51
Views
0
CrossRef citations to date
0
Altmetric
Review

New drug discovery strategies for the treatment of benznidazole-resistance in Trypanosoma cruzi, the causative agent of Chagas disease

, , ORCID Icon, , , , , ORCID Icon, , , & ORCID Icon show all
Pages 741-753 | Received 29 Feb 2024, Accepted 25 Apr 2024, Published online: 07 May 2024

References

  • World Health Organization [Internet]. [cited 2022 Oct 24] Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  • Hotez PJ, Picado A. The rise of neglected tropical diseases in the “new Texas. PLOS Negl Trop Dis. 2018;12(1):e0005581. doi: 10.1371/journal.pntd.0005581
  • Castillo-Riquelme M. Chagas disease in non-endemic countries. Lancet Glob Health. 2017;5(4):e379–e380. doi: 10.1016/S2214-109X(17)30090-6
  • Imai K, Misawa K, Osa M, et al. Chagas disease: a report of 17 suspected cases in Japan, 2012–2017. Trop Med Health. 2019;47(1):38. doi: 10.1186/s41182-019-0168-3
  • Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94. doi: 10.1016/S0140-6736(17)31612-4
  • Epstein D, Nusser N, Oliel S. PAHO Pan American Health Organization [Internet 70% of people with Chagas don’t know they’re infected. 2021 [cited 2022 Oct 15]. Available from: https://www.paho.org/en/news/13-4-2021-70-people-chagas-dont-know-theyre-infected
  • Irish A, Whitman JD, Clark EH, et al. Updated estimates and mapping for prevalence of Chagas disease among adults, United States. Emerg Infect Dis. 2022;28(7):1313–1320. doi: 10.3201/eid2807.212221
  • Hasslocher-Moreno AM. Laboratory-acquired acute Chagas disease: a case report. J Clin Images Med Case Rep. 2022;3(5):3. doi: 10.52768/2766-7820/1833
  • Ayres J, Marcus R, Standley CJ. The importance of screening for Chagas disease against the backdrop of changing epidemiology in the USA. Curr Trop Med Rep. 2022;9(4):185–193. doi: 10.1007/s40475-022-00264-7
  • Sales Junior PA, Molina I, Fonseca Murta SM, et al. Experimental and clinical treatment of Chagas disease: a review. Am J Trop Med Hyg. 2017;97(5):1289–1303. doi: 10.4269/ajtmh.16-0761
  • Hall BS, Wilkinson SR. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother. 2012;56(1):115–123. doi: 10.1128/AAC.05135-11
  • Trochine A, Creek DJ, Faral-Tello P, et al. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLOS Negl Trop Dis. 2014;8(5):e2844. doi: 10.1371/journal.pntd.0002844
  • Rajão MA, Furtado C, Alves CL, et al. Unveiling Benznidazole’s mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environ Mol Mutagen. 2014;55(4):309–321. doi: 10.1002/em.21839
  • Trochine A, Alvarez G, Corre S, et al. Trypanosoma cruzi chemical proteomics using immobilized benznidazole. Exp Parasitol. 2014;140:33–38. doi: 10.1016/j.exppara.2014.03.013
  • Wilkinson SR, Taylor MC, Horn D, et al. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci, USA. 2008;105(13):5022–5027. doi: 10.1073/pnas.0711014105
  • Aldasoro E, Posada E, Requena-Méndez A, et al. What to expect and when: benznidazole toxicity in chronic Chagas’ disease treatment. J Antimicrob Chemother. 2018;73(4):1060–1067. doi: 10.1093/jac/dkx516
  • Vela A, Coral-Almeida M, Sereno D, et al. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: a systematic review and meta-analysis. PLOS Negl Trop Dis. 2021;15(3):e0009269. doi: 10.1371/journal.pntd.0009269
  • Zingales B, Andrade SG, Briones MRS, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104(7):1051–1054. doi: 10.1590/S0074-02762009000700021
  • Lima L, Espinosa-Álvarez O, Ortiz PA, et al. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop. 2015;151:166–177. doi: 10.1016/j.actatropica.2015.07.015
