232
Views
0
CrossRef citations to date
0
Altmetric
Review

Anterior segment dysgenesis: part II—genetics and pathogenesis

& ORCID Icon
Pages 187-199 | Received 12 Jun 2023, Accepted 28 Feb 2024, Published online: 05 Mar 2024

References

  • Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol. 2011 Sep;22(5):314–24. doi: 10.1097/ICU.0b013e328349412b
  • Ito YA, Walter MA. Genomics and anterior segment dysgenesis: a review. Clin Exp Ophthalmol. 2014 Jan;42(1):13–24. doi: 10.1111/ceo.12152
  • Ma AS, Grigg JR, Jamieson RV. Phenotype-genotype correlations and emerging pathways in ocular anterior segme Brenda L. Bohnsack1nt dysgenesis. Hum Genet. 2019 Sep;138(8–9):899–915. doi: 10.1007/s00439-018-1935-7
  • Miesfeld JB, Brown NL. Eye organogenesis: a hierarchical view of ocular development. Curr Top Dev Biol. 2019;132:351–393.
  • Chow RL, Lang RA. Early eye development in vertebrates. Annu Rev Cell Dev Biol. 2001;17(1):255–96. doi: 10.1146/annurev.cellbio.17.1.255
  • Zagozewski JL, Zhang Q, Eisenstat DD. Genetic regulation of vertebrate eye development. Clin Genet. 2014 Nov;86(5):453–60. doi: 10.1111/cge.12493
  • Abitbol MM. Networks of genes governing the development of optic and otic vesicles: implications for eye and ear development. Invest Ophthalmol Vis Sci. 2015 Feb 5;56(2):892. doi: 10.1167/iovs.15-16420
  • Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.
  • Cardozo MJ, Sánchez-Bustamante E, Bovolenta P. Optic cup morphogenesis across species and related inborn human eye defects. Development. 2023 Jan 15;150(2). doi: 10.1242/dev.200399
  • Lingam G, Sen AC, Lingam V, et al. Ocular coloboma-a comprehensive review for the clinician. Eye (Lond). 2021 Aug;35(8):2086–2109.
  • Beebe DC, Coats JM. The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol. 2000;220(2):424–431. doi: 10.1006/dbio.2000.9638
  • Creuzet S, Vincent C, Couly G. Neural crest derivatives in ocular and periocular structures. Int J Dev Biol. 2005;49(2–3):161–171. doi: 10.1387/ijdb.041937sc
  • Sauka-Spengler T, Bronner-Fraser M. Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev. 2006;16(4):360–366. doi: 10.1016/j.gde.2006.06.006
  • Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol. 2012;366(1):34–54. doi: 10.1016/j.ydbio.2011.12.041
  • Simões-Costa M, Bronner ME. Establishing neural crest identity: a gene regulatory recipe. Development. 2015;142(2):2420257. doi: 10.1242/dev.105445
  • Schille C, Schambony A. Signaling pathways and tissue interactions in neural plate border formation. Neurogenesis (Austin). 2017;4(1):e1292783. doi: 10.1080/23262133.2017.1292783
  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, et al. Cranial neural crest migration: new rules for an old road. Dev Biol. 2010;344(2):543–554. doi: 10.1016/j.ydbio.2010.04.010
  • Chawla B, Schley E, Williams AL, et al. Retinoic Acid and pitx2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res B Dev Reprod Toxicol. 2016;107(3):126–135. doi: 10.1002/bdrb.21177
  • Eason J, Williams AL, Chawla B, et al. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye cmpared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome. Birth Defects Res. 2017;109(15). doi: 10.1002/bdr2.1069
  • Canto-Soler MV, Adler R. Optic cup and lens development requires Pax6 expression in the early optic vesicle during a narrow time window. Dev Biol. 2006;294(1):119–132. doi: 10.1016/j.ydbio.2006.02.033
  • Williams AL, Eason J, Chawla B, et al. Cyp1b1 regulates ocular fissure closure through a retinoic acid–independent pathway. Invest Ophthalmol Vis Sci. 2017;58(2):1084–1097. doi: 10.1167/iovs.16-20235
  • Williams AL, Bohnsack BL. The ocular neural crest: specification, migration, and then what? Front Cell Dev Biol. 2020;8:595896. doi: 10.3389/fcell.2020.595896
