93
Views
0
CrossRef citations to date
0
Altmetric
Drug Discovery Case History

Lessons learned from the failure of solanezumab as a prospective treatment strategy for Alzheimer’s disease

ORCID Icon, ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 639-647 | Received 19 Feb 2024, Accepted 23 Apr 2024, Published online: 29 Apr 2024

References

  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. The Lancet. 2021;397(10284):1577–1590. doi: 10.1016/S0140-6736(20)32205-4
  • [No authors listed]. 2023 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2023;19(4):1598–1695. doi: 10.1002/alz.13016
  • Lemere CA. Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener. 2013;8(1):36.
  • Panza F, Lozupone M, Seripa D, et al. Amyloid-β immunotherapy for alzheimer disease: is it now a long shot? Ann. Neurol. 2019;85(3):303–315. doi: 10.1002/ana.25410
  • Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, Aducanumab, and gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics. 2023;20(1):195–206. doi: 10.1007/s13311-022-01308-6
  • Yang T, Dang Y, Ostaszewski B, et al. Target engagement in an Alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann Neurol. 2019;86:215–224. doi: 10.1002/ana.25513
  • Tariot PN, Lopera F, Langbaum JB, et al. The Alzheimer’s prevention initiative autosomal-dominant Alzheimer’s disease trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimers Dement. 2018;4:150–160. doi: 10.1016/j.trci.2018.02.002
  • Ostrowitzki S, Bittner T, Sink KM, et al. Evaluating the safety and efficacy of crenezumab vs. placebo in adults with early alzheimer disease: two phase 3 randomized placebo-controlled trials. JAMA Neurol. 2022;79(11):1113–1121. doi: 10.1001/jamaneurol.2022.2909
  • Meilandt WJ, Maloney JA, Imperio J, et al. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ. Alzheimers Res Ther. 2019;11:97. doi: 10.1186/s13195-019-0553-5
  • Panza F, Frisardi V, Imbimbo BP, et al. Anti-β-amyloid immunotherapy for alzheimers disease: focus on Bapineuzumab. Curr Alzheimer Res. 2011;8(8):808–817. doi: 10.2174/156720511798192718
  • Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–333. doi: 10.1056/NEJMoa1304839
  • Padda IS, Parmar M. Aducanumab. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
  • U.S. Food and Drug Administration. FDA grants accelerated approval for Alzheimer’s drug. Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment
  • Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13:80. doi: 10.1186/s13195-021-00813-8
  • van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. doi: 10.1056/NEJMoa2212948
  • Kaur U, Reddy J, Tiwari A, et al. Lecanemab: more questions than Answers! Clin. Drug Investig. 2024;44(1):1–10. doi: 10.1007/s40261-023-01331-1
  • Sims JR, Zimmer JA, Evans CD, et al. TRAILBLAZER-ALZ 2 investigators. Donanemab in Early Symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330:512–527. doi: 10.1001/jama.2023.13239
  • U.S. Food and Drug Administration to Convene Advisory Committee Meeting to discuss the TRAILBLAZER-ALZ 2 study of Donanemab. Available from: https://investor.lilly.com/news-releases/news-release-details/us-food-and-drug-administration-convene-advisory-committee
  • Doggrell SA. More failure with solanezumab – this time in preclinical Alzheimer’s disease. Expert Opin Biol Ther. 2024;24(3):119–123. doi: 10.1080/14712598.2024.2325551
  • Imbimbo BP, Ottonello S, Frisardi V, et al. Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev Clin Immunol. 2012;8(2):135–149. doi: 10.1586/eci.11.93
  • Seubert P, Barbour R, Khan K, et al. Antibody capture of soluble Aβ does not reduce cortical Aβ amyloidosis in the PDAPP mouse. Neurodegener Dis. 2008;5(2):65–71. doi: 10.1159/000112834
  • Crespi G, Hermans S, Parker M, et al. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci Rep. 2015;5(1):9649. doi: 10.1038/srep09649
  • Watt AD, Crespi GA, Down RA, et al. Do current therapeutic anti-Aβ antibodies for Alzheimer’s disease engage the target? Acta Neuropathol. 2014;127(6):803–810. doi: 10.1007/s00401-014-1290-2
  • Bouter Y, Lopez Noguerola JS, Tucholla P, et al. Aβ targets of the biosimilar antibodies of bapineuzumab, crenezumab, solanezumab in comparison to an antibody against N truncated Aβ in sporadic alzheimer disease cases and mouse models. Acta Neuropathol. 2015;130(5):713–729. doi: 10.1007/s00401-015-1489-x
  • Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature. 1995;373(6514):523–527. doi: 10.1038/373523a0
  • Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nat Med. 2000;6:916–919. doi: 10.1038/78682
  • Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci. 2002;5:452–457. doi: 10.1038/nn842
  • DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma a beta clearance and decreases brain a beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci, USA. 2001;98:8850–8855. doi: 10.1073/pnas.151261398
  • DeMattos RB, Bales KR, Cummins DJ, et al. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science. 2002;295(5563):2264–2267. doi: 10.1126/science.1067568
  • Lue LF, Kuo YM, Roher AE, et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155(3):853–862. doi: 10.1016/s0002-9440(10)65184-x
  • McLean CA, Cherny RA, Fraser FW, et al. Soluble pool of abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999;46:860–866. doi: 10.1002/1531-8249(199912)46:6<860:aid-ana8>3.0.co;2-m
  • Koistinaho M, Ort M, Cimadevilla JM, et al. Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta -amyloid deposits but do not form plaques. Proc Natl Acad Sci, USA. 2001;98:14675–14680. doi: 10.1073/pnas.261562998
  • Levites Y, Smithson LA, Price RW, et al. Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer’s disease mouse models. Faseb J. 2006;20:2576–2578. doi: 10.1096/fj.06-6463fje
  • Yamada K, Yabuki C, Seubert P, et al. Aβ immunotherapy: intracerebral sequestration of Aβ by an Anti-Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J Neurosci. 2009;29(36):11393–11398. doi: 10.1523/JNEUROSCI.2021-09.2009
  • Adolfsson O, Pihlgren M, Toni N, et al. An effector-reduced anti- -amyloid (A) antibody with unique a binding properties promotes neuroprotection and glial engulfment of a. J Neurosci. 2012;32(28):9677–9689. doi: 10.1523/JNEUROSCI.4742-11.2012
  • Farlow M, Arnold SE, van Dyck CH, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimer’s & Dementia. 2012;8(4):261–271. doi: 10.1016/j.jalz.2011.09.224
  • Siemers ER, Friedrich S, Dean RA, et al. Safety and changes in plasma and cerebrospinal fluid amyloid β after a single administration of an amyloid β monoclonal antibody in subjects with alzheimer disease. Clin Neuropharmacol. 2010;33(2):67–73. doi: 10.1097/WNF.0b013e3181cb577a
  • Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–321. doi: 10.1056/NEJMoa1312889
  • Willis BA, Sundell K, Lachno DR, et al. Central pharmacodynamic activity of solanezumab in mild Alzheimer’s disease dementia. A&D Transl Res & Clin Interv. 2018;4(1):652–660. doi: 10.1016/j.trci.2018.10.001
  • Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378:321–330. doi: 10.1056/NEJMoa1705971
  • Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group Neurology. 1998;50:136–145. doi: 10.1212/wnl.50.1.136
  • Siemers ER, Sundell KL, Carlson C, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s & Dementia. 2016;12(2):110–120. doi: 10.1016/j.jalz.2015.06.1893
  • Schwarz AJ, Sundell KL, Charil A, et al. Magnetic resonance imaging measures of brain atrophy from the EXPEDITION3 trial in mild Alzheimer’s disease. A&D Transl Res & Clin Interv. 2019;5(1):328–337. doi: 10.1016/j.trci.2019.05.007
  • Holdridge KC, Yaari R, Hoban DB, et al. Targeting amyloid β in Alzheimer’s disease: meta-analysis of low-dose solanezumab in Alzheimer’s disease with mild dementia studies. Alzheimer’s & Dementia. 2023;19(10):4619–4628. doi: 10.1002/alz.13031
  • Svaldi DO, Higgins IA, Holdridge KC, et al. Magnetic resonance imaging measures of brain volumes across the EXPEDITION trials in mild and moderate Alzheimer’s disease dementia. A&D Transl Res & Clin Interv. 2022;8(1):e12313. doi: 10.1002/trc2.12313
  • Bateman RJ, Benzinger TL, Berry S, et al. The DIAN-TU next generation Alzheimer’s prevention trial: adaptive design and disease progression model. Alzheimer’s & Dementia. 2017;13(1):8–19. doi: 10.1016/j.jalz.2016.07.005
  • Washington University School of Medicine in St. Louis. Investigational drugs didn’t slow memory loss, cognitive decline in rare, inherited Alzheimer’s, initial analysis indicates. [cited 2024 Feb 5]. Available from: https://medicine.wustl.edu/news/alzheimers-diantu-trial-initial-results
  • Farlow M, Bateman R, Aschenbrenner A, et al. Solanezumab in-depth outcomes: results of the DIAN-TU prevention trial of solanezumab and gantenerumab in dominantly inherited AD. Alzheimers Dement. 2020;16(S9):e038028. doi: 10.1002/alz.038028
