66
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in computational and experimental protein-ligand affinity determination techniques

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 649-670 | Received 18 Mar 2024, Accepted 25 Apr 2024, Published online: 07 May 2024

References

  • Li Q, Kang C. Perspectives on fragment-based drug discovery: a strategy applicable to diverse targets. CTMC. 2021;21:1099–1112. doi: 10.2174/1568026621666210804115700
  • Kairys V, Baranauskiene L, Kazlauskiene M, et al. Binding affinity in drug design: experimental and computational techniques. Expert Opin Drug Discov. 2019;14(8):755–768. doi: 10.1080/17460441.2019.1623202
  • Yang X, Wang Y, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–10594. doi: 10.1021/acs.chemrev.8b00728
  • Askr H, Elgeldawi E, Aboul Ella H, et al. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev. 2023;56:5975–6037. doi: 10.1007/s10462-022-10306-1
  • Chen W, Liu X, Zhang S, et al. Artificial intelligence for drug discovery: resources, methods, and applications. Mol Ther Nucleic Acids. 2023;31:691–702. doi: 10.1016/j.omtn.2023.02.019
  • Durrant JD, McCammon JA. Nnscore 2.0: a neural-network receptor–ligand scoring function. J Chem Inf Model. 2011;51:2897–2903. doi: 10.1021/ci2003889
  • Wang C, Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem. 2017;38:169–177. doi: 10.1002/jcc.24667
  • Ragoza M, Hochuli J, Idrobo E, et al. Protein–ligand scoring with convolutional neural networks. J Chem Inf Model. 2017;57:942–957. doi: 10.1021/acs.jcim.6b00740
  • Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017;7:46710. doi: 10.1038/srep46710
  • Cang Z, Wei G-W, Dunbrack RL. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. Dunbrack RL, editor. PLOS Comput Biol. 2017;13(7):e1005690. doi: 10.1371/journal.pcbi.1005690
  • Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. Bioinformatics. 2018;34:i821–i829. doi: 10.1093/bioinformatics/bty593
  • Imrie F, Bradley AR, Van Der Schaar M, et al. Protein family-specific models using deep neural networks and transfer learning improve virtual screening and highlight the need for more data. J Chem Inf Model. 2018;58:2319–2330. doi: 10.1021/acs.jcim.8b00350
  • Hassan M, Mogollon DC, Fuentes O, et al. DLSCORE: a deep learning model for predicting protein-ligand binding affinities. ChemRxiv [Preprint]. 2018 cited 2024 Mar 4]. Available from: https://chemrxiv.org/engage/chemrxiv/article-details/60c73dd4567dfefb56ec370b. doi: 10.26434/chemrxiv.6159143.v1
  • Jiménez J, Škalič M, Martínez-Rosell G, et al. K DEEP: protein–ligand absolute binding affinity prediction via 3D-Convolutional neural networks. J Chem Inf Model. 2018;58:287–296. doi: 10.1021/acs.jcim.7b00650
  • Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P, et al. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Valencia A, editor. Bioinformatics. 2018;34(21):3666–3674. doi: 10.1093/bioinformatics/bty374
  • Cang Z, Mu L, Wei G-W, et al. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. Peng J, editor. PLOS Comput Biol. 2018;14(1):e1005929. doi: 10.1371/journal.pcbi.1005929
  • Nguyen DD, Wei G-W. AGL-Score: algebraic graph learning score for protein–ligand binding scoring, ranking, docking, and screening. J Chem Inf Model. 2019;59:3291–3304. doi: 10.1021/acs.jcim.9b00334
  • Karimi M, Wu D, Wang Z, et al. DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Valencia A, editor. Bioinformatics. 2019;35(18):3329–3338. doi: 10.1093/bioinformatics/btz111
  • Li Y, Rezaei MA, Li C, et al. DeepAtom: a framework for protein-ligand binding affinity prediction. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). California, USA: IEEESan Diego; 2019. p. 303–310.
  • Lu J, Hou X, Wang C, et al. Incorporating explicit water molecules and ligand conformation stability in machine-learning scoring functions. J Chem Inf Model. 2019;59:4540–4549. doi: 10.1021/acs.jcim.9b00645
  • Kwon Y, Shin W-H, Ko J, et al. AK-Score: accurate protein-ligand binding affinity prediction using an ensemble of 3D-convolutional neural networks. IJMS. 2020;21:8424. doi: 10.3390/ijms21228424
  • Li S, Wan F, Shu H, et al. MONN: a multi-objective neural network for predicting compound-protein interactions and affinities. Cell Systems. 2020;10(4):308–322.e11. doi: 10.1016/j.cels.2020.03.002
  • Zhu F, Zhang X, Allen JE, et al. Binding affinity prediction by pairwise function based on neural network. J Chem Inf Model. 2020;60:2766–2772. doi: 10.1021/acs.jcim.0c00026
  • Hassan-Harrirou H, Zhang C, Lemmin T. RosENet: improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks. J Chem Inf Model. 2020;60(6):2791–2802. doi: 10.1021/acs.jcim.0c00075
  • Boyles F, Deane CM, Morris GM, et al. Learning from the ligand: using ligand-based features to improve binding affinity prediction. Elofsson A, editor. Bioinformatics. 2020;36(3):758–764. doi: 10.1093/bioinformatics/btz665
  • Chen L, Tan X, Wang D, et al. TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Elofsson A, editor. Bioinformatics. 2020;36(16):4406–4414. doi: 10.1093/bioinformatics/btaa524
  • Meli R, Anighoro A, Bodkin MJ, et al. Learning protein-ligand binding affinity with atomic environment vectors. J Cheminform. 2021;13:59. doi: 10.1186/s13321-021-00536-w
  • Kadukova M, Chupin V, Grudinin S. Convex-PL R – revisiting affinity predictions and virtual screening using physics-informed machine learning. bioRxiv [Preprint]. 2021 [cited 2024 Mar 3]. Available from: http://biorxiv.org/lookup/doi/10.1101/2021.09.13.460049
  • Li T, Zhao X-M, Li L. Co-VAE: drug-target binding affinity prediction by Co-regularized variational autoencoders. IEEE Trans Pattern Anal Mach Intell. 2022;44(12):8861–8873. doi: 10.1109/TPAMI.2021.3120428
  • Karimi M, Wu D, Wang Z, et al. Explainable deep relational networks for predicting compound–protein affinities and contacts. J Chem Inf Model. 2021;61:46–66. doi: 10.1021/acs.jcim.0c00866
  • Bao J, He X, Zhang JZH. DeepBSP—a machine learning method for accurate prediction of protein–ligand docking structures. J Chem Inf Model. 2021;61:2231–2240. doi: 10.1021/acs.jcim.1c00334
  • Somnath VR, Bunne C, Krause A, et al. Multi-scale representation learning on proteins. In: Ranzato M, Beygelzimer A Dauphin Y, editors. Advances in neural information processing systems. Curran Associates, Inc; 2021. p. 25244–25255.