  • McMenamin PG. A morphological study of the inner surface of the anterior chamber angle in pre and postnatal human eyes. Curr Eye Res. 1989 Jul;8(7):727–39. doi: 10.3109/02713688909025808
  • Seo S, Chen L, Liu W, et al. Foxc1 and Foxc2 in the neural crest are required for ocular anterior segment development. Invest Ophthalmol Vis Sci. 2017;58(3):1368–1377. doi: 10.1167/iovs.16-21217
  • Zhao Y, Wang S, Sorenson CM, et al. Cyp1b2 mediates periostin regulation of trabecular meshwork development by suppression of oxidative stress. Mol Cell Bill. 2013;33(21):4225–4240. doi: 10.1128/MCB.00856-13
  • Souma T, Tompson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016 Jul 1;126(7):2575–87. doi: 10.1172/JCI85830
  • Haddad A, Ait Boujmia OK, El Maaloum L, et al. Meta-analysis of CYP1B1 gene mutations in primary congenital glaucoma patients. Eur J Ophthalmol. 2021 Nov;31(6):2796–2807. doi: 10.1177/11206721211016308
  • Shah M, Bouhenni R, Benmerzouga I. Geographical variability in CYP1B1 mutations in primary congenital glaucoma. J Clin Med. 2022 Apr 6;11(7):2048. doi: 10.3390/jcm11072048
  • Plásilová M, Stoilov I, Sarfarazi M, et al. Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (roms) affected with primary congenital glaucoma. J Med Genet. 1999 Apr;36(4):290–4.
  • Wiggins RE, Tomey KF. The results of glaucoma surgery in aniridia. Arch Ophthalmol. 1992;110(4):503–505. doi: 10.1001/archopht.1992.01080160081036
  • Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997 Apr;6(4):641–647. doi: 10.1093/hmg/6.4.641
  • Stoilov I, Akarsu AN, Alozie I, et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P450 1B1. Am J Hum Genet. 1998;62(3):573–584. doi: 10.1086/301764
  • Chouiter L, Nadifi S. Analysis of CYP1B1 gene mutations in patients with primary congenital glaucoma. J Pediatr Genet. 2017 Dec;6(4):205–214. doi: 10.1055/s-0037-1602695
  • Zhao Y, Sorenson CM, Sheibani N. Cytochrome P450 1B1 and primary congenital glaucoma. J Oophthalmic Vis Res. 2015;10(1):60–67. doi: 10.4103/2008-322X.156116
  • Kaushik S, Choudhary S, Kaur A, et al. Neonatal-onset congenital ectropion uveae may be caused by a distinct CYP1B1 pathologic variant. Am J Ophthalmol. 2022 Jul;239:54–65.
  • Teixeira LB, Zhao Y, Dubielzig RR, et al. Ultrastructural abnormalities of the trabecular meshwork extracellular matrix in Cyp1b1-deficient mice. Vet Pathol. 2015 Mar;52(2):397–403.
  • Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005 Sep 28;227(2):115–24. doi: 10.1016/j.canlet.2004.10.007
  • Yin H-C, Tseng H-P, Chung H-Y, et al. Influence of TCDD on zebrafish CYP1B1 transcription during development. Toxicol Sci. 2008;103(1):158–168. doi: 10.1093/toxsci/kfn035
  • Akarsu AN, Turacli ME, Aktan SG, et al. A second locus (GLC3B) for primary congenital glaucoma (buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996 Aug;5(8):1199–1203.
  • Ali M, McKibbin M, Booth A, et al. Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet. 2009 May;84(5):664–71.
  • Chen X, Chen Y, Wang L, et al. Confirmation and further mapping of the GLC3C locus in primary congenital glaucoma. Front Biosci (Landmark Ed). 2011 Jun 1;16(6):2052–2059. doi: 10.2741/3838
  • Désir J, Sznajer Y, Depasse F, et al. LTBP2 null mutations in an autosomal recessive ocular syndrome with megalocornea, spherophakia, and secondary glaucoma. Eur J Hum Genet. 2010 Jul;18(7):761–7.
  • Qiao Y, Chen Y, Tan C, et al. Screening and functional analysis of TEK mutations in Chinese children with primary congenital glaucoma. Front Genet. 2021;12:764509. doi: 10.3389/fgene.2021.764509
  • Sato TN, Qin Y, Kozak CA, et al. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci USA. 1993 Oct 15;90(20):9355–8. doi: 10.1073/pnas.90.20.9355
  • Thomson BR, Heinen S, Jeansson M, et al. A lymphatic defect causes ocular hypertension and glaucoma in mice. J Clin Invest. 2014 Oct;124(10):4320–4.
