78
Views
1
CrossRef citations to date
0
Altmetric
Review

Novel techniques to prevent apoptosis and improve regeneration in corneal endothelial cells

ORCID Icon & ORCID Icon
Pages 267-274 | Received 13 Nov 2019, Accepted 09 Jul 2020, Published online: 29 Jul 2020

References

  • Nishida T, Saika S. Cornea and sclera: anatomy and physiology. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea. Vol. 1. 3rd ed. St. Louis: Mosby; 2011. p. 3–24.
  • Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91(3):326–335.
  • Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22:359–389.
  • Nagata S. Apoptosis by death factor. Cell. 1997;88:355–365.
  • Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–192.
  • Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.
  • Nagata S. Apoptosis and clearance of apoptotic cells. Annu Rev Immunol. 2018;36:489–517.
  • Gibson CJ, Davids MS. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 2015;21(22):5021–5029.
  • Jurkunas UV, Bitar MS, Funaki T, et al. Evidence of oxidative stress in the pathogenesis of Fuchs endothelial corneal dystrophy. Am J Pathol. 2010;177:2278–2289.
  • Azizi B, Ziaei A, Fuchsluger T, et al. p53-regulated increase in oxidative-stress–induced apoptosis in Fuchs endothelial corneal dystrophy: a native tissue model. Invest Ophthalmol Vis Sci. 2011;52:9291–9297.
  • Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:3164734.
  • Buddi R, Lin B, Atilano SR, et al. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem. 2002;50:341–351.
  • Jurkunas UV, Rawe I, Bitar MS, et al. Decreased expression of peroxiredoxins in Fuchs’ endothelial dystrophy. Invest Ophthalmol Vis Sci. 2008;49:2956–2963.
  • Gottsch JD, Bowers AL, Margulies EH, et al. Serial analysis of gene expression in the corneal endothelium of Fuchs’ dystrophy. Invest Ophthalmol Vis Sci. 2003;44:594–599.
  • Choi WS, Koh JW, Chung TY, et al. Cytotoxicity of ganciclovir on cultured human corneal endothelial cells. Antivir Ther. 2013;18(6):813–820.
  • Hara S, Tsujikawa M, Maruyama K, et al. STAT3 signaling maintains homeostasis through a barrier function and cell survival in corneal endothelial cells. Exp Eye Res. 2019;179:132–141.
  • Yagi-Yaguchi Y, Yamaguchi T, Higa K, et al. Preoperative aqueous cytokine levels are associated with a rapid reduction in endothelial cells after penetrating keratoplasty. Am J Ophthalmol. 2017;181:166–173.
  • Yazu H, Yamaguchi T, Aketa N, et al. Preoperative aqueous cytokine levels are associated with endothelial cell loss after descemet’s stripping automated endothelial keratoplasty. Invest Ophthalmol Vis Sci. 2018;59:612–620.
  • Ayaki M, Iwasawa A, Niwano Y. In vitro assessment of the cytotoxicity of six antibiotic antibiotics to four cultured ocular surface cell lines. Biocontrol Sci. 2012;17(2):93–99.
  • Ayaki M, Taguchi Y, Soda M, et al. Cytotoxicity of antibiotic medications used for infection and inflammation control after cataract surgery in cultured corneal endothelial cells. Biocontrol Sci. 2010;15(3):97–102.
  • Ayaki M, Yaguchi S, Iwasawa A, et al. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin Exp Ophthalmol. 2008;36(6):553–559.
  • Datta S, Baudouin C, Brignole-Baudouin F, et al. The eye drop preservative benzalkonium chloride potently induces mitochondrial dysfunction and preferentially affects LHON mutant cells. Invest Ophthalmol Vis Sci. 2017;58(4):2406–2412.
  • Fan TJ, Wu SX, Jiang GJ. Apoptotic effects of norfloxacin on corneal endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(1):77–88.
  • Gasset AR, Ishii Y, Kaufman HE, et al. Cytotoxicity of ophthalmic preservatives. Am J Ophthalmol. 1974;78(1):98–105.