  • Jones D, Kim H, Zhang X, et al. Improved protein–ligand binding affinity prediction with structure-based deep fusion inference. J Chem Inf Model. 2021;61:1583–1592. doi: 10.1021/acs.jcim.0c01306
  • Son J, Kim D, Fernandez-Fuentes N. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. Fernandez-fuentes N, editor. PLOS ONE. 2021;16(4):e0249404. doi: 10.1371/journal.pone.0249404
  • Jiang D, Hsieh C-Y, Wu Z, et al. InteractionGraphNet: a novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions. J Med Chem. 2021;64:18209–18232. doi: 10.1021/acs.jmedchem.1c01830
  • Ji B, He X, Zhai J, et al. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction. Brief Bioinform. 2021;22:bbab054. doi: 10.1093/bib/bbab054
  • Li S, Zhou J, Xu T, et al. Structure-aware interactive graph neural networks for the prediction of protein-ligand binding affinity. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021. New York, NY: ACM; p. 975–985.
  • Kumar S, Kim M. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors. J Cheminform. 2021;13:28. doi: 10.1186/s13321-021-00507-1
  • Wang Z, Zheng L, Liu Y, et al. OnionNet-2: a convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells. Front Chem. 2021;9:753002. doi: 10.3389/fchem.2021.753002
  • Wang H, Liu H, Ning S, et al. Dlssaffinity: protein–ligand binding affinity prediction via a deep learning model. Phys Chem Chem Phys. 2022;24:10124–10133. doi: 10.1039/D1CP05558E
  • Monteiro NRC, Simões CJV, Ávila HV, et al. Explainable deep drug–target representations for binding affinity prediction. BMC Bioinf. 2022;23:237. doi: 10.1186/s12859-022-04767-y
  • Moesser MA, Klein D, Boyles F, et al. Protein-ligand interaction graphs: learning from ligand-shaped 3D interaction graphs to improve binding affinity prediction. bioRxiv [Preprint]. 2022 [cited 2024 Mar 4]. Available from: http://biorxiv.org/lookup/doi/10.1101/2022.03.04.483012
  • Limbu S, Dakshanamurthy S. A new hybrid neural network deep learning method for protein–ligand binding affinity prediction and de novo drug design. IJMS. 2022;23:13912. doi: 10.3390/ijms232213912
  • Moon S, Zhung W, Yang S, et al. Pignet: a physics-informed deep learning model toward generalized drug–target interaction predictions. Chem Sci. 2022;13:3661–3673. doi: 10.1039/D1SC06946B
  • Wang Y, Wu S, Duan Y, et al. A point cloud-based deep learning strategy for protein–ligand binding affinity prediction. Brief Bioinform. 2022;23:bbab474. doi: 10.1093/bib/bbab474
  • Shen C, Zhang X, Deng Y, et al. Boosting protein–ligand binding pose prediction and virtual screening based on residue–atom distance likelihood potential and graph transformer. J Med Chem. 2022;65:10691–10706. doi: 10.1021/acs.jmedchem.2c00991
  • Wang P, Zheng S, Jiang Y, et al. Structure-aware multimodal deep learning for drug–protein interaction prediction. J Chem Inf Model. 2022;62:1308–1317. doi: 10.1021/acs.jcim.2c00060
  • Zhao Q, Duan G, Yang M, et al. AttentionDTA: drug–target binding affinity prediction by sequence-based deep learning with attention mechanism. IEEE/ACM Trans Comput Biol And Bioinf. 2023;20(2):852–863. doi: 10.1109/TCBB.2022.3170365
  • Bhatt R, Koes DR, Durrant JD. Censible: interpretable insights into small-molecule binding with context explanation networks. bioRxiv [Preprint]. 2023 [cited 2024 Mar 3]. Available from: http://biorxiv.org/lookup/doi/10.1101/2023.10.18.562959
  • Wang Z, Zheng L, Wang S, et al. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function. Brief Bioinform. 2023;24:bbac520. doi: 10.1093/bib/bbac520
  • Prat A, Abdel Aty H, Kamuntavicius G, et al. HydraScreen: a generalizable structure-based deep learning approach to drug discovery. ChemRxiv [Preprint]. 2023 [cited 2024 Mar 4]. Available from: https://chemrxiv.org/engage/chemrxiv/article-details/652020e1bda59ceb9a0066bc
  • Scantlebury J, Vost L, Carbery A, et al. A small step toward generalizability: training a machine learning scoring function for structure-based virtual screening. J Chem Inf Model. 2023;63:2960–2974. doi: 10.1021/acs.jcim.3c00322
  • Zeng X, Zhong K-Y, Jiang B, et al. Fusing sequence and structural knowledge by heterogeneous models to accurately and interpretively predict drug–target affinity. Molecules. 2023;28:8005. doi: 10.3390/molecules28248005
  • Li X, Yang Q, Luo G, et al. SAGDTI: self-attention and graph neural network with multiple information representations for the prediction of drug–target interactions. Bioinformat Adv. 2023;3(1):vbad116. doi: 10.1093/bioadv/vbad116
  • Zhang X, Shen C, Jiang D, et al. TB-IECS: an accurate machine learning-based scoring function for virtual screening. J Cheminform. 2023;15:63. doi: 10.1186/s13321-023-00731-x
  • Zhou C, Li Z, Song J, et al. TransVAE-DTA: transformer and variational autoencoder network for drug-target binding affinity prediction. Comput Methods Programs Biomed. 2024;244:108003. doi: 10.1016/j.cmpb.2023.108003
  • Lin H, Wang S, Zhu J, et al. DeepRLI: a multi-objective framework for universal protein–ligand interaction prediction. 2024. doi: 10.48550/ARXIV.2401.10806
  • Rayka M, Mirzaei M, Mohammad Latifi A. An ensemble‐based approach to estimate confidence of predicted protein–ligand binding affinity values. Mol Inform. 2024;43(4):e202300292. doi: 10.1002/minf.202300292
  • Guo J, Sehgal SA. Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning. Sehgal SA, editor. PLOS ONE. 2024;19(1):e0296676. doi: 10.1371/journal.pone.0296676
  • Méndez-Lucio O, Ahmad M, Del Rio-Chanona EA, et al. A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat Mach Intell. 2021;3:1033–1039. doi: 10.1038/s42256-021-00409-9
  • McNutt AT, Francoeur P, Aggarwal R, et al. GNINA 1.0: molecular docking with deep learning. J Cheminform. 2021;13:43. doi: 10.1186/s13321-021-00522-2
  • Stärk H, Ganea O-E, Pattanaik L, et al. EquiBind: geometric deep learning for drug binding structure prediction. arXiv [Preprint]. 2022 [cited 2024 Mar 3]. Available from: http://arxiv.org/abs/2202.05146
  • Zhang J, He K, Dong T, et al. Accurate protein-ligand complex structure prediction using geometric deep learning. Res Square [Preprint]. 2022 [cited 2024 Mar 4]. Available from: https://www.researchsquare.com/article/rs-1454132/v1
  • Jiang H, Wang J, Cong W, et al. Predicting protein–ligand docking structure with graph neural network. J Chem Inf Model. 2022;62:2923–2932. doi: 10.1021/acs.jcim.2c00127
  • Lu W, Wu Q, Zhang J, et al. Tankbind: trigonometry-aware neural NetworKs for drug-protein binding structure prediction. bioRxiv [Preprint]. 2022 [cited 2024 Mar 4]. Available from: http://biorxiv.org/lookup/doi/10.1101/2022.06.06.495043
  • Cai H, Shen C, Jian T, et al. CarsiDock: a deep learning paradigm for accurate protein–ligand docking and screening based on large-scale pre-training. Chem Sci. 2024;15:1449–1471. doi: 10.1039/D3SC05552C