  • Zingales B, Miles MA, Moraes CB, et al. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz. 2014;109(6):828–833. doi: 10.1590/0074-0276140156
  • García-Huertas P, Mejía-Jaramillo AM, Machado CR, et al. Prostaglandin F2α synthase in Trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. R Soc Open Sci. 2017;4(9):170773. doi: 10.1098/rsos.170773
  • Lima DA, Gonçalves LO, Reis-Cunha JL, et al. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasites Vectors. 2023;16(1):167. doi: 10.1186/s13071-023-05775-4
  • Petravicius PO, Costa-Martins AG, Silva MN, et al. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Trop. 2019;200:105161. doi: 10.1016/j.actatropica.2019.105161
  • Mejía-Jaramillo AM, Fernández GJ, Palacio L, et al. Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benznidazole in Trypanosoma cruzi. Parasites Vectors. 2011;4(1):169. doi: 10.1186/1756-3305-4-169
  • Murta SMF, Krieger MA, Montenegro LR, et al. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol Biochem Parasitol. 2006;146(2):151–162. doi: 10.1016/j.molbiopara.2005.12.001
  • Díaz-Viraqué F, Chiribao ML, Trochine A, et al. Old yellow enzyme from Trypanosoma cruzi exhibits in vivo prostaglandin F2α synthase activity and has a key role in parasite infection and drug susceptibility. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.00456
  • García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: promising new drugs, plants and targets. Biomed Pharmacother. 2021;142:112020. doi: 10.1016/j.biopha.2021.112020
  • Williams RE, Bruce NC. ‘New uses for an Old Enzyme’ – the Old Yellow Enzyme family of flavoenzymes. Microbiology. 2002;148(6):1607–1614. doi: 10.1099/00221287-148-6-1607
  • Kubata BK, Kabututu Z, Nozaki T, et al. A key role for old yellow enzyme in the metabolism of drugs by Trypanosoma cruzi. J Exp Med. 2002;196(9):1241–1252. doi: 10.1084/jem.20020885
  • Santi AMM, Ribeiro JM, Reis-Cunha JL, et al. Disruption of multiple copies of the prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLOS Negl Trop Dis. 2022;16(10):e0010845. doi: 10.1371/journal.pntd.0010845
  • Santi AMM, Murta SMF. Antioxidant defence system as a rational target for Chagas disease and leishmaniasis chemotherapy. Mem Inst Oswaldo Cruz. 2022;117:117. doi: 10.1590/0074-02760210401
  • Zingales B, Araujo RGA, Moreno M, et al. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz. 2015;110(3):433–444. doi: 10.1590/0074-02760140407
  • Giorgi ME, Lederkremer RD. The glycan structure of T. cruzi mucins depends on the Host. Insights on the chameleonic galactose. Molecules. 2020;25(17):3913. doi: 10.3390/molecules25173913
  • Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and chromosomal copy number variations as an adaptive mechanism towards a parasitic lifestyle in Trypanosomatids. Curr Genomics. 2018;19(2). doi: 10.2174/1389202918666170911161311
  • Reis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO, et al. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics. 2015;16(1):499. doi: 10.1186/s12864-015-1680-4
  • Bartholomeu DC, Cerqueira GC, Leão ACA, et al. Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res. 2009;37(10):3407–3417. doi: 10.1093/nar/gkp172
  • Oliveira C, Holetz FB, Alves LR, et al. Modulation of virulence factors during Trypanosoma cruzi differentiation. Pathogens. 2022;12(1):32. doi: 10.3390/pathogens12010032