  • Kim J, Park DY, Bae H, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J Clin Invest. 2017 Oct 2;127(10):3877–3896. doi: 10.1172/JCI94668
  • Thomson BR, Souma T, Tompson SW, et al. Angiopoietin-1 is required for Schlemm’s canal development in mice and humans. J Clin Invest. 2017 Dec 1;127(12):4421–4436. doi: 10.1172/JCI95545
  • Young TL, Whisenhunt KN, Jin J, et al. SVEP1 as a genetic modifier of TEK-Related primary congenital glaucoma. Invest Ophthalmol Vis Sci. 2020 Oct 1;61(12):6. doi: 10.1167/iovs.61.12.6
  • Yu-Wai-Man C, Arno G, Brookes J, et al. Primary congenital glaucoma including next-generation sequencing-based approaches: clinical utility gene card. Eur J Hum Genet. 2018 Nov;26(11):1713–1718.
  • Glaser T, Jepeal L, Edwards JG, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nerve defects. Nat Genet. 1994;7(4):463–471. doi: 10.1038/ng0894-463
  • Davis N, Yoffe C, Raviv S, et al. Pax6 dosage requirements in iris and ciliary body differentiation. Dev Biol. 2009;333(1):132–142. doi: 10.1016/j.ydbio.2009.06.023
  • Reza HM, Takahashi Y, Yasuda K. Stage-dependent expression of Pax6 in optic vesicle/cup regulates patterning genes through signaling molecules. Differentiation. 2007;75(8):726–736. doi: 10.1111/j.1432-0436.2007.00168.x
  • Blixt A, Landgren H, Johansson BR, et al. Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Dev Biol. 2007;302(1):218–229. doi: 10.1016/j.ydbio.2006.09.021
  • Grocott T, Johnson S, Bailey AP, et al. Neural crest cells organize the eye via TGF-β and canonical wnt signalling. Nat Commun. 2011;2(1):265. doi: 10.1038/ncomms1269
  • Kamachi Y, Uchikawa M, Tanouchi A, et al. Pax6 and SOX2 form a co-DNA binding partner complex that regulates initiation of lens development. Genes Dev. 2001;15(10):1272–1286. doi: 10.1101/gad.887101
  • Lima Cunha D, Arno G, Corton M, et al. The spectrum of PAX6 mutations and genotype-phenotype correlations in the eye. Genes (Basel). 2019 Dec 17;10(12):1050. doi: 10.3390/genes10121050
  • Prosser J, van Heyningen V. PAX6 mutations reviewed. Hum Mutat. 1998;11(2):93–108. doi: 10.1002/(SICI)1098-1004(1998)11:2<93:AID-HUMU1>3.0.CO;2-M
  • Tzoulaki I, White IMS, Hanson IM. PAX6mutations: genotype-phenotype correlations. BMC Genet. 2005;6(1):27. doi: 10.1186/1471-2156-6-27
  • Cvekl A, Callaerts P. Pax6: 25th anniversary and more to learn. Exp Eye Res. 2017;156:10–21. doi: 10.1016/j.exer.2016.04.017
  • Daruich A, Duncan M, Robert MP, et al. Congenital aniridia beyond black eyes: from phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res. 2023 Jul;95:101133.
  • Tzoulaki I, White IM, Hanson IM. PAX6 mutations: genotype-phenotype correlations. BMC Genet. 2005 May 26;6(1):27. doi: 10.1186/1471-2156-6-27
  • Plaisancié J, Tarilonte M, Ramos P, et al. Implication of non-coding PAX6 mutations in aniridia. Hum Genet. 2018 Oct;137(10):831–846.
  • Wang GM, Prasov L, Al-Hasani H, et al. Phenotypic variation in a four-generation family with aniridia carrying a novel PAX6 mutation. J Ophthalmol. 2018;2018:1–10. doi: 10.1155/2018/5978293
  • Wawrocka A, Krawczynski MR. The genetics of aniridia - simple things become complicated. J Appl Genet. 2018;59(2):151–159. doi: 10.1007/s13353-017-0426-1
  • Brown A, McKie M, van Heyningen V, et al. The human PAX6 mutation database. Nuc Acid Res. 1998;26:259–264. doi: 10.1093/nar/26.1.259
  • Dubey SK, Mahalaxmi N, Vijayalakshmi P, et al. Mutational analysis and genotype-phenotype correlations in southern Indian patients with sporadic and familial aniridia. Mol Vis. 2015;27(21):88–97.