  • Huang Y, Zhang H, Jiang S, et al. DSDP: a blind docking strategy accelerated by GPUs. J Chem Inf Model. 2023;63:4355–4363. doi: 10.1021/acs.jcim.3c00519
  • Zhang Y, Cai H, Shi C, et al. E3Bind: an end-to-end equivariant network for protein-ligand docking. 2022. doi: 10.48550/ARXIV.2210.06069
  • Masters MR, Mahmoud AH, Wei Y, et al. Deep learning model for efficient protein–ligand docking with implicit side-chain flexibility. J Chem Inf Model. 2023;63:1695–1707. doi: 10.1021/acs.jcim.2c01436
  • Zhou G, Gao Z, Ding Q, et al. Uni-mol: a universal 3D molecular representation learning framework. ChemRxiv [Preprint]. 2023 cited 2024 Mar 4]. Available from: https://chemrxiv.org/engage/chemrxiv/article-details/6402990d37e01856dc1d1581
  • Corso G, Stärk H, Jing B, et al. DiffDock: diffusion steps, twists, and turns for molecular docking. arXiv [Preprint]. 2023 [cited 2024 Mar 3]. Available from: http://arxiv.org/abs/2210.01776
  • Voitsitskyi T, Bdzhola V, Stratiichuk R, et al. Augmenting a training dataset of the generative diffusion model for molecular docking with artificial binding pockets. RSC Adv. 2024;14:1341–1353. doi: 10.1039/D3RA08147H
  • Krishna R, Wang J, Ahern W, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science. 2024;eadl2528. doi: 10.1126/science.adl2528
  • Yu Y, Lu S, Gao Z, et al. Do deep learning models really outperform traditional approaches in molecular docking? arXiv [Preprint]. 2023 [cited 2024 Mar 3]. Available from: https://arxiv.org/abs/2302.07134
  • Li J, Guan X, Zhang O, et al. Leak proof PDBBind: a reorganized dataset of protein-ligand complexes for more generalizable binding affinity prediction. arXiv [Preprint]. 2023 [cited 2024 Mar 3]. Available from: http://arxiv.org/abs/2308.09639
  • Buttenschoen M, Morris GM, Deane CM. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem Sci. 2024;15(9):3130–3139.
  • Harris C, Didi K, Jamasb AR, et al. Benchmarking generated poses: how rational is structure-based drug design with generative models? arXiv [Preprint]. 2023 [cited 2024 Mar 3]. Available from: http://arxiv.org/abs/2308.07413
  • Leemann M, Sagasta A, Eberhardt J, et al. Automated benchmarking of combined protein structure and ligand conformation prediction. Proteins. 2023;91:1912–1924. doi: 10.1002/prot.26605
  • Amezcua M, Setiadi J, Ge Y, et al. An overview of the SAMPL8 host–guest binding challenge. J Comput Aided Mol Des. 2022;36:707–734. doi: 10.1007/s10822-022-00462-5
  • Critical assessment of computational hit-finding experiments [Internet]. 2024 [cited 2024 Mar 16]. Available from: https://cache-challenge.org/
  • Amezcua M, El Khoury L, Mobley DL. SAMPL7 host–guest challenge overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. J Comput Aided Mol Des. 2021;35:1–35. doi: 10.1007/s10822-020-00363-5
  • Ponder JW, Wu C, Ren P, et al. Current status of the AMOEBA polarizable force field. J Phys Chem B. 2010;114:2549–2564. doi: 10.1021/jp910674d
  • Gilson MK, Zhou H-X. Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct. 2007;36:21–42. doi: 10.1146/annurev.biophys.36.040306.132550
  • Zhou H-X, Gilson MK. Theory of free energy and entropy in noncovalent binding. Chem Rev. 2009;109:4092–4107. doi: 10.1021/cr800551w
  • Du X, Li Y, Xia Y-L, et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17:144. doi: 10.3390/ijms17020144
  • Zsidó BZ, Hetényi C. The role of water in ligand binding. Curr Opin Struct Biol. 2021;67:1–8. doi: 10.1016/j.sbi.2020.08.002
  • Zsidó BZ, Bayarsaikhan B, Börzsei R, et al. The advances and limitations of the determination and applications of water structure in molecular engineering. IJMS. 2023;24:11784. doi: 10.3390/ijms241411784
  • Bursch M, Mewes J, Hansen A, et al. Best‐practice DFT protocols for basic molecular computational chemistry. Angew Chem Int Ed. 2022;61:e202205735. doi: 10.1002/anie.202205735
  • Ehrlich S, Göller AH, Grimme S. Towards full quantum-mechanics-based protein–ligand binding affinities. Chemphyschem. 2017;18(8):898–905. doi: 10.1002/cphc.201700082
  • Mardirossian N, Wang Y, Pearlman DA, et al. Recent developments in the PySCF program package. J Chem Phys. 2020;153(2). doi: 10.48550/ARXIV.2004.08725
  • Sylvetsky Nitai. Toward simple, predictive understanding of protein-ligand interactions: electronic structure calculations on torpedo californica acetylcholinesterase join forces with the chemist’s intuition. Sci Rep. 2020;10(1):9218. doi: 10.1038/s41598-020-65984-0
  • Ryde U, Söderhjelm P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev. 2016;116:5520–5566. doi: 10.1021/acs.chemrev.5b00630
  • Szél V, Zsidó BZ, Jeszenői N, et al. Target–ligand binding affinity from single point enthalpy calculation and elemental composition. Phys Chem Chem Phys. 2023;25:31714–31725. doi: 10.1039/D3CP04483A
  • Hourahine B, Aradi B, Blum V, et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J Chem Phys. 2020;152:124101. doi: 10.1063/1.5143190
  • Bannwarth C, Caldeweyher E, Ehlert S, et al. Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci. 2021;11:e1493. doi: 10.1002/wcms.1493
  • Liu J, Wan J, Ren Y, et al. DOX_BDW: incorporating solvation and desolvation effects of cavity water into nonfitting protein–ligand binding affinity prediction. J Chem Inf Model. 2023;63:4850–4863. doi: 10.1021/acs.jcim.3c00776
  • Pecina A, Fanfrlík J, Lepšík M, et al. SQM2.20: semiempirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. Nat Commun. 2024;15(1):1127. doi: 10.1038/s41467-024-45431-8
  • Lang PT, Brozell SR, Mukherjee S, et al. DOCK 6: combining techniques to model RNA–small molecule complexes. RNA. 2009;15:1219–1230. doi: 10.1261/rna.1563609
  • Goodsell DS, Sanner MF, Olson AJ, et al. The AutoDock suite at 30. Protein Sci. 2021;30:31–43. doi: 10.1002/pro.3934
  • Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python Bindings. J Chem Inf Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203
  • Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking 1 edited by F. E Cohen. J Mol Biol. 1997;267(3):727–748. doi: 10.1006/jmbi.1996.0897
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430
  • Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, et al. rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. Prlic A, editor. PLOS Comput Biol. 2014;10(4):e1003571. doi: 10.1371/journal.pcbi.1003571
  • Shin W, Kim J, Kim D, et al. GalaxyDock2: protein–ligand docking using beta‐complex and global optimization. J Comput Chem. 2013;34:2647–2656. doi: 10.1002/jcc.23438
  • Morency L-P, Gaudreault F, Najmanovich R. Applications of the NRGsuite and the molecular docking software FlexAID in computational drug discovery and design. In: Gore M Jagtap U, editors Computational drug discovery and design. New York (NY): Springer; 2018. p. 367–388.
