672
Views
5
CrossRef citations to date
0
Altmetric
PHYSIOLOGY & NUTRITION

The effects of sodium bicarbonate supplementation at individual time-to-peak blood bicarbonate on 4-km cycling time trial performance in the heat

ORCID Icon, , &

References

  • Bishop, D., Edge, J., Davis, C., & Goodman, C. (2004). Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Medicine and Science in Sports and Exercise, 36(5), 807–813.
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381.
  • Carr, A. J., Hopkins, W. G., & Gore, C. J. (2011). Effects of acute alkalosis and acidosis on performance. Sports Medicine, 41(10), 801–814.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, New York.
  • Costa, R. J., Gaskell, S. K., McCubbin, A. J., & Snipe, R. M. (2020). Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature, 7(1), 58–88.
  • Deb, S. K., Gough, L. A., Sparks, S. A., & McNaughton, L. R. (2017). Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: The effect of pre-exercise alkalosis. European Journal of Applied Physiology, 117(5), 901–912.
  • de Pauw, K., Roelands, B., Cheung, S. S., De Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to classify subject groups in sport-science research. International Journal of Sports Physiology and Performance, 8(2), 111–122.
  • Drust, B., Waterhouse, J., Atkinson, G., Edwards, B., & Reilly, T. (2005). Circadian rhythms in sports performance—An update. Chronobiology International, 22(1), 21–44.
  • Farias de Oliveira, L., Saunders, B., Yamaguchi, G., Swinton, P., & Giannini Artioli, G. (2020). Is individualization of sodium bicarbonate ingestion based on time to peak necessary? Medicine and Science in Sports and Exercise, 52(8), 1801–1808.
  • Febbraio, M. A. (2001). Alterations in energy metabolism during exercise and heat stress. Sports Medicine, 31(1), 47–59.
  • Febbraio, M. A., Snow, R. J., Stathis, C. G., Hargreaves, M., & Carey, M. F. (1994). Effect of heat stress on muscle energy metabolism during exercise. Journal of Applied Physiology, 77(6), 2827–2831.
  • Fink, W. J., Costill, D. L., & Van Handel, P. J. (1975). Leg muscle metabolism during exercise in the heat and cold. European Journal of Applied Physiology and Occupational Physiology, 34(1), 183–190.
  • Fitts, R. H. (2008). The cross-bridge cycle and skeletal muscle fatigue. Journal of Applied Physiology, 104(2), 551–558.
  • Fitts, R. H. (2016). The role of acidosis in fatigue: Pro perspective. Medicine and Science in Sports & Exercise, 48(11), 2335–2338.
  • Gardner, M. J., & Altman, D. G. (1986). Confidence intervals rather than P values: Estimation rather than hypothesis testing. British Medical Journal (Clin Res Ed), 292(6522), 746–750.
  • Gough, L. A., Brown, D., Deb, S. K., Sparks, S. A., & McNaughton, L. R. (2018). The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions. European Journal of Applied Physiology, 118(12), 2489–2498.
  • Gough, L. A., Deb, S. K., Brown, D., Sparks, S. A., & McNaughton, L. R. (2019). The effects of sodium bicarbonate ingestion on cycling performance and acid base balance recovery in acute normobaric hypoxia. Journal of Sports Sciences, 37(13), 1464–1471.
  • Gough, L. A., Deb, S. K., Sparks, A. S., & McNaughton, L. R. (2017). The reproducibility of blood acid base responses in male collegiate athletes following individualised doses of sodium bicarbonate: A randomised controlled crossover study. Sports Medicine, 47(10), 2117–2127.
  • Gough, L. A., Deb, S. K., Sparks, S. A., & McNaughton, L. R. (2018). Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time-to-peak blood bicarbonate in trained male cyclists. Journal of Sports Sciences, 36(15), 1705–1712.
  • Gurton, W., Macrae, H. Z., Gough, L. A., & King, D. G. (2021). Effects of post-exercise sodium bicarbonate ingestion on acid-base balance recovery and time-to-exhaustion running performance: A randomised crossover trial in recreational athletes. Applied Physiology, Nutrition, and Metabolism, 49(9), 1111–1118.
  • Gurton, W. H., Faulkner, S. H., & James, R. M. (2021). Effect of warm-up and sodium bicarbonate ingestion on 4-km cycling time-trial performance. International Journal of Sports Physiology and Performance, 1(aop), 1–7.
  • Gurton, W. H., Gough, L. A., Sparks, S. A., Faghy, M. A., & Reed, K. E. (2020). Sodium bicarbonate ingestion improves time-to-exhaustion cycling performance and alters estimated energy system contribution: A dose-response investigation. Frontiers in Nutrition, 7, 154.