  • Hingorani M, Williamson KA, Moore AT, et al. Detailed ophthalmologic evaluation of 43 individuals with PAX6 mutations. Invest Ophthalmol Vis Sci. 2009;50(6):2581–2590. doi: 10.1167/iovs.08-2827
  • Azuma N, Yamaguchi Y, Handa H, et al. Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am J Hum Genet. 2003 Jun;72(6):1565–70.
  • Duffy KA, Trout KL, Gunckle JM, et al. Results from the WAGR syndrome patient registry: characterization of WAGR spectrum and recommendations for care management. Front Pediatr. 2021;9:733018. doi: 10.3389/fped.2021.733018
  • Ito YA, Footz TK, Berry FB, et al. Severe molecular defects of a novel FOXC1 W152G mutation result in aniridia. Invest Ophthalmol Vis Sci. 2009 Aug;50(8):3573–9.
  • Ansari M, Rainger J, Hanson IM, et al. Genetic analysis of ‘PAX6-negative’ individuals with aniridia or Gillespie syndrome. PLoS One. 2016;11(4):e0153757. doi: 10.1371/journal.pone.0153757
  • Hall HN, Williamson KA, FitzPatrick DR. The genetic architecture of aniridia and Gillespie syndrome. Hum Genet. 2019 Sep;138(8–9):881–898. doi: 10.1007/s00439-018-1934-8
  • Sadagopan KA, Liu GT, Capasso JE, et al. Anirdia-like phenotype caused by 6p25 dosage aberrations. Am J Med Genet A. 2015 Mar;167(3):524–8.
  • Gerber S, Alzayady KJ, Burglen L, et al. Recessive and dominant De novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet. 2016 May 5;98(5):971–980. doi: 10.1016/j.ajhg.2016.03.004
  • McEntagart M, Williamson KA, Rainger JK, et al. A restricted repertoire of De novo mutations in ITPR1 cause gillespie syndrome with evidence for dominant-negative effect. Am J Hum Genet. 2016 May 5;98(5):981–992. doi: 10.1016/j.ajhg.2016.03.018
  • Regalado ES, Mellor-Crummey L, De Backer J, et al. Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations. Genet Med. 2018 Oct;20(10):1206–1215.
  • Strungaru MH, Dinu I, Walter MA. Genotype-phenotype correlations in axenfeld-rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci. 2007;48(1):228–237. doi: 10.1167/iovs.06-0472
  • Leis LM, Tyler RC, Volkmann Kloss BA, et al. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet. 2012;20(12):1224–1233. doi: 10.1038/ejhg.2012.80
  • Ma A, Yousoof S, Grigg JR, et al. Revealing hidden genetic diagnoses in the ocular anterior segment disorders. Genet Med. 2020 Oct;22(10):1623–1632.
