S. National Library of Medicine. ClinicalTrials.gov. 2023. Available from: https://clinicaltrials.gov/
  • Canonico PG. Efficacy, toxicology and clinical applications of ribavirin against virulent RNA viral infections. Antiviral Res. 1985 Jan 01;5(Suppl 1):75–81.
  • Graci JD, Cameron CE. Therapeutically targeting RNA viruses via lethal mutagenesis. Future Virol. 2008 Nov;3(6):553–566. doi: 10.2217/17460794.3.6.553
  • Parker WB. Metabolism and antiviral activity of ribavirin. Virus Res. 2005 Feb;107(2):165–171. doi: 10.1016/j.virusres.2004.11.006
  • Moreno H, Grande-Pérez A, Domingo E, et al. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses. 2012 Nov 6;4(11):2786–2805. doi: 10.3390/v4112786
  • Ölschläger S, Neyts J, Günther S. Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus. Antiviral Res. 2011 Aug;91(2):89–93. doi: 10.1016/j.antiviral.2011.05.006
  • Snell NJ. Ribavirin - current status of a broad spectrum antiviral agent. Expert Opin Pharmacother. 2001 Aug;2(8):1317–1324. doi: 10.1517/14656566.2.8.1317
  • Crotty S, Maag D, Arnold JJ, et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med. 2000 Dec;6(12):1375–1379.
  • Carrillo-Bustamante P, Nguyen THT, Oestereich L, et al. Determining ribavirin’s mechanism of action against Lassa virus infection. Sci Rep. 2017 Sep 15;7(1):11693. doi: 10.1038/s41598-017-10198-0
  • McCormick JB, King IJ, Webb PA, et al. Lassa fever. Effective therapy with ribavirin. N Engl J Med. 1986 Jan 2;314(1):20–26. doi: 10.1056/NEJM198601023140104
  • Salam AP, Cheng V, Edwards T, et al. Time to reconsider the role of ribavirin in Lassa fever. PLoS Negl Trop Dis. 2021 Jul;15(7):e0009522. doi: 10.1371/journal.pntd.0009522
  • Eberhardt KA, Mischlinger J, Jordan S, et al. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. Int J Infect Dis. 2019 Oct;87:15–20. doi: 10.1016/j.ijid.2019.07.015
  • Cheng H-Y, French CE, Salam AP, et al. Lack of evidence for ribavirin treatment of Lassa fever in systematic review of published and unpublished studies. Emerg Infect Dis. 2022 Aug;28(8):1559–1568.
  • Enria DA, Maiztegui JI. Antiviral treatment of Argentine hemorrhagic fever. Antiviral Res. 1994 Jan;23(1):23–31. doi: 10.1016/0166-3542(94)90030-2
  • Kilgore PE, Ksiazek TG, Rollin PE, et al. Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin Infect Dis. 1997 Apr;24(4):718–722.
  • McKee KT Jr., Huggins JW, Trahan CJ, et al. Ribavirin prophylaxis and therapy for experimental Argentine hemorrhagic fever. Antimicrob Agents Chemother. 1988 Sep;32(9):1304–1309.
  • Enria DA, Briggiler AM, Levis S, et al. Tolerance and antiviral effect of ribavirin in patients with Argentine hemorrhagic fever. Antiviral Res. 1987 Jul;7(6):353–359.
  • Stephen EL, Jones DE, Peters CJ, et al. Ribavirin treatment of toga-, arena-, bunyavirus infection in subhuman primates and other laboratory animal species. In: Smith R Kirkpatrick W, editors. Ribavirin: A Broad Spectrum Antiviral Agent. New York (NY) USA: Academic Press; 1980. p. 169–183.
  • Kenyon RH, Canonico PG, Green DE, et al. Effect of ribavirin and tributylribavirin on Argentine hemorrhagic fever (Junin virus) in guinea pigs. Antimicrob Agents Chemother. 1986 Mar;29(3):521–523.
  • Jahrling PB, Hesse RA, Eddy GA, et al. Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin. J Infect Dis. 1980 May;141(5):580–589.
  • Weissenbacher MC, Calello MA, Merani MS, et al. Therapeutic effect of the antiviral agent ribavirin in Junín virus infection of primates. J Med Virol. 1986 Nov;20(3):261–267.