  • Moreira DDS, Duarte AP, Pais FSM, et al. Overexpression of eukaryotic initiation factor 5A (eIF5A) affects susceptibility to benznidazole in Trypanosoma cruzi populations. Mem Inst Oswaldo Cruz. 2018;113(9):113. doi: 10.1590/0074-02760180162
  • Gupta I, Aggarwal S, Singh K, et al. Ubiquitin proteasome pathway proteins as potential drug targets in parasite Trypanosoma cruzi. Sci Rep. 2018;8(1):8399. doi: 10.1038/s41598-018-26532-z
  • Perdomo VG, Rigalli JP, Luquita MG, et al. Up-regulation of ATP-binding cassette transporters in the THP-1 human macrophage cell line by the antichagasic benznidazole. Mem Inst Oswaldo Cruz. 2016;111(11):707–711. doi: 10.1590/0074-02760160080
  • Téllez J, Romero I, Romanha AJ, et al. Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasites Vectors. 2019;12(1):262. doi: 10.1186/s13071-019-3485-9
  • Nogueira FB, Rodrigues JFA, Correa MMS, et al. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz. 2012;107(4):494–502. doi: 10.1590/S0074-02762012000400009
  • Libisch MG, Rego N, Robello C. Transcriptional studies on Trypanosoma cruzi – Host cell interactions: a complex puzzle of variables. Front Cell Infect Microbiol. 2021;11:11. doi: 10.3389/fcimb.2021.692134
  • Teston APM, Fernandes NDS, Abegg CP, et al. Therapeutic effects of benznidazole in Swiss mice that are orally inoculated with Trypanosoma cruzi IV strains from the western Brazilian Amazon. Exp Parasitol. 2021;228:108136. doi: 10.1016/j.exppara.2021.108136
  • Revollo S, Oury B, Vela A, et al. In vitro benznidazole and Nifurtimox Susceptibility Profile of Trypanosoma cruzi strains belonging to discrete typing units TcI, TcII, and TcV. Pathogens. 2019;8(4):197. doi: 10.3390/pathogens8040197
  • Fonseca KDS, Perin L, de Paiva NCN, et al. Benznidazole treatment: time- and dose-dependence varies with the Trypanosoma cruzi strain. Pathogens. 2021;10(6):729. doi: 10.3390/pathogens10060729
  • Kratz JM, Gonçalves KR, Romera LM, et al. The translational challenge in Chagas disease drug development. Mem Inst Oswaldo Cruz. 2022;117:117. doi: 10.1590/0074-02760200501
  • Buckner FS, Verlinde CL, La Flamme AC, et al. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother. 1996;40(11):2592–2597. doi: 10.1128/AAC.40.11.2592
  • Miranda CG, Solana ME, Curto MDLA, et al. A flow cytometer-based method to simultaneously assess activity and selectivity of compounds against the intracellular forms of Trypanosoma cruzi. Acta Trop. 2015;152:8–16. doi: 10.1016/j.actatropica.2015.08.004
  • Canavaci AMC, Bustamante JM, Padilla AM, et al. In vitro and in vivo high-throughput assays for the testing of Anti-Trypanosoma cruzi compounds. PLOS Negl Trop Dis. 2010;4(7):e740. doi: 10.1371/journal.pntd.0000740
  • Hyland KV, Asfaw SH, Olson CL, et al. Bioluminescent imaging of Trypanosoma cruzi infection. Int J Parasitol. 2008;38(12):1391–1400. doi: 10.1016/j.ijpara.2008.04.002
  • Bettiol E, Samanovic M, Murkin AS, et al. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLOS Negl Trop Dis. 2009;3(2):e384. doi: 10.1371/journal.pntd.0000384
  • Engel JC, Ang KKH, Chen S, et al. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob Agents Chemother. 2010;54:3326–3334. doi: 10.1128/AAC.01777-09
  • Moon S, Siqueira-Neto JL, Moraes CB, et al. An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi. PLOS ONE. 2014;9(2):e87188. doi: 10.1371/journal.pone.0087188
  • Alonso-Padilla J, Cotillo I, Presa JL, et al. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLOS Negl Trop Dis. 2015;9(1):e0003493. doi: 10.1371/journal.pntd.0003493