  • Kulak SC, Kozlowski K, Semina EV, et al. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum Mol Genet. 1998;7(7):1113–1117. doi: 10.1093/hmg/7.7.1113
  • Suzuki K, Nakamura M, Amano E, et al. Case of chromosome 6p25 terminal deletion associated with Axenfeld–Rieger syndrome and persistent hyperplastic primary vitreous. Am J Med Genet A. 2006;140(5):503–508. doi: 10.1002/ajmg.a.31085
  • Bohnsack BL, Kasprick D, Kish PE, et al. A zebrafish model of Axenfeld-Rieger syndrome reveals thatpitx2regulation by retinoic acid is essential for ocular and craniofacial development. Invest Ophthalmol Vis Sci. 2012;53(1):7–22. doi: 10.1167/iovs.11-8494
  • Kitamura K, Miura H, Miyagawa-Tomita S, et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development. 1999;126(24):5749–5758. doi: 10.1242/dev.126.24.5749
  • Evans AL, Gage PJ. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet. 2005;14(22):3347–3359. doi: 10.1093/hmg/ddi365
  • French CR, Seshadri S, Destefano AL, et al. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest. 2014;124(11):4877–4881. doi: 10.1172/JCI75109
  • Chen L, Gage PJ. Heterozygous Pitx2 null mice accurately recapitulate the ocular features of Axenfeld-Rieger Syndrome and congenital glaucoma. Invest Ophthalmol Vis Sci. 2016;57(11):5023–5030. doi: 10.1167/iovs.16-19700
  • Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010 Aug;137(16):2605–21. doi: 10.1242/dev.040048
  • Zhou L, Wang X, An J, et al. Genotype-phenotype association of PITX2 and FOXC1 in axenfeld-rieger syndrome. Exp Eye Res. 2023 Jan;226:109307. doi: 10.1016/j.exer.2022.109307
  • Prem Senthil M, Knight LSW, Taranath D, et al. Comparison of anterior segment abnormalities in individuals with FOXC1 and PITX2 variants. Cornea. 2022 Aug 1;41(8):1009–1015. doi: 10.1097/ICO.0000000000003020
  • French CR. Mechanistic insights into axenfeld-rieger syndrome from zebrafish foxc1 and pitx2 mutants. Int J Mol Sci. 2021;22(18):10001. doi: 10.3390/ijms221810001
  • Chavarria-Soley G, Michels-Rautenstrauss K, Caliebe A, et al. Novel CYP1B1 and known PAX6 mutations in anterior segment dysgenesis (ASD). J Glaucoma. 2006 Dec;15(6):499–504.
  • Sibon I, Coupry I, Menegon P, et al. COL4A1 mutation in axenfeld-rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007 Aug;62(2):177–184.
  • Cheong SS, Hentschel L, Davidson AE, et al. Mutations in CPAMD8 cause a unique form of autosomal-recessive anterior segment dysgenesis. Am J Hum Genet. 2016 Dec 1;99(6):1338–1352. doi: 10.1016/j.ajhg.2016.09.022
  • Micheal S, Siddiqui SN, Zafar SN, et al. Whole exome sequencing identifies a heterozygous missense variant in the PRDM5 gene in a family with axenfeld-rieger syndrome. Neurogenetics. 2016 Jan;17(1):17–23.
  • Bonet-Fernández JM, Aroca-Aguilar JD, Corton M, et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum Genet. 2020 Oct;139(10):1209–1231.
  • Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem. 1993 Dec 15;268(35):26033–6. doi: 10.1016/S0021-9258(19)74270-7
  • Jeanne M, Gould DB. Genotype-phenotype correlations in pathology caused by collagen type IV alpha 1 and 2 mutations. Matrix Biol. 2017 Jan;57-58:29–44. doi: 10.1016/j.matbio.2016.10.003
  • Volonghi I, Pezzini A, Del Zotto E, et al. Role of COL4A1 in basement-membrane integrity and cerebral small-vessel disease. The COL4A1 stroke syndrome. Curr Med Chem. 2010;17(13):1317–24. doi: 10.2174/092986710790936293
  • Søndergaard CB, Nielsen JE, Hansen CK, et al. Hereditary cerebral small vessel disease and stroke. Clin Neurol Neurosur. 2017 Apr;155:45–57.
  • Micheal S, Khan MI, Islam F, et al. Identification of mutations in the PRDM5 gene in brittle cornea syndrome. Cornea. 2016 Jun;35(6):853–9.
  • Sklar BA, Pisuchpen P, Bareket M, et al. Identification and management of a novel PRDM5 gene pathologic variant in a family with brittle cornea syndrome. Cornea. 2023 Sep 15;42(12):1572–1577. doi: 10.1097/ICO.0000000000003372
  • Burkitt Wright EMM, Spencer HL, Daly SB, et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am J Hum Genet. 2011 Jun 10;88(6):767–777. doi: 10.1016/j.ajhg.2011.05.007
  • Stanley S, Balic Z, Hubmacher D. Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Ann N Y Acad Sci. 2021 Apr;1490(1):57–76. doi: 10.1111/nyas.14465
  • Karoulias SZ, Beyens A, Balic Z, et al. A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix. Matrix Biol. 2020 Jun;88:1–18.
  • Guo D, Liu L, Yang F, et al. Characteristics and genotype-phenotype correlations in ADAMTS17 mutation-related weill-marchesani syndrome. Exp Eye Res. 2023 Sep;234:109606.
  • Bhandari R, Ferri S, Whittaker B, et al. Peters anomaly: review of the literature. Cornea. 2011 Aug;30(8):939–44.