  • Hilton, N. P., Leach, N. K., Hilton, M. M., Sparks, S. A., & McNaughton, L. R. (2020). Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists. European Journal of Applied Physiology, 120, 1563–1573.
  • Ivarsson, A., Andersen, M. B., Johnson, U., & Lindwall, M. (2013). To adjust or not adjust: Nonparametric effect sizes, confidence intervals, and real-world meaning. Psychology of Sport and Exercise, 14(1), 97–102.
  • Jones, R. L., Stellingwerff, T., Artioli, G. G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. International Journal of Sport Nutrition and Exercise Metabolism, 26(5), 445–453.
  • Knuth, S. T., Dave, H., Peters, J. R., & Fitts, R. H. (2006). Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 and 15 C: Implications for muscle fatigue. The Journal of Physiology, 575(3), 887–899.
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.
  • Mainwood, G. W., & Worsley-Brown, P. (1975). The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. The Journal of Physiology, 250(1), 1–22.
  • Marx, J. O., Gordon, S. E., Vos, N. H., Nindl, B. C., Gómez, A. L., Volek, J. S., … Kraemer, W. J. (2002). Effect of alkalosis on plasma epinephrine responses to high intensity cycle exercise in humans. European Journal of Applied Physiology, 87(1), 72–77.
  • McNaughton, L. R. (1992). Bicarbonate ingestion: Effects of dosage on 60 s cycle ergometry. Journal of Sports Sciences, 10(5), 415–423.
  • McNaughton, L. R., Gough, L., Deb, S., Bentley, D., & Sparks, S. A. (2016). Recent developments in the use of sodium bicarbonate as an ergogenic aid. Current Sports Medicine Reports, 15(4), 233–244.
  • Messonnier, L., Kristensen, M., Juel, C., & Denis, C. (2007). Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. Journal of Applied Physiology, 102(5), 1936–1944.
  • Miller, P., Robinson, A. L., Sparks, S. A., Bridge, C. A., Bentley, D. J., & McNaughton, L. R. (2016). The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. The Journal of Strength & Conditioning Research, 30(2), 561–568.
  • Mitchell, J. B., Rogers, M. M., Basset, J. T., & Hubing, K. A. (2014). Fatigue during high-intensity endurance exercise: The interaction between metabolic factors and thermal stress. The Journal of Strength & Conditioning Research, 28(7), 1906–1914.
  • Mündel, T. (2018). Sodium bicarbonate ingestion improves repeated high-intensity cycling performance in the heat. Temperature, 5(4), 343–347.
  • Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82(4), 591–605.
  • Paton, C. D., & Hopkins, W. G. (2006). Variation in performance of elite cyclists from race to race. European Journal of Sport Science, 6(01), 25–31.
  • Reilly, T. (1990). Human circadian rhythms and exercise. Critical Reviews in Biomedical Engineering, 18(3), 165–180.
  • Renfree, A. (2007). The time course for changes in plasma [h+] after sodium bicarbonate ingestion. International Journal of Sports Physiology and Performance, 2(3), 323–326.
  • Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.
  • Siegler, J. C., Midgley, A. W., Polman, R. C., & Lever, R. (2010). Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. The Journal of Strength & Conditioning Research, 24(9), 2551–2557.
  • Sims, S. T., Rehrer, N. J., Bell, M. L., & Cotter, J. D. (2007). Preexercise sodium loading aids fluid balance and endurance for women exercising in the heat. Journal of Applied Physiology, 103(2), 534–541.
  • Sims, S. T., van Vliet, L., Cotter, J. D., & Rehrer, N. J. (2007). Sodium loading aids fluid balance and reduces physiological strain of trained men exercising in the heat. Medicine & Science in Sports & Exercise, 39(1), 123–130.
  • Stone, M. R., Thomas, K., Wilkinson, M., Gibson, A. S. C., & Thompson, K. G. (2011). Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. European Journal of Applied Physiology, 111(8), 1807–1813.
  • Vaher, I., Timpmann, S., Aedma, M., & Ööpik, V. (2015). Impact of acute sodium citrate ingestion on endurance running performance in a warm environment. European Journal of Applied Physiology, 115(4), 813–823.
  • Westerblad, H. (2016). Acidosis is not a significant cause of skeletal muscle fatigue. Medicine and Science in Sports and Exercise, 48(11), 2339–2342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.