  • Korb O, Stützle T, Exner TE. Empirical scoring functions for advanced Protein−Ligand docking with PLANTS. J Chem Inf Model. 2009;49:84–96. doi: 10.1021/ci800298z
  • Fang Y, Ding Y, Feinstein WP, et al. GeauxDock: accelerating structure-based virtual screening with heterogeneous computing. De Brevern AG, editor. PLOS ONE. 2016;11(7):e0158898. doi: 10.1371/journal.pone.0158898
  • Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model. 2013;53:1893–1904. doi: 10.1021/ci300604z
  • Hassan NM, Alhossary AA, Mu Y, et al. Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Sci Rep. 2017;7:15451. doi: 10.1038/s41598-017-15571-7
  • Ding J, Tang S, Mei Z, et al. Vina-GPU 2.0: further accelerating AutoDock vina and its derivatives with graphics processing units. J Chem Inf Model. 2023;63:1982–1998. doi: 10.1021/acs.jcim.2c01504
  • Yu Y, Cai C, Wang J, et al. Uni-Dock: GPU-Accelerated docking enables ultralarge virtual screening. J Chem Theory Comput. 2023;19:3336–3345. doi: 10.1021/acs.jctc.2c01145
  • Van Der Spoel D, Zhang J, Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. Wiley Interdiscip Rev Comput Mol Sci. 2022;12:e1560. doi: 10.1002/wcms.1560
  • Comitani F, Gervasio FL. Modeling ligand–target binding with enhanced sampling simulations. In: Gervasio F, and Spiwok V, editors. Biomolecular Simulations in Structure‐Based Drug Discovery. 1st ed. Wiley; 2018. p. 43–66. doi: 10.1002/9783527806836.ch3
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23:187–199. doi: 10.1016/0021-9991(77)90121-8
  • Leone V, Marinelli F, Carloni P, et al. Targeting biomolecular flexibility with metadynamics. Curr Opin Struct Biol. 2010;20:148–154. doi: 10.1016/j.sbi.2010.01.011
  • Okimoto N, Suenaga A, Taiji M. Evaluation of protein–ligand affinity prediction using steered molecular dynamics simulations. J Biomol Struct Dynamics. 2017;35:3221–3231. doi: 10.1080/07391102.2016.1251851
  • Darve E, Rodríguez-Gómez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys. 2008;128:144120. doi: 10.1063/1.2829861
  • Bešker N, Gervasio FL. Using metadynamics and path collective variables to study ligand binding and induced conformational transitions. In: Baron R, editor. Computational drug discovery and design. New York (NY): Springer; 2012. p. 501–513.
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151. doi: 10.1016/S0009-2614(99)01123-9
  • Lv C, Zheng L, Yang W. Generalized essential energy space random walks to more effectively accelerate solute sampling in aqueous environment. J Chem Phys. 2012;136:044103. doi: 10.1063/1.3678220
  • Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys. 2004;120:11919–11929. doi: 10.1063/1.1755656
  • Eastman P, Galvelis R, Peláez RP, et al. OpenMM 8: molecular dynamics simulation with machine learning potentials. J Phys Chem B. 2024;128:109–116. doi: 10.1021/acs.jpcb.3c06662
  • Zubieta Rico PF, Schneider L, Pérez-Lemus GR, et al. PySAGES: flexible, advanced sampling methods accelerated with GPUs. Npj Comput Mater. 2024;10:35. doi: 10.1038/s41524-023-01189-z
  • Pierce LCT, Salomon-Ferrer R, Augusto F, et al. Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput. 2012;8(9):2997–3002. doi: 10.1021/ct300284c
  • Wang Y, Harrison CB, Schulten K, et al. Implementation of accelerated molecular dynamics in NAMD. Comput Sci Disc. 2011;4:015002. doi: 10.1088/1749-4699/4/1/015002
  • Miao Y, Sinko W, Pierce L, et al. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput. 2014;10:2677–2689. doi: 10.1021/ct500090q
  • Pang YT, Miao Y, Wang Y, et al. Gaussian accelerated molecular dynamics in NAMD. J Chem Theory Comput. 2017;13:9–19. doi: 10.1021/acs.jctc.6b00931
  • Miao Y, McCammon JA. Gaussian accelerated molecular dynamics: theory, implementation, and applications. In Dixon DA, editor. Annual Rep Comput Chem. Elsevier. 2017;231–278.