  • Han SB, Shin YJ, Hyon JY, et al. Cytotoxicity of voriconazole on cultured human corneal endothelial cells. Antimicrob Agents Chemother. 2011;55(10):4519–4523.
  • Li D, Zhang P. Protective effect and molecular mechanism of liquiritin on oxybuprocaine-induced apoptosis of human corneal endothelial cells. Exp Ther Med. 2018;15(4):3432–3438.
  • Li YH, Wen Q, Fan TJ, et al. Dose dependent cytotoxicity of pranoprofen in cultured human corneal endothelial cells by inducing apoptosis. Drug Chem Toxicol. 2015;38(1):16–21.
  • Wen Q, Fan T, Bai S, et al. Cytotoxicity of proparacaine to human corneal endothelial cells in vitro. J Toxicol Sci. 2015;40(4):427–436.
  • Wen Q, Fan TJ, Tian CL. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis. Exp Biol Med (Maywood). 2016;241(13):1457–1465.
  • Yu HZ, Li YH, Wang RX, et al. Cytotoxicity of lidocaine to human corneal endothelial cells in vitro. Basic Clin Pharmacol Toxicol. 2014;114(4):352–359.
  • Cullen AP. Photokeratitis and other phototoxic effects on the cornea and conjunctiva. Int J Toxicol. 2002;21(6):455–464.
  • Ivanov IV, Mappes T, Schaupp P, et al. Ultraviolet radiation oxidative stress affects eye health. J Biophotonics. 2018;11(7):e201700377.
  • Oliva MS, Taylor H. Ultraviolet radiation and the eye. Int Ophthalmol Clin. 2005;45(1):1–17.
  • Pastor-Valero M, Fletcher AE, de Stavola BL, et al. Years of sunlight exposure and cataract: a case-control study in a Mediterranean population. BMC Ophthalmol. 2007;7(1):18.
  • Taylor HR, West SK, Rosenthal FS, et al. Corneal changes associated with chronic UV irradiation. Arch Ophthalmol. 1989;107(10):1481–1484.
  • Young RW. The family of sunlight-related eye diseases. Optom Vis Sci. 1994;71(2):125–144.
  • Zinfloua C, Rochettea PJ. Ultraviolet A-induced oxidation in cornea: characterization of the early oxidation-related events. Free Radic Biol Med. 2017;108:118–128.
  • Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16(11):1323–1367.
  • Liu C, Vojnovic D, Kochevar IE, et al. UV-A irradiation activates Nrf2-regulated antioxidant defense and induces p53/caspase3-dependent apoptosis in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(4):2319–2327.
  • Melles GR, Lander F, Rietveld FJ. Transplantation of Descemet’s membrane carrying viable endothelium through a small scleral incision. Cornea. 2002;21:415–418.
  • Terry MA, Ousley PJ. Deep lamellar endothelial keratoplasty in the first United States patients: early clinical results. Cornea. 2001;20:239–243.
  • Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25:886–889.
  • Ham L, Dapena I, van Luijk C, et al. Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial dystrophy: review of the first 50 consecutive cases. Eye (Lond). 2009;23:1990–1998.
  • Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty. Cornea. 2016;35:1267–1273.
  • Mathews PM, Lindsley K, Aldave AJ, et al. Etiology of global corneal blindness and current practices of corneal transplantation: a focused review. Cornea. 2018;37:1198–1203.
  • Noritake K, Aki T, Funakoshi T, et al. Critical roles of Rho-associated kinase in membrane blebbing and mitochondrial pathway of apoptosis caused by 1-butanol. Toxicol In Vitro. 2012;26(6):849–855.
  • Croft DR, Coleman ML, Li S, et al. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol. 2005;168:245–255.
  • Krishnan A, Kocab AJ, Zacks DN, et al. small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J Neuroinflammation. 2019;16(1):184.
  • Xiao J, Yao J, Jia L, et al. Protective effect of Met12, a small peptide inhibitor of Fas, on the retinal pigment epithelium and photoreceptor after sodium iodate injury effect of Met12 on RPE and photoreceptor after NaIO3 injury. Invest Ophthalmol Vis Sci. 2017;58:1801–1810.