  • De Rycker M, Thomas J, Riley J, et al. Identification of trypanocidal activity for known clinical compounds using a new Trypanosoma cruzi hit-discovery screening cascade. PLOS Negl Trop Dis. 2016;10(4):e0004584. doi: 10.1371/journal.pntd.0004584
  • Svensen N, Wyllie S, Gray DW, et al. Live-imaging rate-of-kill compound profiling for Chagas disease drug discovery with a new automated high-content assay. PLOS Negl Trop Dis. 2021;15(10):e0009870. doi: 10.1371/journal.pntd.0009870
  • De Rycker M, Wyllie S, Horn D, et al. Anti-trypanosomatid drug discovery: progress and challenges. Nat Rev Microbiol. 2023;21(1):35–50. doi: 10.1038/s41579-022-00777-y
  • Romanha AJ, Castro SD, Soeiro MDN, et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz. 2010;105(2):233–238. doi: 10.1590/S0074-02762010000200022
  • Chatelain E. Chagas disease drug discovery: toward a new era. Slas Discovery. 2015;20(1):22–35. doi: 10.1177/1087057114550585
  • Sánchez-Valdéz FJ, Padilla A, Wang W, et al. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife. 2018;7. doi: 10.7554/eLife.34039
  • Soeiro MDN. Perspectives for a new drug candidate for Chagas disease therapy. Mem Inst Oswaldo Cruz. 2022;117:117. doi: 10.1590/0074-02760220004
  • Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, et al. State-of-the-art in the drug discovery pathway for Chagas disease: a framework for drug development and target validation. Res Rep Trop Med. 2023;14:1–19. doi: 10.2147/RRTM.S415273
  • Fiuza LDA, Batista DGJ, Girão RD, et al. Phenotypic evaluation of nucleoside analogues against Trypanosoma cruzi infection: in vitro and in vivo approaches. Molecules. 2022;27(22):8087. doi: 10.3390/molecules27228087
  • Orlando LMR, Lechuga GC, da Silva Lara L, et al. Structural optimization and biological activity of pyrazole derivatives: virtual computational analysis, recovery assay and 3D culture model as potential predictive tools of effectiveness against Trypanosoma cruzi. Molecules. 2021;26(21):6742. doi: 10.3390/molecules26216742
  • Chatelain E, Scandale I. Animal models of Chagas disease and their translational value to drug development. Expert Opin Drug Discov. 2020;15(12):1381–1402. doi: 10.1080/17460441.2020.1806233
  • Francisco AF, Lewis MD, Jayawardhana S, et al. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother. 2015;59(8):4653–4661. doi: 10.1128/AAC.00520-15
  • Andriani G, Chessler A-D, Courtemanche G, et al. Activity in vivo of Anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLOS Negl Trop Dis. 2011;5:e1298. doi: 10.1371/journal.pntd.0001298
  • de Lana M, Giunchetti RC. Dogs as a Model for chemotherapy of Chagas disease and leishmaniasis. Curr Pharm Des. 2021;27(14):1741–1756. doi: 10.2174/1381612826666201228142703
  • Palmeiro-Roldán R, Fonseca-Berzal C, Gómez-Barrio A, et al. Development of novel benznidazole formulations: physicochemical characterization and in vivo evaluation on parasitemia reduction in Chagas disease. Int J Pharm. 2014;472(1–2):110–117. doi: 10.1016/j.ijpharm.2014.06.015
  • Mazzeti AL, Oliveira LT, Gonçalves KR, et al. Benznidazole self-emulsifying delivery system: a novel alternative dosage form for Chagas disease treatment. Eur J Pharm Sci. 2020;145:105234. doi: 10.1016/j.ejps.2020.105234
  • García MC, Eberhardt N, Sanmarco LM, et al. Improved efficacy and safety of low doses of benznidazole-loaded multiparticulate delivery systems in experimental Chagas disease therapy. Eur J Pharm Sci. 2021;164:105912. doi: 10.1016/j.ejps.2021.105912