  • Nischal KK. Genetics of congenital corneal opacification–impact on diagnosis and treatment. Cornea. 2015 Oct;34(Suppl 10):S24–34. doi: 10.1097/ICO.0000000000000552
  • Hanson IM, Fletcher JM, Jordan T, et al. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat Genet. 1994 Feb;6(2):168–73.
  • Chesneau B, Aubert-Mucca M, Fremont F, et al. First evidence of SOX2 mutations in Peters’ anomaly: lessons from molecular screening of 95 patients. Clin Genet. 2022 May;101(5–6):494–506.
  • Smith AN, Miller LA, Radice G, et al. Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development. 2009 Sep;136(17):2977–85.
  • Zhang X, Tong Y, Xu W, et al. Two novel mutations of the PAX6 gene causing different phenotype in a cohort of Chinese patients. Eye (Lond). 2011 Dec;25(12):1581–9.
  • Weh E, Reis LM, Happ HC, et al. Whole exome sequence analysis of Peters anomaly. Hum Genet. 2014 Dec;133(12):1497–511.
  • Tang HK, Chao LY, Saunders GF. Functional analysis of paired box missense mutations in the PAX6 gene. Hum Mol Genet. 1997 Mar;6(3):381–6. doi: 10.1093/hmg/6.3.381
  • Nanjo Y, Kawasaki S, Mori K, et al. A novel mutation in the alternative splice region of the PAX6 gene in a patient with Peters’ anomaly. Br J Ophthalmol. 2004 May;88(5):720–721.
  • Honkanen RA, Nishimura DY, Swiderski RE, et al. A family with axenfeld-rieger syndrome and Peters Anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene. Am J Ophthalmol. 2003 Mar;135(3):368–375.
  • Weisschuh N, Wolf C, Wissinger B, et al. A novel mutation in the FOXC1 gene in a family with Axenfeld-Rieger syndrome and Peters’ anomaly. Clin Genet. 2008 Nov;74(5):476–480.
  • Hassed SJ, Li S, Xu W, et al. A novel mutation in PITX2 in a patient with Axenfeld-Rieger Syndrome. Mol Syndromol. 2017 Mar;8(2):107–109.
  • Li Y, Zhang J, Dai Y, et al. Novel mutations in COL6A3 that associated with Peters’ anomaly caused abnormal intracellular protein retention and decreased cellular resistance to oxidative stress. Front Cell Dev Biol. 2020;8:531986. doi: 10.3389/fcell.2020.531986
  • Faber H, Puk O, Holz A, et al. Identification of a new genetic mutation associated with Peters Anomaly. Cornea. 2021 Mar 1;40(3):373–376. doi: 10.1097/ICO.0000000000002611
  • Vincent A, Billingsley G, Priston M, et al. Further support of the role of CYP1B1 in patients with Peters anomaly. Mol Vis. 2006 May 16;12:506–10.
  • Doucette L, Green J, Fernandez B, et al. A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. Eur J Hum Genet. 2011 Mar;19(3):293–9.
  • Plaisancié J, Ragge NK, Dollfus H, et al. FOXE3 mutations: genotype-phenotype correlations. Clin Genet. 2018 Apr;93(4):837–845. doi: 10.1111/cge.13177
  • Ahmad N, Aslam M, Muenster D, et al. Pitx3 directly regulates Foxe3 during early lens development. Int J Dev Biol. 2013;57(9–10):741–51. doi: 10.1387/ijdb.130193jg
  • Summers KM, Withers SJ, Gole GA, et al. Anterior segment mesenchymal dysgenesis in a large Australian family is associated with the recurrent 17 bp duplication in PITX3. Mol Vis. 2008;14:2010–5.
  • Zazo Seco C, Plaisancié J, Lupasco T, et al. Identification of PITX3 mutations in individuals with various ocular developmental defects. Ophthalmic Genet. 2018 Jun;39(3):314–320.
  • Kim HK, Ham KA, Lee SW, et al. Biallelic deletion of Pxdn in mice leads to Anophthalmia and severe eye malformation. Int J Mol Sci. 2019 Dec 5;20(24):6144. doi: 10.3390/ijms20246144
  • Yan X, Sabrautzki S, Horsch M, et al. Peroxidasin is essential for eye development in the mouse. Hum Mol Genet. 2014 Nov 1;23(21):5597–614. doi: 10.1093/hmg/ddu274
  • Zhu AY, Costain G, Cytrynbaum C, et al. Novel heterozygous variants in PXDN cause different anterior segment dysgenesis phenotypes in monozygotic twins. Ophthalmic Genet. 2021 Oct;42(5):624–630.