  • Miao Y, Bhattarai A, Wang J. Ligand gaussian accelerated molecular dynamics (LiGaMD): characterization of ligand binding thermodynamics and kinetics. J Chem Theory Comput. 2020;16:5526–5547. doi: 10.1021/acs.jctc.0c00395
  • Wang J, Miao Y. Ligand gaussian accelerated molecular dynamics 2 (LiGamd2): improved calculations of ligand binding thermodynamics and kinetics with closed protein pocket. J Chem Theory Comput. 2023;19:733–745. doi: 10.1021/acs.jctc.2c01194
  • DeLeeuw LW, Monsen RC, Petrauskas V, et al. POT1 stability and binding measured by fluorescence thermal shift assays. Permyakov EA, editor. PLOS ONE. 2021;16(3):e0245675. doi: 10.1371/journal.pone.0245675
  • Petrauskas V, Zubrienė A, Todd MJ, et al. Inhibitor binding to carbonic anhydrases by fluorescent thermal shift assay. In: Matulis D, editor. Carbonic anhydrase as drug target: thermodynamics and structure of inhibitor binding. Cham: Springer International Publishing; 2019. p. 63–78.
  • Henderson MJ, Holbert MA, Simeonov A, et al. High-throughput cellular thermal shift assays in research and drug discovery. SLAS Discov. 2020;25(2):137–147. doi: 10.1177/2472555219877183
  • Mahran R, Vello N, Komulainen A, et al. Isothermal chemical denaturation assay for monitoring protein stability and inhibitor interactions. Sci Rep. 2023;13:20066. doi: 10.1038/s41598-023-46720-w
  • Weidemann T, Seifert J-M, Hintersteiner M, et al. Analysis of protein−small molecule interactions by microscale equilibrium dialysis and its application as a secondary confirmation method for on-bead screening. J Comb Chem. 2010;12:647–654. doi: 10.1021/cc100057e
  • Davoine C, Pardo A, Pochet L, et al. Fragment hit discovery and binding site characterization by indirect affinity capillary electrophoresis: application to factor XIIa. Anal Chem. 2021;93:14802–14809. doi: 10.1021/acs.analchem.1c03611
  • Gärtner A, Ruff AJ, Schwaneberg U. A 96-multiplex capillary electrophoresis screening platform for product based evolution of P450 BM3. Sci Rep. 2019;9:15479. doi: 10.1038/s41598-019-52077-w
  • Nasreddine R, Nehmé R. Microscale thermophoresis for studying protein-small molecule affinity: application to hyaluronidase. Microchem J. 2021;170:106763. doi: 10.1016/j.microc.2021.106763
  • Zimmermann RA, Schwickert M, Meidner JL, et al. An optimized microscale thermophoresis method for high-throughput screening of DNA methyltransferase 2 ligands. ACS Pharmacol Transl Sci. 2022;5:1079–1085. doi: 10.1021/acsptsci.2c00175
  • Yang J, Wang X, Fuh G, et al. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm. 2014;11:3421–3430. doi: 10.1021/mp500160v
  • Edwards GB, Muthurajan UM, Bowerman S, et al. Analytical ultracentrifugation (AUC): an overview of the application of fluorescence and absorbance AUC to the study of biological macromolecules. CP Mol Bio. 2020;133:e131. doi: 10.1002/cpmb.131
  • Grither WR, Longmore GD. Inhibition of tumor–microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc Natl Acad Sci, USA. 2018;115. doi: 10.1073/pnas.1805020115
  • Meiby E, Simmonite H, Le Strat L, et al. Fragment screening by weak affinity chromatography: comparison with established techniques for screening against HSP90. Anal Chem. 2013;85:6756–6766. doi: 10.1021/ac400715t
  • Zheng X, Fan H, Song Z, et al. Immobilized beta2-adrenergic receptor: a powerful chromatographic platform for drug discovery and evaluation of drug-like property for natural products. J Chromatogr A. 2021;1659:462635. doi: 10.1016/j.chroma.2021.462635
  • Choudhary D, Kumar A, Magliery TJ, et al. Using thermal scanning assays to test protein-protein interactions of inner-ear cadherins. PLOS ONE. 2017;12:e0189546. doi: 10.1371/journal.pone.0189546
  • Mohammadzadeh-Asl S, Aghanejad A, Yekta R, et al. Kinetic and thermodynamic insights into interaction of erlotinib with epidermal growth factor receptor: surface plasmon resonance and molecular docking approaches. Int J Biol Macromol. 2020;163:954–958. doi: 10.1016/j.ijbiomac.2020.07.048
  • Han B, Zhang M, Sun P, et al. Capturing the interaction kinetics of an ion channel protein with small molecules by the bio-layer interferometry assay. J Vis Exp. 2018;56846. doi: 10.3791/56846
  • Jia Y, Schroeder B, Pfeifer Y, et al. Kinetics, thermodynamics, and structural effects of quinoline-2-carboxylates, zinc-binding inhibitors of New Delhi metallo-β-lactamase-1 Re-sensitizing multidrug-resistant bacteria for carbapenems. J Med Chem. 2023;66:11761–11791. doi: 10.1021/acs.jmedchem.3c00171
  • Peter B, Saftics A, Kovacs B, et al. Oxidization increases the binding of EGCG to serum albumin revealed by kinetic data from label-free optical biosensor with reference channel. Analyst. 2020;145:588–595. doi: 10.1039/C9AN01779H
  • Jankovics H, Kovacs B, Saftics A, et al. Grating-coupled interferometry reveals binding kinetics and affinities of Ni ions to genetically engineered protein layers. Sci Rep. 2020;10:22253. doi: 10.1038/s41598-020-79226-w
  • Nguyen GTH, Tran TN, Podgorski MN, et al. Nanoscale ion emitters in native mass spectrometry for measuring ligand–protein binding affinities. ACS Cent Sci. 2019;5:308–318. doi: 10.1021/acscentsci.8b00787
  • Mayhood TW, Windsor WT. Ligand binding affinity determined by temperature-dependent circular dichroism: cyclin-dependent kinase 2 inhibitors. Anal Biochem. 2005;345:187–197. doi: 10.1016/j.ab.2005.07.032
  • Baum B, Muley L, Smolinski M, et al. Non-additivity of functional group contributions in protein–ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J Mol Biol. 2010;397:1042–1054. doi: 10.1016/j.jmb.2010.02.007
  • Paketurytė V, Zubrienė A, Chen W-Y, et al. Inhibitor binding to carbonic anhydrases by isothermal titration calorimetry. In: Matulis D, editor. Carbonic anhydrase as drug target: thermodynamics and structure of inhibitor binding. Cham: Springer International Publishing; 2019. p. 79–95.