  • Arrua EC, Hartwig O, Loretz B, et al. Formulation of benznidazole-lipid nanocapsules: drug release, permeability, biocompatibility, and stability studies. Int J Pharm. 2023;642:123120. doi: 10.1016/j.ijpharm.2023.123120
  • Silva FD, Marques MDF, Yoshida MI, et al. Encapsulation of benznidazole in nanostructured lipid carriers and increased trypanocidal activity in a resistant Trypanosoma cruzi strain. Braz J Pharm Sci. 2023;59:59. doi: 10.1590/s2175-97902023e22111
  • Bustamante JM, Sanchez-Valdez F, Padilla AM, et al. A modified drug regimen clears active and dormant trypanosomes in mouse models of Chagas disease. Sci Transl Med. 2020;12(567):12. doi: 10.1126/scitranslmed.abb7656
  • Bustamante JM, White BE, Wilkerson GK, et al. Frequency variation and dose modification of benznidazole administration for the treatment of Trypanosoma cruzi infection in mice, dogs, and nonhuman primates. Antimicrob Agents Chemother. 2023;67(5):67. doi: 10.1128/aac.00132-23
  • Molina-Morant D, Fernández ML, Bosch-Nicolau P, et al. Efficacy and safety assessment of different dosage of benznidazol for the treatment of Chagas disease in chronic phase in adults (MULTIBENZ study): study protocol for a multicenter randomized phase II superiority clinical trial. Trials. 2020;21(1):328. doi: 10.1186/s13063-020-4226-2
  • Bosch-Nicolau P, Fernández ML, Sulleiro E, et al. Efficacy of three benznidazole dosing strategies for adults living with chronic Chagas disease (MULTIBENZ): an international, randomised, double-blind, phase 2b trial. Lancet Infect Dis. 2024;24(4):386–394. doi: 10.1016/S1473-3099(23)00629-1
  • ClinicalTrials.gov [Internet]. Shorter benznidazole regimens compared to the standard regimen for Chagas disease (NuestroBen). Bethesda (MD): National Library of Medicine (US). Identifier NCT04897516; [cited 2024 Apr 4]. Available from: https://clinicaltrials.gov/study/NCT04897516?cond=Chagas%20Disease&intr=Benznidazole&page=1&rank=6&limit=10
  • Leite DI, Fontes FDV, Bastos MM, et al. New 1,2,3‐triazole‐based analogues of benznidazole for use against Trypanosoma cruzi infection: in vitro and in vivo evaluations. Chem Biol Drug Des. 2018;92(3):1670–1682. doi: 10.1111/cbdd.13333
  • Assunção ELF, Carvalho DB, Das Neves AR, et al. Synthesis and antitrypanosomal activity of 1,4‐Disubstituted triazole compounds based on a 2‐Nitroimidazole scaffold: a Structure‐activity relationship study. ChemMedchem. 2020;15(21):2019–2028. doi: 10.1002/cmdc.202000460
  • Do Vale Chaves E, Mello F, Castro Salomão Quaresma BM, et al. Novel nitroimidazole derivatives evaluated for their trypanocidal, cytotoxic, and genotoxic activities. Eur J Med Chem. 2020;186:111887. doi: 10.1016/j.ejmech.2019.111887
  • Carvalho DB, Costa PAN, Portapilla GB, et al. Design, synthesis and antitrypanosomatid activity of 2-nitroimidazole-3,5-disubstituted isoxazole compounds based on benznidazole. Eur J Med Chem. 2023;260:115451. doi: 10.1016/j.ejmech.2023.115451
  • Beltran-Hortelano I, Atherton RL, Rubio-Hernández M, et al. Design and synthesis of mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in Chagas disease. Eur J Med Chem. 2021;223:113646. doi: 10.1016/j.ejmech.2021.113646
  • Fersing C, Boudot C, Castera-Ducros C, et al. 8-alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi. Eur J Med Chem. 2020;202:112558. doi: 10.1016/j.ejmech.2020.112558
  • Thompson AM, O’Connor PD, Marshall AJ, et al. 7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1- b]1,3]oxazines: novel antitubercular agents lead to a new preclinical Candidate for visceral leishmaniasis. J Med Chem. 2017;60(10):4212–4233. doi: 10.1021/acs.jmedchem.7b00034