  • Jahrling PB, Peters CJ, Stephen EL. Enhanced treatment of Lassa fever by immune plasma combined with ribavirin in cynomolgus monkeys. J Infect Dis. 1984 Mar;149(3):420–427. doi: 10.1093/infdis/149.3.420
  • Lingas G, Rosenke K, Safronetz D, et al. Lassa viral dynamics in non-human primates treated with favipiravir or ribavirin. PLoS Comput Biol. 2021 Jan;17(1):e1008535.
  • Contin M, Sepúlveda C, Fascio M, et al. Modified ribavirin analogues as antiviral agents against Junín virus. Bioorg Med Chem Lett. 2019 Feb 15;29(4):556–559. doi: 10.1016/j.bmcl.2018.12.063
  • Gowen BB, Wong M-H, Jung K-H, et al. In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob Agents Chemother. 2007 Sep;51(9):3168–3176.
  • Mendenhall M, Russell A, Juelich T, et al. T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother. 2011 Feb;55(2):782–787.
  • Gowen BB, Smee DF, Wong M-H, et al. Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin. PLoS One. 2008;3(11):e3725. doi: 10.1371/journal.pone.0003725
  • Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449–463. doi: 10.2183/pjab.93.027
  • Goldhill DH, Langat P, Xie H, et al. Determining the mutation bias of favipiravir in influenza virus using next-generation sequencing. J Virol. 2019 Jan 15;93(2):e01217–18. doi: 10.1128/JVI.01217-18
  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013 Nov;100(2):446–454.
  • Zadeh VR, Afowowe TO, Abe H, et al. Potential and action mechanism of favipiravir as an antiviral against Junin virus. PLoS Pathog. 2022 Jul;18(7):e1010689.
  • Safronetz D, Rosenke K, Westover JB, et al. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci Rep. 2015 Oct 12;5(1):14775. doi: 10.1038/srep14775
  • Gowen BB, Juelich TL, Sefing EJ, et al. Favipiravir (T-705) inhibits Junín virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever. PloS Negl Trop Dis. 2013;7(12):e2614. doi: 10.1371/journal.pntd.0002614
  • Rosenke K, Feldmann H, Westover JB, et al. Use of favipiravir to treat Lassa virus infection in macaques. Emerg Infect Dis. 2018 Sep;24(9):1696–1699.
  • Oestereich L, Rieger T, Lüdtke A, et al. Efficacy of favipiravir alone and in combination with ribavirin in a lethal, immunocompetent mouse model of Lassa fever. J Infect Dis. 2016 Mar 15;213(6):934–938. doi: 10.1093/infdis/jiv522
  • Larson RA, Dai D, Hosack VT, et al. Identification of a broad-spectrum arenavirus entry inhibitor. J Virol. 2008 Nov;82(21):10768–10775.
  • Cashman KA, Smith MA, Twenhafel NA, et al. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antiviral Res. 2011 Apr;90(1):70–79.
  • Madu IG, Files M, Gharaibeh DN, et al. A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 2018 Dec;14(12):e1007439.
  • Sattler RA, Paessler S, Ly H, et al. Animal models of Lassa fever. Pathogens. 2020 Mar 6;9(3):197. doi: 10.3390/pathogens9030197
  • Cashman KA, Wilkinson ER, Posakony J, et al. Lassa antiviral LHF-535 protects guinea pigs from lethal challenge. Sci Rep. 2022 Nov 19;12(1):19911. doi: 10.1038/s41598-022-23760-2
  • Amberg SM, Snyder B, Vliet-Gregg PA, et al. Safety and pharmacokinetics of LHF-535, a potential treatment for Lassa fever, in healthy adults. Antimicrob Agents Chemother. 2022 Nov 15;66(11):e0095122. doi: 10.1128/aac.00951-22
  • Plewe MB, Gantla VR, Sokolova NV, et al. Discovery of a novel highly potent broad-spectrum heterocyclic chemical series of arenavirus cell entry inhibitors. Bioorg Med Chem Lett. 2021 Jun 1;41:127983. doi: 10.1016/j.bmcl.2021.127983
  • Golden JW, Hammerbeck CD, Mucker EM, et al. Animal models for the study of rodent-borne hemorrhagic fever viruses: arenaviruses and hantaviruses. Biomed Res Int. 2015;2015:793257. doi: 10.1155/2015/793257
  • Westover JB, Naik S, Bailey KW, et al. Severe mammarenaviral disease in guinea pigs effectively treated by an orally bioavailable fusion inhibitor, alone or in combination with favipiravir. Antiviral Res. 2022 Dec;208:105444. doi: 10.1016/j.antiviral.2022.105444
  • Welch SR, Spengler JR, Genzer SC, et al. Screening and identification of Lujo virus inhibitors using a recombinant reporter virus platform. Viruses. 2021 Jun 28;13(7):1255. doi: 10.3390/v13071255
  • Mizutani T, Ohba Y, Mizuta S, et al. An antiviral drug screening platform with a FRET biosensor for measurement of arenavirus Z assembly. Cell Struct Funct. 2020 Dec 25;45(2):155–163. doi: 10.1247/csf.20030
  • Löw K, Möller R, Stegmann C, et al. Luminescent reporter cells enable the identification of broad-spectrum antivirals against emerging viruses. J Med Virol. 2023 Nov;95(11):e29211.