  • Linkuvienė V, Zubrienė A, Matulis D. Intrinsic affinity of protein – ligand binding by differential scanning calorimetry. Biochim Biophys Acta Proteins Proteom. 2022;1870:140830. doi: 10.1016/j.bbapap.2022.140830
  • Waldron TT, Murphy KP. Stabilization of proteins by ligand binding: application to drug screening and determination of unfolding energetics †. Biochemistry. 2003;42:5058–5064. doi: 10.1021/bi034212v
  • Darby JF, Vidler LR, Simpson PJ, et al. Solution structure of the hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Sci Rep. 2020;10:16000. doi: 10.1038/s41598-020-71969-w
  • Chen D, Chen Y, Lian F, et al. Fragment-based drug discovery of triazole inhibitors to block PDEδ-RAS protein-protein interaction. Eur J Med Chem. 2019;163:597–609. doi: 10.1016/j.ejmech.2018.12.018
  • Pantoliano MW, Petrella EC, Kwasnoski JD, et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen. 2001;6:429–440. doi: 10.1177/108705710100600609
  • Matulis D, Kranz JK, Salemme FR, et al. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry. 2005;44:5258–5266. doi: 10.1021/bi048135v
  • Cimmperman P, Baranauskiene L, Jachimoviciute S, et al. A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J. 2008;95:3222–3231. doi: 10.1529/biophysj.108.134973
  • Ghisaidoobe ABT, Chung SJ. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on förster resonance energy transfer techniques. Int J Mol Sci. 2014;15:22518–22538. doi: 10.3390/ijms151222518
  • Wu T, Yu JC, Suresh A, et al. Conformationally responsive dyes enable protein-adaptive differential scanning fluorimetry. bioRxiv [Preprint]. 2023 [cited 2023 Aug 28]. Available from: http://biorxiv.org/lookup/doi/10.1101/2023.01.23.525251
  • Layton CJ, Hellinga HW. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes. Biochemistry. 2010;49:10831–10841. doi: 10.1021/bi101414z
  • Petrauskas V, Kazlauskas E, Gedgaudas M, et al. Thermal shift assay for protein–ligand dissociation constant determination. Trends Analyt Chem. 2024;170:117417. doi: 10.1016/j.trac.2023.117417
  • Schön A, Brown RK, Hutchins BM, et al. Ligand binding analysis and screening by chemical denaturation shift. Anal Biochem. 2013;443:52–57. doi: 10.1016/j.ab.2013.08.015
  • Gedgaudas M, Baronas D, Kazlauskas E, et al. Thermott: a comprehensive online tool for protein–ligand binding constant determination. Drug Discov Today. 2022;27(8):2076–2079. doi: 10.1016/j.drudis.2022.05.008
  • Molina DM, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–87. doi: 10.1126/science.1233606
  • Molina DM, Nordlund P. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu Rev Pharmacol Toxicol. 2016;56:141–161. doi: 10.1146/annurev-pharmtox-010715-103715
  • Savitski MM, Reinhard FBM, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346. doi: 10.1126/science.1255784
  • Kawatkar A, Schefter M, Hermansson N-O, et al. CETSA beyond soluble targets: a broad application to multipass transmembrane proteins. ACS Chem Biol. 2019;14:1913–1920. doi: 10.1021/acschembio.9b00399
  • Caballero IM, Lundgren S. A shift in thinking: cellular thermal shift assay-enabled drug discovery. ACS Med Chem Lett. 2023;14:369–375. doi: 10.1021/acsmedchemlett.2c00545
  • Tolvanen TA. Current advances in CETSA. Front Mol Biosci. 2022;9. doi: 10.3389/fmolb.2022.866764
  • Al-Amin RA, Gallant CJ, Muthelo PM, et al. Sensitive measurement of drug-target engagement by a cellular thermal shift assay with multiplex proximity extension readout. Anal Chem. 2021;93:10999–11009. doi: 10.1021/acs.analchem.1c02225
  • Freire E, Schön A, Hutchins BM, et al. Chemical denaturation as a tool in the formulation optimization of biologics. Drug Discov Today. 2013;18:1007–1013. doi: 10.1016/j.drudis.2013.06.005
  • Ross P, Weihofen W, Siu F, et al. Isothermal chemical denaturation to determine binding affinity of small molecules to G-protein coupled receptors. Anal Biochem. 2015;473:41–45. doi: 10.1016/j.ab.2014.11.019
  • Svilenov H, Markoja U, Winter G. Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations. Eur J Pharm Biopharm. 2018;125:106–113. doi: 10.1016/j.ejpb.2018.01.004
  • Vuignier K, Schappler J, Veuthey J-L, et al. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398:53–66. doi: 10.1007/s00216-010-3737-1
  • Seyfinejad B, Ozkan SA, Jouyban A. Recent advances in the determination of unbound concentration and plasma protein binding of drugs: analytical methods. Talanta. 2021;225:122052. doi: 10.1016/j.talanta.2020.122052
  • Cohen LH. Plasma protein-binding methods in drug discovery. In: Yan Z, and Caldwell G, editors. Optimization in drug discovery. Totowa, NJ: Humana Press; 2004. p. 111–122.
  • Shave S, Pham NT, Śmieja CB, et al. Quantitative microdialysis: experimental protocol and software for small molecule protein affinity determination and for exclusion of compounds with poor physicochemical properties. MPs. 2020;3:55. doi: 10.3390/mps3030055
  • Dimitrijevic D, Fabian E, Funk-Weyer D, et al. Rapid equilibrium dialysis, ultrafiltration or ultracentrifugation? Evaluation of methods to quantify the unbound fraction of substances in plasma. Biochem Biophys Res Commun. 2023;651:114–120. doi: 10.1016/j.bbrc.2023.02.021
  • Neetu N, Mahto JK, Sharma M, et al. Sulisobenzone is a potent inhibitor of the global transcription factor Cra. J Struct Biol. 2023;215:108034. doi: 10.1016/j.jsb.2023.108034
  • Kim YS, Nagy K, Keyser S, et al. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem Biol. 2013;20:604–613. doi: 10.1016/j.chembiol.2013.04.001
  • Kumar R, Guttman A, Rathore AS. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis. 2022;43:143–166. doi: 10.1002/elps.202100182
  • Farcaş E, Pochet L, Crommen J, et al. Capillary electrophoresis in the context of drug discovery. J Pharm Biomed Anal. 2017;144:195–212. doi: 10.1016/j.jpba.2017.02.022
  • Wu R, Li C, Li C, et al. Rapid screening of multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis. Anal Chim Acta. 2019;1045:152–161. doi: 10.1016/j.aca.2018.09.015
  • Duhr S, Braun D. Why molecules move along a temperature gradient. Proc Natl Acad Sci, USA. 2006;103(52):19678–19682. doi: 10.1073/pnas.0603873103
  • Mrozowich T, MeierStephenson V, Patel TR. Microscale thermophoresis: warming up to a new biomolecular interaction technique. The Biochemist. 2019;41:8–12. doi: 10.1042/BIO04102008
  • Sparks RP, Fratti R. Use of microscale thermophoresis (MST) to measure binding affinities of components of the fusion machinery. In: Fratti R, editor. SNAREs. New York (NY): Springer; 2019. p. 191–198.