  • Thompson AM, O’Connor PD, Blaser A, et al. Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1- b]1,3]oxazoles for neglected tropical diseases: structure–activity studies on a preclinical candidate for visceral leishmaniasis. J Med Chem. 2016;59(6):2530–2550. doi: 10.1021/acs.jmedchem.5b01699
  • Mathias F, Cohen A, Kabri Y, et al. Synthesis and in vitro evaluation of new 5-substituted 6-nitroimidazooxazoles as antikinetoplastid agents. Eur J Med Chem. 2020;191:112146. doi: 10.1016/j.ejmech.2020.112146
  • Ang CW, Tan L, Sykes ML, et al. Antitubercular and antiparasitic 2-nitroimidazopyrazinones with improved potency and solubility. J Med Chem. 2020;63(24):15726–15751. doi: 10.1021/acs.jmedchem.0c01372
  • Ang CW, Lee BM, Jackson CJ, et al. Nitroimidazopyrazinones with oral activity against tuberculosis and Chagas disease in mouse models of infection. J Med Chem. 2022;65(19):13125–13142. doi: 10.1021/acs.jmedchem.2c00972
  • Laureano de Souza M, Lapierre TJWJD, Marques GVL, et al. Molecular targets for Chagas disease: validation, challenges and lead compounds for widely exploited targets. Expert Opin Ther Targets. 2023;27:911–925. doi: 10.1080/14728222.2023.2264512
  • Müller Kratz J, Garcia Bournissen F, Forsyth CJ, et al. Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert Rev Clin Pharmacol. 2018;11(10):943–957. doi: 10.1080/17512433.2018.1509704
  • Araujo MSS, Martins-Filho OA, Pereira MES, et al. A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental Chagas’ disease. J Antimicrob Chemother. 2000;45(6):819–824. doi: 10.1093/jac/45.6.819
  • Diniz LDF, Urbina JA, de Andrade IM, et al. Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments. PLOS Negl Trop Dis. 2013;7(8):e2367. doi: 10.1371/journal.pntd.0002367
  • Echeverría LE, González CI, Hernandez JCM, et al. Efficacy of the Benznidazole+Posaconazole combination therapy in parasitemia reduction: an experimental murine model of acute chagas. Rev Soc Bras Med Trop. 2020;53:53. doi: 10.1590/0037-8682-0477-2019
  • de F DL, Mazzeti AL, Caldas IS, et al. Outcome of E1224-benznidazole combination treatment for infection with a multidrug-resistant Trypanosoma cruzi strain in mice. Antimicrob Agents Chemother. 2018;62(6):62. doi: 10.1128/AAC.00401-18
  • Cunha ELA, Torchelsen FDS, Cunha LM, et al. Benznidazole, itraconazole and their combination in the treatment of acute experimental Chagas disease in dogs. MethodsX. 2019;6:2544–2552. doi: 10.1016/j.mex.2019.10.007
  • Assíria Fontes Martins T, de Figueiredo Diniz L, Mazzeti AL, et al. Benznidazole/Itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease. PLOS ONE. 2015;10(6):e0128707. doi: 10.1371/journal.pone.0128707
  • Gulin JEN, Eagleson MA, López-Muñoz RA, et al. In vitro and in vivo activity of voriconazole and benznidazole combination on Trypanosoma cruzi infection models. Acta Trop. 2020;211:105606. doi: 10.1016/j.actatropica.2020.105606
  • Batista DDG, Batista MM, Oliveira GD, et al. Combined treatment of heterocyclic analogues and benznidazole upon Trypanosoma cruzi in vivo. PLOS ONE. 2011;6(7):e22155. doi: 10.1371/journal.pone.0022155
  • Pereira RS, Malvezi AD, Lovo-Martins MI, et al. Combination therapy using benznidazole and aspirin during the acute phase of experimental Chagas disease prevents cardiovascular dysfunction and decreases typical cardiac lesions in the chronic phase. Antimicrob Agents Chemother. 2020;64(7):64. doi: 10.1128/AAC.00069-20