  • Salloway S, Farlow M, McDade E, et al. Dominantly inherited alzheimer network–trials unit. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat Med. 2021;27:1187–1196. doi: 10.1038/s41591-021-01369-8
  • Sacks CA, Avorn J, Kesselheim AS. The failure of solanezumab — how the FDA saved taxpayers billions. N Engl J Med. 2017;376(18):1706–1708. doi: 10.1056/NEJMp1701047
  • Donohue MC, Sperling RA, Salmon DP, et al. Australian imaging, biomarkers, and lifestyle flagship study of Ageing; Alzheimer’s disease neuroimaging Initiative; Alzheimer’s disease cooperative study. The preclinical alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71:961–970. doi: 10.1001/jamaneurol.2014.803
  • Sperling RA, Rentz DM, Johnson KA, et al. The A4 study: stopping AD before symptoms begin? Sci Transl Med. 2014;6:228fs13. doi: 10.1126/scitranslmed.3007941
  • Sperling RA, Donohue MC, Raman R, et al. A4 study team. Trial of Solanezumab in preclinical Alzheimer’s disease. N Engl J Med. 2023;389(12):1096–1107. doi: 10.1056/NEJMoa2305032
  • Sperling RA, Donohue MC, Raman R, et al. A4 study team. Association of Factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020;77:735–745. doi: 10.1001/jamaneurol.2020.0387
  • Imbimbo BP, Ippati S, Watling M, et al. Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol Res. 2023;187:106631. doi: 10.1016/j.phrs.2022.106631
  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia. 2011;7(3):280–292. doi: 10.1016/j.jalz.2011.03.003
  • CR J Jr, Knopman DS, Weigand SD, et al. An operational approach to National Institute on Aging–Alzheimer’s association criteria for preclinical alzheimer disease. Neurol. 2012;71(6):765–775. doi: 10.1002/ana.22628
  • Morgan D. Mechanisms of Aβ plaque clearance following passive Aβ immunization. Neurodegener Dis. 2005;2(5):261–266. doi: 10.1159/000090366
  • Andrews JS, Desai U, Kirson NY, et al. Disease severity and minimal clinically important differences in clinical outcome assessments for Alzheimer’s disease clinical trials. A&D Transl Res & Clin Interv. 2019;5(1):354–363. doi: 10.1016/j.trci.2019.06.005
  • Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020;140:417–447. doi: 10.1007/s00401-020-02196-w
  • Castellani RJ, Lee HG, Siedlak SL, et al. Reexamining Alzheimer’s disease: evidence for a protective role for Amyloid-β protein precursor and Amyloid-β. J Alzheimers Dis. 2009;18(2):447–452. doi: 10.3233/JAD-2009-1151
  • Lee EB, Leng LZ, Zhang B, et al. Targeting Amyloid-β Peptide (Aβ) oligomers by Passive Immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J Biol Chem. 2006;281(7):4292–4299. doi: 10.1074/jbc.M511018200
  • Jack CR Jr, Wiste HJ, Therneau TM, et al. Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. JAMA. 2019;321(23):2316–2325. doi: 10.1001/jama.2019.7437
  • Sperling RA, Mormino EC, Schultz AP, et al. The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann Neurol. 2019;85:181–193. doi: 10.1002/ana.25395
  • Rabin JS, Schultz AP, Hedden T, et al. Interactive associations of vascular risk and β-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the harvard aging brain study. JAMA Neurol. 2018;75:1124–1131. doi: 10.1001/jamaneurol.2018.1123
  • Vemuri P, Lesnick TG, Knopman DS, et al. Amyloid, vascular, and resilience pathways associated with cognitive aging. Ann Neurol. 2019;86:866–877. doi: 10.1002/ana.25600
  • Soldan A, Pettigrew C, Fagan AM, et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology. 2019;92:e1567–e1579. doi: 10.1212/WNL.0000000000007248
  • Tijms BM, Vromen EM, Mjaavatten O, et al. Cerebrospinal fluid proteomics in patients with Alzheimer’s disease reveals five molecular subtypes with distinct genetic risk profiles. Nat Aging. 2024;4(1):33–47. doi: 10.1038/s43587-023-00550-7
  • Lozupone M, Dibello V, Sardone R, et al. The development of peptide- and oligonucleotide-based drugs to prevent the formation of abnormal tau in tauopathies. Expert Opin Drug Discov. 2023;18:515–526. doi: 10.1080/17460441.2023.2200245
  • Imbimbo BP, Triaca V, Imbimbo C, et al. Investigational treatments for neurodegenerative diseases caused by inheritance of gene mutations: lessons from recent clinical trials. Neural Regen Res. 2023;18:1679–1683. doi: 10.4103/1673-5374.363185

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.