  • Holdgate G, Embrey K, Milbradt A, et al. Biophysical methods in early drug discovery. ADMET And DMPK. 2019;7(4):222–241. doi: 10.5599/admet.733
  • Deeb SE, Al-Harrasi A, Khan A, et al. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc. 2022;10:042001. doi: 10.1088/2050-6120/ac82a6
  • Asmari M, Michalcová L, Ibrahim AE, et al. Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: a review. Electrophoresis. 2023;44:1114–1142. doi: 10.1002/elps.202200275
  • Cole JL, Correia JJ, Stafford WF. The use of analytical sedimentation velocity to extract thermodynamic linkage. Biophys Chem. 2011;159:120–128. doi: 10.1016/j.bpc.2011.05.014
  • Gordon SE, Perugini MA. Protein-ligand interactions. In: Uchiyama S, Arisaka F Stafford W, editors. Analytical ultracentrifugation. JapanTokyo: Springer; 2016. p. 329–353.
  • Bi C, Beeram S, Li Z, et al. Kinetic analysis of drug–protein interactions by affinity chromatography. Drug Discov Today. 2015;17:16–21. doi: 10.1016/j.ddtec.2015.09.003
  • Tedesco D, Bertucci C. Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends. J Pharm Biomed Anal. 2015;113:34–42. doi: 10.1016/j.jpba.2015.02.024
  • Hough MA. Choosing the optimal spectroscopic toolkit to understand protein function. Biosci Rep. 2017;37:BSR20160378. doi: 10.1042/BSR20160378
  • Lovett JH, Harris HH. Application of X-ray absorption and X-ray fluorescence techniques to the study of metallodrug action. Curr Opin Chem Biol. 2021;61:135–142. doi: 10.1016/j.cbpa.2020.12.004
  • Nguyen HH, Park J, Kang S, et al. Surface plasmon resonance: a versatile technique for biosensor applications. Sens (Basel). 2015;15:10481–10510. doi: 10.3390/s150510481
  • Soltermann F, Struwe WB, Kukura P. Label-free methods for optical in vitro characterization of protein–protein interactions. Phys Chem Chem Phys. 2021;23:16488–16500. doi: 10.1039/D1CP01072G
  • O’Connell N. Protein ligand interactions using surface plasmon resonance. In: Cacace A, Hickey C Békés M, editors. Targeted protein degradation: methods and protocols. New York (NY): Springer; 2021. p. 3–20.
  • Wang Q, Ren Z-H, Zhao W-M, et al. Research advances on surface plasmon resonance biosensors. Nanoscale. 2022;14:564–591. doi: 10.1039/D1NR05400G
  • Karlsson R, Katsamba PS, Nordin H, et al. Analyzing a kinetic titration series using affinity biosensors. Anal Biochem. 2006;349:136–147. doi: 10.1016/j.ab.2005.09.034
  • Zhou W, Yang M, Li S, et al. Surface plasmon resonance imaging validation of small molecule drugs binding on target protein microarrays. Appl Surface Sci. 2018;450:328–335. doi: 10.1016/j.apsusc.2018.04.072
  • Murali S, Rustandi RR, Zheng X, et al. Applications of surface plasmon resonance and biolayer interferometry for virus–ligand binding. Viruses. 2022;14:717. doi: 10.3390/v14040717
  • Lavecchia di Tocco F, Botti V, Cannistraro S, et al. Detection of miR-155 using peptide nucleic acid at physiological-like conditions by surface plasmon resonance and bio-field effect transistor. Biosensors (Basel). 2024;14(2):79. doi: 10.3390/bios14020079
  • Bocquet N, Kohler J, Hug MN, et al. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. Biochim Biophys Acta - Biomembr. 2015;1848:1224–1233. doi: 10.1016/j.bbamem.2015.02.014
  • Adamson RJ, Watts A. Kinetics of the early events of GPCR signalling. FEBS Lett. 2014;588:4701–4707. doi: 10.1016/j.febslet.2014.10.043
  • Schasfoort RBM. Introduction to surface plasmon resonance. 2017. doi: 10.1039/9781788010283-00001
  • Hahnefeld C, Drewianka S, Herberg FW. Determination of kinetic data using surface plasmon resonance biosensors. Molecular diagnosis of infectious diseases. 2003;299–320. Humana Press. New Jersey.
  • Ryu Y-S, Yun H, Chung T, et al. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens Bioelectron. 2019;142:111568. doi: 10.1016/j.bios.2019.111568
  • Christopeit T, Stenberg G, Gossas T, et al. A surface plasmon resonance-based biosensor with full-length BACE1 in a reconstituted membrane. Anal Biochem. 2011;414:14–22. doi: 10.1016/j.ab.2011.02.041
  • Dysinger M, King LE. Practical quantitative and kinetic applications of bio-layer interferometry for toxicokinetic analysis of a monoclonal antibody therapeutic. J Immunol Methods. 2012;379:30–41. doi: 10.1016/j.jim.2012.02.017
  • Kozma P, Hamori A, Cottier K, et al. Grating coupled interferometry for optical sensing. Appl Phys B. 2009;97:5–8. doi: 10.1007/s00340-009-3719-1
  • Wartchow CA, Podlaski F, Li S, et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des. 2011;25:669–676. doi: 10.1007/s10822-011-9439-8
  • Tao Y, Chen L, Pan M, et al. Tailored biosensors for drug screening, efficacy assessment, and toxicity evaluation. ACS Sens. 2021;6:3146–3162. doi: 10.1021/acssensors.1c01600
  • Williams JD, Pu F, Sawicki JW, et al. Ultra-high-throughput mass spectrometry in drug discovery: fundamentals and recent advances. Expert Opin Drug Discov. 2024;19(3):291–301. doi: 10.1080/17460441.2023.2293153
  • Schulte J, Tants J-N, Von Ehr J, et al. Determination of dissociation constants via quantitative mass spectrometry. Front Anal Sci. 2023;3:1119489. doi: 10.3389/frans.2023.1119489
  • Tamara S, Den Boer MA, Heck AJR. High-resolution native mass spectrometry. Chem Rev. 2022;122:7269–7326. doi: 10.1021/acs.chemrev.1c00212
  • Ben-Nissan G, Belov ME, Morgenstern D, et al. Triple-stage mass spectrometry unravels the heterogeneity of an endogenous protein complex. Anal Chem. 2017;89:4708–4715. doi: 10.1021/acs.analchem.7b00518
  • Zhu MM, Rempel DL, Du Z, et al. Quantification of protein−ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J Am Chem Soc. 2003;125:5252–5253. doi: 10.1021/ja029460d
  • Liu XR, Zhang MM, Rempel DL, et al. Protein-ligand interaction by ligand titration, fast photochemical oxidation of proteins and mass spectrometry: LITPOMS. J Am Soc Mass Spectrom. 2019;30:213–217. doi: 10.1007/s13361-018-2076-x
  • Moghadamchargari Z, Huddleston J, Shirzadeh M, et al. Intrinsic GTPase activity of K-RAS monitored by native mass spectrometry. Biochemistry. 2019;58:3396–3405. doi: 10.1021/acs.biochem.9b00532
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2
  • Freire E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today. 2008;13:869–874. doi: 10.1016/j.drudis.2008.07.005
  • Wiseman T, Williston S, Brandts JF, et al. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989;179:131–137. doi: 10.1016/0003-2697(89)90213-3
  • Klebe G. Applying thermodynamic profiling in lead finding and optimization. Nat Rev Drug Discov. 2015;14(2):95–110.