  • Bustamante JM, Craft JM, Crowe BD, et al. New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J Infect Dis. 2014;209(1):150–162. doi: 10.1093/infdis/jit420
  • Almeida-Silva J, Menezes DS, Fernandes JMP, et al. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol. 2022;12:12. doi: 10.3389/fcimb.2022.926699
  • García MC, Ponce NE, Sanmarco LM, et al. Clomipramine and Benznidazole Act Synergistically and ameliorate the outcome of experimental Chagas disease. Antimicrob Agents Chemother. 2016;60(6):3700–3708. doi: 10.1128/AAC.00404-16
  • Shrestha D, Penitente AR, Horta AL, et al. Enalapril in combination with benznidazole reduces cardiac inflammation and creatine kinases in mice chronically infected with Trypanosoma cruzi. Am J Trop Med Hyg. 2015;93(5):976–982. doi: 10.4269/ajtmh.15-0237
  • Pandey RP, Nascimento MS, Franco CH, et al. Drug repurposing in Chagas disease: chloroquine potentiates benznidazole activity against Trypanosoma cruzi in vitro and in vivo. Antimicrob Agents Chemother. 2022;66(11):e0028422. doi: 10.1128/aac.00284-22
  • Sbaraglini ML, Bellera CL, Fraccaroli L, et al. Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int J Antimicrob Agents. 2016;48(1):91–95. doi: 10.1016/j.ijantimicag.2016.02.018
  • Sbaraglini ML, Bellera CL, Quarroz Braghini J, et al. Combined therapy with Benznidazole and repurposed drugs Clofazimine and Benidipine for chronic Chagas disease. Eur J Med Chem. 2019;184:111778. doi: 10.1016/j.ejmech.2019.111778
  • Morillo CA, Waskin H, Sosa-Estani S, et al. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. Cruzi Carriers. J Am Coll Cardiol. 2017;69(8):939–947. doi: 10.1016/j.jacc.2016.12.023
  • Torrico F, Gascón J, Barreira F, et al. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a phase 2, double-blind, randomised trial. Lancet Infect Dis. 2021;21(8):1129–1140. doi: 10.1016/S1473-3099(20)30844-6
  • Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun. 2017;8(1):573. doi: 10.1038/s41467-017-00680-8
  • Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–D444. doi: 10.1093/nar/gkab1061
  • Ding Y, Tang J, Guo F. The computational models of drug-target interaction prediction. Protein Pept Lett. 2020;27(5):348–358. doi: 10.2174/0929866526666190410124110
  • Ezzat A, Wu M, Li X, et al. Computational prediction of drug-target interactions via ensemble learning. Methods Mol Biol. 2019;1903:239–254.
  • Zong N, Li N, Wen A, et al. BETA: a comprehensive benchmark for computational drug–target prediction. Brief Bioinform. 2022;23(4):23. doi: 10.1093/bib/bbac199
  • Wang X, Pan C, Gong J, et al. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model. 2016;56(6):1175–1183. doi: 10.1021/acs.jcim.5b00690
  • Santos CC, Lionel JR, Peres RB, et al. In vitro ,in Silico , and in vivo analyses of novel aromatic amidines against Trypanosoma cruzi. Antimicrob Agents Chemother. 2018;62(2):62. doi: 10.1128/AAC.02205-17
  • Cronin MTD, Enoch SJ, Mellor CL, et al. In silico prediction of organ level toxicity: linking chemistry to adverse effects. Toxicol Res. 2017;33(3):173–182. doi: 10.5487/TR.2017.33.3.173
  • Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019;24(5):1157–1165. doi: 10.1016/j.drudis.2019.03.015
  • Menozzi CAC, França RRF, Luccas PH, et al. Anti-Trypanosoma cruzi activity, mutagenicity, Hepatocytotoxicity and nitroreductase enzyme evaluation of 3-nitrotriazole, 2-nitroimidazole and triazole derivatives. Molecules. 2023;28(22):7461. doi: 10.3390/molecules28227461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.