  • Hou Y, Liu Y, Jia X, et al. Screening and identification of Lassa virus entry inhibitors from a fragment-based drug discovery library. Viruses. 2022 Nov 27;14(12):2649. doi: 10.3390/v14122649
  • Oestereich L, Wurr S, Becker-Ziaja B, et al. Establishment of recombinant trisegmented Mopeia virus expressing two reporter genes for screening of mammarenavirus inhibitors. Viruses. 2022 Aug 25;14(9):1869. doi: 10.3390/v14091869
  • Cubitt B, Ortiz-Riano E, Cheng BYH, et al. A cell-based, infectious-free, platform to identify inhibitors of Lassa virus ribonucleoprotein (vRNP) activity. Antiviral Res. 2020 Jan;173:104667. doi: 10.1016/j.antiviral.2019.104667
  • Caì Y, Iwasaki M, Beitzel BF, et al. Recombinant Lassa virus expressing green fluorescent protein as a tool for high-throughput drug screens and neutralizing antibody assays. Viruses. 2018 Nov 20;10(11):655. doi: 10.3390/v10110655
  • Welch SR, Guerrero LW, Chakrabarti AK, et al. Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems. Antiviral Res. 2016 Dec;136:9–18. doi: 10.1016/j.antiviral.2016.10.007
  • Lan X, Zhang Y, Jia X, et al. Screening and identification of Lassa virus endonuclease-targeting inhibitors from a fragment-based drug discovery library. Antiviral Res. 2022 Jan;197:105230. doi: 10.1016/j.antiviral.2021.105230
  • Mercorelli B, Palu G, Loregian A. Drug repurposing for viral infectious diseases: how far are we?. Trends Microbiol. 2018 Oct;26(10):865–876. doi: 10.1016/j.tim.2018.04.004
  • Strittmatter SM. Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nat Med. 2014 Jun;20(6):590–591. doi: 10.1038/nm.3595
  • Kim YJ, Cubitt B, Chen E, et al. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Res. 2019 Sep;169:104558. doi: 10.1016/j.antiviral.2019.104558
  • Mizuma K, Takashima A, Cubitt B, et al. The Pan-ErbB tyrosine kinase inhibitor afatinib inhibits multiple steps of the mammarenavirus life cycle. Virology. 2022 Nov;576:83–95. doi: 10.1016/j.virol.2022.09.005
  • Kimura M, Matsuoka R, Taniguchi S, et al. Inhibitors of cannabinoid receptor 1 suppress the cellular entry of Lujo virus. Virology. 2023 Oct;587:109867. doi: 10.1016/j.virol.2023.109867
  • Zhang X, Tang K, Guo Y. The antifungal isavuconazole inhibits the entry of Lassa virus by targeting the stable signal peptide-GP2 subunit interface of Lassa virus glycoprotein. Antiviral Res. 2020 Feb;174:104701. doi: 10.1016/j.antiviral.2019.104701
  • Wang P, Liu Y, Zhang G, et al. Screening and identification of Lassa virus entry inhibitors from an FDA-Approved drug library. J Virol. 2018 Aug 15;92(16):e00954–18. doi: 10.1128/JVI.00954-18
  • Zhang X, Yan F, Tang K, et al. Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Res. 2019 Jul;167:68–77. doi: 10.1016/j.antiviral.2019.03.014
  • Sepúlveda CS, García CC, Damonte EB. Antiviral activity of A771726, the active metabolite of leflunomide, against Junín virus. J Med Virol. 2018 May;90(5):819–827. doi: 10.1002/jmv.25024
  • Cao J, Dong S, Liu Y, et al. Screening and identification of Lujo virus entry inhibitors from an Food and Drug Administration-approved drugs library. Front Microbiol. 2021;12:793519. doi: 10.3389/fmicb.2021.793519
  • Hulseberg CE, Fénéant L, Szymańska-de Wijs KM, et al. Arbidol and other low-molecular-weight drugs that inhibit Lassa and Ebola viruses. J Virol. 2019 Apr 15;93(8):e02185–18. doi: 10.1128/JVI.02185-18