  • King MD, Alleyne CH Jr, Dhandapani KM. TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci Lett. 2013;542:92–96.
  • Micheau O. Regulation of TNF-related apoptosis-inducing ligand signaling by glycosylation. Int J Mol Sci. 2018;19(3):pii: E715.
  • Yin XH, Yan JZ, Yang G, et al. PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway. Brain Res. 2016;1637:64–70.
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990.
  • Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167.
  • Ludin A, Gur-Cohen S, Golan K, et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 2014;21(11):1605–1619.
  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signaling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977–2992.
  • Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127.
  • Zhang Y, Su SS, Zhao S, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8:14329.
  • Yang Y, Bazhin AV, Werner J. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32(3):249–270.
  • Ziaei A, Schmedt T, Chen Y, et al. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci. 2013;54(10):6724–6734.
  • Zernii EY, Gancharova OS, Baksheeva VE, et al. Mitochondria-targeted antioxidant SkQ1 prevents anesthesia induced dry eye syndrome. OxidMed Cell Longevity. 2017;2017:9281519.
  • Zernii EY, Gancharova OS, Tiulina VV, et al. Mitochondria-targeted antioxidant SKQ1 protects cornea from oxidative damage induced by ultraviolet irradiation and mechanical injury. BMC Ophthalmol. 2018;18(1):336.
  • Petrov A, Perekhvatova N, Skulachev M, et al. SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther. 2016;33(1):96–115.
  • Mancuso C, Santangelo R. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol. 2014;65:185–195.
  • Jin Y, Fan Y, Yan EZ, et al. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol Sin. 2006;27(10):1309–1316.
  • Kim HY, Lee SM. Ferulic acid attenuates ischemia/reperfusion-induced hepatocyte apoptosis via inhibition of JNK activation. Eur J Pharm Sci. 2012;45(5):708–715.
  • Pei X, Wang W, Miao N, et al. The protective effects of the combination of sodium ferulate and oxymatrine on ethanol induced liver damage in mice. Environ Toxicol Pharm. 2014;37(1):423–430.
  • Qin J, Shang L, Ping AS, et al. TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1β-induced rat osteoarthritis chondrocytes in vitro. Arthritis Res Ther. 2012;14(6):R242.
  • Tian L, Dang XQ, Wang CS, et al. Effects of sodium ferulate on preventing steroid-induced femoral head osteonecrosis in rabbits. J Zhejiang Univ-Sc B. 2013;14(5):426–437.
  • Jiang G, Fan T. Sodium ferulate attenuates lidocaine-induced corneal endothelial impairment. Oxid Med Cell Longev. 2018;2018:4967318.
  • Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer. 2010;10(8):561–574.
  • Imre G, Berthelet J, Heering, et al. Apoptosis inhibitor 5 is an endogenous inhibitor of caspase-2. EMBO Rep. 2017;18(5):733–744.
  • Wikström K, Juhas M, Sjölander A. The anti-apoptotic effect of leukotriene D4 involves the prevention of caspase 8 activation and Bid cleavage. Biochem J. 2003 Apr 1;371(Pt 1):115–124.
  • Wang Z, Watt W, Brooks NA, et al. Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors. Biochim Biophys Acta. 2010;1804(9):1817–1831.
  • Coleman ML, Sahai EA, Yeo M, et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3(4):339–345.
  • Chang J, Xie M, Shah VR, et al. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci U S A. 2006;103(39):14495–14500.
  • Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases. 2014;5:e29846.
  • Sebbagh M, Renvoizé C, Hamelin J, et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol. 2001;3(4):346–352.
  • Okumura N, Fujii K, Kagami T, et al. Activation of the Rho/Rho Kinase Signaling Pathway Is Involved in Cell Death of Corneal Endothelium. Invest Ophthalmol Vis Sci. 2016;57(15):6843–6851.