  • Ladbury JE. Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. Biochem Soc Trans. 2010;38:888–893. doi: 10.1042/BST0380888
  • Perozzo R, Folkers G, Scapozza L. Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res. 2004;24(1–2):1–52. doi: 10.1081/RRS-120037896
  • Ladbury JE, Klebe G, Freire E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov. 2010;9:23–27. doi: 10.1038/nrd3054
  • Krainer G, Keller S. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods. 2015;76:116–123. doi: 10.1016/j.ymeth.2014.10.034
  • Sigurskjold BW. Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. AnalBiochem. 2000;277(2):260–266. doi: 10.1006/abio.1999.4402
  • Krainer G, Broecker J, Vargas C, et al. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal Chem. 2012;84:10715–10722. doi: 10.1021/ac3025575
  • Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:2049–2055. doi: 10.1016/S0006-3495(96)79403-1
  • Doyle ML, Louie G, Dal Monte PR, et al. [8] Tight binding affinities determined from thermodynamic linkage to protons by titration calorimetry. In: Methods Enzymol. Academic Press. 1995;183–194. doi: 10.1016/0076-6879(95)59044-7
  • Bradshaw JM, Waksman G. Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the src SH2 domain with a high-affinity tyrosyl phosphopeptide. Biochemistry. 1998;37:15400–15407. doi: 10.1021/bi9814991
  • Coussens NP, Schuck P, Zhao H. Strategies for assessing proton linkage to bimolecular interactions by global analysis of isothermal titration calorimetry data. J Chem Thermodyn. 2012;52:95–107. doi: 10.1016/j.jct.2012.02.008
  • Armstrong KM, Baker BM. A comprehensive calorimetric investigation of an entropically driven T cell receptor-peptide/major histocompatibility complex interaction. Biophys J. 2007;93:597–609. doi: 10.1529/biophysj.107.104570
  • Paketurytė V, Zubrienė A, Ladbury JE, et al. Intrinsic thermodynamics of protein-ligand binding by isothermal titration calorimetry as aid to drug design. In: Ennifar E, editor. Microcalorimetry of Biological Molecules. New York (NY): Springer; 2019. p. 61–74.
  • Martin SF, Clements JH. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Annu Rev Biochem. 2013;82:267–293. doi: 10.1146/annurev-biochem-060410-105819
  • Velazquez-Campoy A, Luque I, Freire E. The application of thermodynamic methods in drug design. Thermochim Acta. 2001;380:217–227. doi: 10.1016/S0040-6031(01)00671-2
  • Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–2020. doi: 10.2174/0929867054546564
  • Holdgate GA, Ward WHJ. Measurements of binding thermodynamics in drug discovery. Drug Discovery Today. 2005;10:1543–1550. doi: 10.1016/S1359-6446(05)03610-X
  • Murray CW, Blundell TL. Structural biology in fragment-based drug design. Curr Opin Struct Biol. 2010;20:497–507. doi: 10.1016/j.sbi.2010.04.003
  • Caceres-Cortes J, Falk B, Mueller L, et al. Perspectives on nuclear magnetic resonance spectroscopy in drug discovery research. J Med Chem. 2024;67(3):1701–1733. doi: 10.1021/acs.jmedchem.3c02389
  • Dalvit C, Gmür I, Rößler P, et al. Affinity measurement of strong ligands with NMR spectroscopy: limitations and ways to overcome them. Prog Nucl Magn Reson Spectrosc. 2023;138–139:52–69. doi: 10.1016/j.pnmrs.2023.07.001
  • Luchinat E, Banci L. In-cell NMR: recent progresses and future challenges. Rend Fis Acc Lincei. 2023;34(3):653–661. doi: 10.1007/s12210-023-01168-y
  • Bijak V, Szczygiel M, Lenkiewicz J, et al. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin Drug Discov. 2023;18:1221–1230. doi: 10.1080/17460441.2023.2246881
  • Nass Kovacs G. Potential of X-ray free-electron lasers for challenging targets in structure-based drug discovery. Drug Discov Today. 2021;39:101–110. doi: 10.1016/j.ddtec.2021.08.002
  • Nienaber VL, Richardson PL, Klighofer V, et al. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol. 2000;18:1105–1108. doi: 10.1038/80319
  • Mazzorana M, Shotton EJ, Hall DR. A comprehensive approach to X-ray crystallography for drug discovery at a synchrotron facility — the example of diamond light source. Drug Discov Today. 2020;37:83–92. doi: 10.1016/j.ddtec.2020.10.003
  • Sutanto F, Shaabani S, Oerlemans R, et al. Combining high‐throughput synthesis and high‐throughput protein crystallography for accelerated hit identification. Angew Chem. 2021;133:18379–18387. doi: 10.1002/ange.202105584
  • Zhu K-F, Yuan C, Du Y-M, et al. Applications and prospects of cryo-EM in drug discovery. Military Med Res. 2023;10(1):10. doi: 10.1186/s40779-023-00446-y
  • Kubota R, Tanaka W, Hamachi I. Microscopic imaging techniques for molecular assemblies: electron, atomic force, and confocal microscopies. Chem Rev. 2021;121:14281–14347. doi: 10.1021/acs.chemrev.0c01334
  • Chen E-L, Wang C-H, Liao Y-T, et al. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun. 2023;14(1):5464. doi: 10.1038/s41467-023-41156-2
  • Deng L, Huang X, Ren J. In situ study of the drug–target protein interaction in single living cells by combining fluorescence correlation spectroscopy with affinity probes. Anal Chem. 2020;92:7020–7027. doi: 10.1021/acs.analchem.0c00263
  • Paketurytė V, Petrauskas V, Zubrienė A, et al. Uncertainty in protein–ligand binding constants: asymmetric confidence intervals versus standard errors. Eur Biophys J. 2021;50:661–670. doi: 10.1007/s00249-021-01518-4
  • Mazmanian K, Sargsyan K, Lim C. How the local environment of functional sites regulates protein function. J Am Chem Soc. 2020;142:9861–9871. doi: 10.1021/jacs.0c02430
  • Caron G, Digiesi V, Solaro S, et al. Flexibility in early drug discovery: focus on the beyond-rule-of-5 chemical space. Drug Discov Today. 2020;25:621–627. doi: 10.1016/j.drudis.2020.01.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.