  • Herring S, Oda JM, Wagoner J, et al. Inhibition of arenaviruses by combinations of orally available approved drugs. Antimicrob Agents Chemother. 2021 Mar 18;65(4):e01146–20. doi: 10.1128/AAC.00653-21
  • Uckun FM, Petkevich AS, Vassilev AO, et al. Stampidine prevents mortality in an experimental mouse model of viral hemorrhagic fever caused by Lassa virus. BMC Infect Dis. 2004 Jan 13;4(1):1. doi: 10.1186/1471-2334-4-1
  • Lee AM, Rojek JM, Spiropoulou CF, et al. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem. 2008 Jul 4;283(27):18734–18742. doi: 10.1074/jbc.M802089200
  • Liu Y, Guo J, Cao J, et al. Screening of botanical drugs against Lassa virus entry. J Virol. 2021 Mar 25;95(8):e02429–20. doi: 10.1128/JVI.02429-20
  • Urata S, Ngo N, de la Torre JC. The PI3K/Akt pathway contributes to arenavirus budding. J Virol. 2012 Apr;86(8):4578–4585. doi: 10.1128/JVI.06604-11
  • Mohr EL, McMullan LK, Lo MK, et al. Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses. Antiviral Res. 2015 Aug;120:40–47. doi: 10.1016/j.antiviral.2015.05.003
  • Toba S, Sato A, Kawai M, et al. Identification of cap-dependent endonuclease inhibitors with broad-spectrum activity against bunyaviruses. Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2206104119. doi: 10.1073/pnas.2206104119
  • Takenaga T, Zhang Z, Muramoto Y, et al. CP100356 hydrochloride, a P-glycoprotein inhibitor, inhibits Lassa virus entry: implication of a candidate pan-mammarenavirus entry inhibitor. Viruses. 2021 Sep 3;13(9):1763. doi: 10.3390/v13091763
  • Urata S, Yun N, Pasquato A, et al. Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J Virol. 2011 Jan;85(2):795–803.
  • Alvarez De Lauro AE, Pelaez MA, Marquez AB, et al. Effects of the natural flavonoid quercetin on arenavirus Junín infection. Viruses. Viruses 2023 Aug 15;15(8):1741. doi: 10.3390/v15081741
  • Bolken TC, Laquerre S, Zhang Y, et al. Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral Res. 2006 Feb;69(2):86–97.
  • Torriani G, Trofimenko E, Mayor J, et al. Identification of clotrimazole derivatives as specific inhibitors of arenavirus fusion. J Virol. 2019 Mar 15;93(6):e01744–18. doi: 10.1128/JVI.01744-18
  • Tang K, He S, Zhang X, et al. Tangeretin, an extract from Citrus peels, blocks cellular entry of arenaviruses that cause viral hemorrhagic fever. Antiviral Res. 2018 Dec;160:87–93. doi: 10.1016/j.antiviral.2018.10.011
  • Maiztegui JI, Fernandez NJ, de Damilano AJ. Efficacy of immune plasma in treatment of Argentine haemorrhagic fever and association between treatment and a late neurological syndrome. Lancet. 1979 Dec 8;314(8154):1216–1217. doi: 10.1016/S0140-6736(79)92335-3
  • Enria DA, Briggiler AM, Fernandez NJ, et al. Importance of dose of neutralising antibodies in treatment of Argentine haemorrhagic fever with immune plasma. Lancet. 1984 Aug 4;324(8397):255–256. doi: 10.1016/S0140-6736(84)90299-X
  • Enria DA, de Damilano AJ, Briggiler AM, et al. Síndrome neurológico tardío en enfermos de fiebre hemorrágica argentina tratados con plasma inmune. Medicina (B Aires). 1985;45(6):615–620.
  • Enria DA, Briggiler AM, Sánchez Z. Treatment of Argentine hemorrhagic fever. Antiviral Res. 2008 Apr;78(1):132–139. doi: 10.1016/j.antiviral.2007.10.010
  • Ruggiero HA, Pérez Isquierdo F, Milani HA, et al. Traitement de la fièvre hémorragique argentine par le plasma de convalescent. 4,433 cas. Presse Méd. 1986 Dec 20;15(45):2239–2242.