  • Hollanders K, Hove IV, Sergeys J, et al. AMA0428, a potent rock inhibitor, attenuates early and late experimental diabetic retinopathy. Curr Eye Res. 2017;42(2):260–272.
  • Macsai MS, Shiloach M. Use of topical Rho kinase inhibitors in the treatment of fuchs dystrophy after descemet stripping only. Cornea. 2019;38(5):529–534.
  • Meekins LC, Rosado-Adames N, Maddala R, et al. Corneal endothelial cell migration and proliferation enhanced by Rho kinase (ROCK) inhibitors in in vitro and in vivo models. Invest Ophthalmol Vis Sci. 2016;57(15):6731–6738.
  • Moura-Coelho N, Tavares Ferreira J, Bruxelas CP, et al. Rho kinase inhibitors-a review on the physiology and clinical use in ophthalmology. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1101–1117.
  • Okumura N, Koizumi N, Ueno M, et al. The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea. 2011;30(Suppl1):S54–59.
  • Zeng P, Pi RB, Li P, et al. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice. Mol Vis. 2015;21:688–698.
  • Goldstein AS, Aldrich BT, Skeie JM, et al. Assessing the effects of ripasudil, a novel Rho kinase inhibitor, on human corneal endothelial cell health. J Ocul Pharmacol Ther. 2018;34(10):692–699.
  • Achiron A, Feldman A, Karmona L, et al. Prophylactic exposure of human corneal endothelial cells to Rho-associated kinase inhibitor reduced apoptosis rate after phacoemulsification: ex vivo study. J Cataract Refract Surg. 2018;44(10):1261–1266.
  • Wang J, Liu XH, Yang ZJ, et al. The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC Cancer. 2014;14:89.
  • Wang RF, Williamson JE, Kopczynski C, et al. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24(1):51–54.
  • Radell JE, Serle JB. Netarsudil/latanoprost fixed-dose combination for the treatment of open-angle glaucoma or ocular hypertension. Drugs Today (Barc). 2019;55(9):563–574. PubMed PMID: 31584573.
  • Fang Y, Braley-Mullen H. Cultured murine thyroid epithelial cells expressing transgenic Fas-associated death domain-like interleukin-1beta converting enzyme inhibitory protein are protected from fas-mediated apoptosis. Endocrinology. 2008;149(7):3321–3329.
  • Humphreys L, Espona-Fiedler M, Longley DB. FLIP as a therapeutic target in cancer. Febs J. 2018;285(22):4104–4123.
  • Masuko-Hongo K, Sakata M, Yuan GH, et al. Expression of Fas-associated death domain-like interleukin-1beta-converting enzyme (FLICE) inhibitory protein (FLIP) in human articular chondrocytes: possible contribution to the resistance to Fas-mediated death of in vitro cultured human articular chondrocytes. Rheumatol Int. 2001;21(3):112–121.
  • Choi CY, Reimers K, Allmeling C, et al. Inhibition of apoptosis by expression of antiapoptotic proteins in recombinant human keratinocytes. Cell Transplant. 2007;16(6):663–674.
  • Wilkie-Grantham RP, Matsuzawa S, Reed JC. Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein. J Biol Chem. 2013;288(18):12777–12790.
  • Barcia RN, Dana MR, Kazlauskas A. Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented by gene therapy with bcl-xL. Am J Transplant. 2007;7(9):2082–2089.
  • Fuchsluger TA, Jurkunas U, Kazlauskas A, et al. Anti-apoptotic gene therapy prolongs survival of corneal endothelial cells during storage. Gene Ther. 2011;18(8):778–787.
  • Fuchsluger TA, Jurkunas U, Kazlauskas A, et al. Corneal endothelial cells are protected from apoptosis by gene therapy. Hum Gene Ther. 2011;22(5):549–558.
  • Fouad AA, Hafez HM, Hamouda A. Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol. 2019;22:960327119877437.
  • Dai F, Gao L, Zhao Y, et al. Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. Phytomedicine. 2016;23(7):686–693.
  • Kernt M, Hirneiss C, Neubauer AS, et al. Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP). Br J Ophthalmol. 2010;94(7):940–946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.