  • Langer L, Taranova O, Sulik K, et al. SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev. 2012 Mar;129(1–4):1–12.
  • Heavner WE, Andoniadou CL, Pevny LH. Establishment of the neurogenic boundary of the mouse retina requires cooperation of SOX2 and WNT signaling. Neural Dev. 2014 Dec 9;9(1):27. doi: 10.1186/1749-8104-9-27
  • Williams AL, Bohnsack BL. What’s retinoic acid got to do with it? Retinoic acid regulation of the neural cret in craniofacial and ocular development. Genesis. 2019;57(7–8):e23308. doi: 10.1002/dvg.23308
  • Caron V, Chassaing N, Ragge N, et al. Clinical and functional heterogeneity associated with the disruption of retinoic acid receptor beta. Genet Med. 2023 Aug;25(8):100856.
  • Luo T, Zhang Y, Khadka D, et al. Regulatory targets for transcription factor AP2 in Xenopus embryos. Dev Growth Differ. 2005;47(6):403–413. doi: 10.1111/j.1440-169X.2005.00809.x
  • Hoffman TL, Javier AL, Campeau SA, et al. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. J Exp Zool B Mol Dev Evol. 2007;308(5):679–691. doi: 10.1002/jez.b.21189
  • Li W, Cornell RA. Redundant activities of Tfap2a and Tfap2c ae required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol. 2007;304(1):338–354. doi: 10.1016/j.ydbio.2006.12.042
  • Van Otterloo E, Li H, Jones KL, et al. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning. Development. 2017;145(2):dev157438. doi: 10.1242/dev.157438
  • Milunsky JM, Maher TM, Zhao G, et al. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet. 2008;82(5):1171–1177. doi: 10.1016/j.ajhg.2008.03.005
  • Milunsky JM, Maher TM, Zhao G, et al. Genotype–phenotype analysis of the branchio-oculo-facial syndrome. Am J Med Genet A. 2011;155(1):22–32. doi: 10.1002/ajmg.a.33783
  • Gestri G, Osborne RJ, Wyatt AW, et al. Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators. Hum Genet. 2009;126(6):791–803. doi: 10.1007/s00439-009-0730-x
  • Schaefer L, Ballabio A, Zoghbi HY. Cloning and characterization of a putative human holocytochrome c-type synthetase gene (HCCS) isolated from the critical region for microphthalmia with linear skin defects (MLS). Genomics. 1996 Jun 1;34(2):166–72. doi: 10.1006/geno.1996.0261
  • van Rahden VA, Rau I, Fuchs S, et al. Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J Rare Dis. 2014 Apr 15;9:53. doi: 10.1186/1750-1172-9-53
  • Battinelli EM, Boyd Y, Craig IW, et al. Characterization and mapping of the mouse NDP (Norrie disease) locus (NDP). Mamm Genome. 1996 Feb;7(2):93–7.
  • Nikopoulos K, Venselaar H, Collin RW, et al. Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP. Hum Mutat. 2010 Jun;31(6):656–666.
  • Wawrzynski J, Patel A, Badran A, et al. Spectrum of mutations in NDP resulting in ocular disease; a systematic review. Front Genet. 2022;13:884722. doi: 10.3389/fgene.2022.884722
  • Ohlmann A, Tamm ER. Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog Retin Eye Res. 2012 May;31(3):243–57. doi: 10.1016/j.preteyeres.2012.02.002
  • Vithana EN, Morgan P, Sundaresan P, et al. Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet. 2006 Jul;38(7):755–7.
  • Patel SP, Parker MD. SLC4A11 and the pathophysiology of congenital hereditary endothelial dystrophy. Biomed Res Int. 2015;2015:475392. doi: 10.1155/2015/475392
  • Happ H, Schilter KF, Weh E, et al. 8q21.11 microdeletion in two patients with syndromic peters anomaly. Am J Med Genet A. 2016 Sep;170(9):2471–5.
  • Zhang A, Venkat A, Taujale R, et al. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem. 2021 Jul;297(1):100843.