  • Leifer E, Gocke DJ, Bourne H. Lassa fever, a new virus disease of man from West Africa. II. Report of a laboratory-acquired infection treated with plasma from a person recently recovered from the disease. Am J Trop Med Hyg. 1970 Jul;19(4):677–679. doi: 10.4269/ajtmh.1970.19.677
  • White HLF. A study of 23 hospital cases. Trans R Soc Trop Med Hyg. 1972;66(3):390–401. doi: 10.1016/0035-9203(72)90269-6
  • Frame JD, Verbrugge GP, Gill RG, et al. The use of Lassa fever convalescent plasma in Nigeria. Trans R Soc Trop Med Hyg. 1984;78(3):319–324. doi: 10.1016/0035-9203(84)90107-X
  • Jahrling PB. Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J Med Virol. 1983;12(2):93–102. doi: 10.1002/jmv.1890120203
  • Jahrling PB, Peters CJ. Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect Immun. 1984 May;44(2):528–533. doi: 10.1128/iai.44.2.528-533.1984
  • Eddy GA, Wagner FS, Scott SK, et al. Protection of monkeys against Machupo virus by the passive administration of Bolivian haemorrhagic fever immunoglobulin (human origin). Bull World Health Organ. 1975;52(4–6):723–727.
  • Kenyon RH, Green DE, Eddy GA, et al. Treatment of Junin virus-infected guinea pigs with immune serum: development of late neurological disease. J Med Virol. 1986 Nov;20(3):207–218.
  • Zeitlin L, Geisbert JB, Deer DJ, et al. Monoclonal antibody therapy for Junin virus infection. Proc Natl Acad Sci USA. 2016 Apr 19;113(16):4458–4463. doi: 10.1073/pnas.1600996113
  • Cross RW, Mire CE, Branco LM, et al. Treatment of Lassa virus infection in outbred guinea pigs with first-in-class human monoclonal antibodies. Antiviral Res. 2016 Sep;133:218–222. doi: 10.1016/j.antiviral.2016.08.012
  • Mire CE, Cross RW, Geisbert JB, et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat Med. 2017 Oct;23(10):1146–1149. doi: 10.1038/nm.4396
  • Cross RW, Hastie KM, Mire CE, et al. Antibody therapy for Lassa fever. Curr Opin Virol. 2019 Aug;37:97–104. doi: 10.1016/j.coviro.2019.07.003
  • Li H, Buck T, Zandonatti M, et al. A cocktail of protective antibodies subverts the dense glycan shield of Lassa virus. Sci Transl Med. 2022 Oct 26;14(668):eabq0991. doi: 10.1126/scitranslmed.abq0991
  • Cross RW, Heinrich ML, Fenton KA, et al. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2304876120. doi: 10.1073/pnas.2304876120
  • Woolsey C, Cross RW, Prasad AN, et al. Monoclonal antibody therapy demonstrates increased virulence of a lineage VII strain of Lassa virus in nonhuman primates. Emerg Microbes Infect. 2024 Jan 2;13(1):2301061. doi: 10.1080/22221751.2023.2301061
  • Allio T. The FDA Animal Rule and its role in protecting human safety. Expert Opin Drug Saf. 2018 Oct;17(10):971–973. doi: 10.1080/14740338.2018.1518429
  • Vela E. Animal models, prophylaxis, and therapeutics for arenavirus infections. Viruses. 2012 Sep;4(9):1802–1829. doi: 10.3390/v4091802
  • Stevens H, Huys I. Innovative approaches to increase access to medicines in developing countries. Front Med. 2017;4:218. doi: 10.3389/fmed.2017.00218
  • Cassetti MC, Pierson TC, Patterson LJ, et al. Prototype pathogen approach for vaccine and monoclonal antibody development: a critical component of the NIAID plan for pandemic preparedness. J Infect Dis. 2023 Jun 15;227(12):1433–1441. doi: 10.1093/infdis/jiac296
  • Duvignaud A, Jaspard M, Etafo IC, et al. Lassa fever outcomes and prognostic factors in Nigeria (LASCOPE): a prospective cohort study. Lancet Glob Health. 2021 Apr;9(4):e469–e78.
  • Okokhere PO, Erameh CO, Alikah F, et al. Acute Lassa virus encephalitis with Lassa virus in the cerebrospinal fluid but absent in the blood: a case report with a positive outcome. Case Rep Neurol. 2018 May;10(2):150–158.
  • Shah DK, Betts AM. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs. 2013 Mar;5(2):297–305. doi: 10.4161/mabs.23684

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.