  • Lesnik Oberstein SA, Kriek M, White SJ, et al. Peters plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 2006;79(3):562–566. doi: 10.1086/507567
  • Medina-Martinez O, Shah R, Jamrich M. Pitx3 controls multiple aspects of lens development. Dev Dyn. 2009 Sep;238(9):2193–201. doi: 10.1002/dvdy.21924
  • Aldahmesh MA, Khan AO, Mohamed J, et al. Novel recessive BFSP2 and PITX3 mutations: insights into mutational mechanisms from consanguineous populations. Genet Med. 2011 Nov;13(11):978–81.
  • Pohlmann D, Rossel M, Salchow DJ, et al. Outcome of a penetrating keratoplasty in a 3-month-old child with sclerocornea. GMS Ophthalmol Cases. 2020;10:Doc35. doi: 10.3205/oc000162
  • Choi A, Lao R, Ling-Fung Tang P, et al. Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis. Eur J Hum Genet. 2015 Mar;23(3):337–41. doi: 10.1038/ejhg.2014.119
  • Vincent MC, Pujo AL, Olivier D, et al. Screening for PAX6 gene mutations is consistent with haploinsufficiency as the main mechanism leading to various ocular defects. Eur J Hum Genet. 2003 Feb;11(2):163–9.
  • Qin Y, Gao P, Yu S, et al. A large deletion spanning PITX2 and PANCR in a Chinese family with axenfeld-rieger syndrome. Mol Vis. 2020;26:670–678.
  • Skeens HM, Brooks BP, Holland EJ. Congenital aniridia variant: minimally abnormal irides with severe limbal stem cell deficiency. Ophthalmol. 2011 Jul;118(7):1260–4. doi: 10.1016/j.ophtha.2010.11.021
  • Nieves-Moreno M, Noval S, Peralta J, et al. Expanding the phenotypic spectrum of PAX6 mutations: from congenital cataracts to nystagmus. Genes (Basel). 2021 May 9;12(5):707. doi: 10.3390/genes12050707
  • Edward DP, Morales J, Bouhenni RA, et al. Congenital ectropion uvea and mechanisms of glaucoma in neurofibromatosis type 1. Ophthalmol. 2012;119(7):1485–1494. doi: 10.1016/j.ophtha.2012.01.027
  • Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017 Jun 29;170(1):17–33. doi: 10.1016/j.cell.2017.06.009
  • Ferner RE, Gutmann DH. Neurofibromatosis type 1 (NF1): diagnosis and management. Handb Clin Neurol. 2013;115:939–955.
  • Messina M, Ross AR, Pocobelli G, et al. Cataract surgery with intraocular lens implantation in 3 brothers with megalocornea: long-term follow-up. J Cataract Refract Surg. 2018 Mar;44(3):399–402.
  • Mackey DA, Buttery RG, Wise GM, et al. Description of X-linked megalocornea with identification of the gene locus. Arch Ophthalmol. 1991 Jun;109(6):829–833.
  • Mangialavori D, Colao E, Carnevali A, et al. Novel mutation in the CHRDL1 gene detected in patients with Megalocornea. Cornea. 2015 Aug;34(8):976–9.
  • Webb TR, Matarin M, Gardner JC, et al. X-linked megalocornea caused by mutations in CHRDL1 identifies an essential role for ventroptin in anterior segment development. Am J Hum Genet. 2012 Feb 10;90(2):247–59. doi: 10.1016/j.ajhg.2011.12.019
  • Pfirrmann T, Emmerich D, Ruokonen P, et al. Molecular mechanism of CHRDL1-mediated X-linked megalocornea in humans and in Xenopus model. Hum Mol Genet. 2015 Jun 1;24(11):3119–32. doi: 10.1093/hmg/ddv063
  • Zhang Y, Yeh LK, Zhang S, et al. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development. 2015 Oct 1;142(19):3383–93. doi: 10.1242/dev.125393
  • Jacobson A, Bohnsack BL. Anterior megalophthalmos in sisters with Witteveen-Kolk syndrome. J AAPOS. 2022 Jun;26(3):148–150. doi: 10.1016/j.jaapos.2022.01.003
  • Grzenda A, Lomberk G, Zhang JS, et al. Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta. 2009;1789(6–8):443–450. doi: 10.1016/j.bbagrm.2009.05.007
  • Balasubramanian M, Dingemans AJM, Albaba S, et al. Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype. Eur J Hum Genet. 2021 Apr;29(4):625–636.