6
Views
4
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Dysfunction of the adrenal cortex: an exploration of molecular mechanisms

, PhD
Pages 69-77 | Published online: 11 Jul 2009

References

  • Oelkers W. Adrenal insufficiency. N Engl J Med 1996; 335: 1206–12
  • Manglik S, Flores E, Lubarsky L, Fernandez F, Chhibber VL, Tayek JA. Glucocorticoid insufficiency in patients who present to the hospital with severe sepsis: a prospective clinical trial. Crit Care Med 2003; 31: 1668–75
  • Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med 2003; 348: 727–34
  • Watterberg KL. Adrenocortical function and dysfunction in the fetus and neonate. Semin Neonatol 2004; 9: 13–21
  • Bachmann, R. Die Nebenniere. In: W Bargmann, editor. Handbuch der mikroskopischen Anatomie des Menschen, Vol. 6: Blutgefass- und Lymphgefassapparat. Innersekretorische Drusen, Part 5. Berlin: Springer; 1954. p. 1–952.
  • Neville AM, O'Hare MJ. The human adrenal cortex. pathology and biology – an integrated approach. Springer, Berlin 1982
  • Hornsby PJ. DHEA: a biologist's perspective. J Am Geriatr Soc 1997; 45: 1395–401
  • Hornsby PJ. The biosynthesis of DHEA by the adrenal cortex and its age-related decline. Health promotion and aging. the role of dehydroepiandrosterone (DHEA), RR Watson. Harwood Academic, Reading 1999; 1–13
  • Hornsby PJ. The regulation of adrenocortical function by control of growth and structure. Adrenal cortex, DC Anderson, JSD Winter. Butterworth, London 1985; 1–31
  • Hornsby PJ. Transplantation of adrenocortical cells. Rev Endocr Metab Disord 2001; 2: 313–21
  • Heikkila M, Peltoketo H, Leppaluoto J, Ilves M, Vuolteenaho O, Vainio S. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 2002; 143: 4358–65
  • Suwa T, Chen M, Hawks CL, Hornsby PJ. Zonal expression of dickkopf-3 and components of the Wnt signalling pathways in the human adrenal cortex. J Endocrinol 2003; 178: 149–58
  • Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: 1483–7
  • Wang W, Wang L, Endoh A, Hummelke G, Hawks CL, Hornsby PJ. Identification of α-enolase as a nuclear DNA-binding protein in the zona fasciculata but not the zona reticularis of the human adrenal cortex. J Endocrinol 2005; 184: 85–94
  • Siegel LM, Grinspoon SK, Garvey GJ, Bilezikian JP. Sepsis and adrenal function. Trends Endocrinol Metab 1994; 5: 324–8
  • Rao RH. Bilateral massive adrenal hemorrhage. Med Clin N Am 1995; 79: 107–29
  • Arnason JA, Graziano FM. Adrenal insufficiency in the antiphospholipid antibody syndrome. Sem Arthritis Rheum 1995; 25: 109–16
  • Streeten DHP. Adrenal hemorrhage. Endocrinologist 1996; 6: 277–84
  • Bohm M. Adrenal, cutaneous and myocardial lesions in fulminating endotoxinemia (Waterhouse–Friderichsen syndrome). Pathol Res Pract 1982; 174: 92–105
  • Kuhajda FP, Hutchins GM. Adrenal cortico-medullary junction necrosis: a morphologic marker for hypotension. Am Heart J 1979; 98: 294–7
  • Porter JM, Muscato K, Patrick JR. Adrenal hemorrhage: a comparison of traumatic and nontraumatic deaths. J Natl Med Assoc 1995; 87: 569–71
  • Dobbie JW. Adrenocortical nodular hyperplasia: the ageing adrenal. J Pathol 1969; 99: 1–18
  • Didenko VV, Wang X, Yang L, Hornsby PJ. Expression of p21WAF1/CIP1/SDI1 and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury. J Clin Invest 1996; 97: 1723–31
  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–25
  • Weber JD, Zambetti GP. Renewing the debate over the p53 apoptotic response. Cell Death Differ 2003; 10: 409–12
  • Didenko VV, Tunstead JR, Hornsby PJ. Biotin-labeled hairpin oligonucleotides. Probes to detect double-strand breaks in DNA in apoptotic cells. Am J Pathol 1998; 152: 897–902
  • Didenko VV, Wang X, Yang L, Hornsby PJ. DNA damage and p21WAF1/CIP1/SDI1 in experimental injury of the rat adrenal cortex and trauma-associated damage of the human adrenal cortex. J Pathol 1999; 189: 119–26
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31
  • El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169–74
  • El-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 1995; 55: 2910–9
  • Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in, situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501
  • Shoemaker WC, Peitzman AB, Bellamy R, Bellomo R, Bruttig SP, Capone A, et al. Resuscitation from severe hemorrhage. Crit Care Med 1996; 24: S12–23
  • Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 1992; 32 Suppl: S22–7
  • Sato T, Koyama K, Takemasa T, Yoshida S, Sato Y, Omokawa S, Lygidakis NJ. Damage and repair of hepatocyte nuclear DNA after hepatic inflow occlusion. Hepatogastroenterology 1992; 39: 252–6
  • Schumer M, Colombel MC, Sawczuk IS, Gobe G, Connor J, O'Toole KM, et al. Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 1992; 140: 831–8
  • Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L, Gautam S. p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 1994; 25: 849–55
  • MacManus JP, Hill IE, Huang ZG, Rasquinha I, Xue D, Buchan AM. DNA damage consistent with apoptosis in transient focal ischaemic neocortex. Neuroreport 1994; 5: 493–6
  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994; 94: 1621–8
  • van Lookeren Campagne M, Gill R. Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 1998; 53: 279–96
  • Corbucci GG, Perrino C, Donato G, Ricchi A, Lettieri B, Troncone G, et al. Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. J Am Coll Cardiol 2004; 43: 1992–9
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95
  • Chopp M. The roles of heat shock proteins and immediate early genes in central nervous system normal function and pathology. Curr Opin Neurol Neurosurg 1993; 6: 6–10
  • Mehta HB, Popovich BK, Dillmann WH. Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ Res 1988; 63: 512–7
  • Brown IR. Induction of heat shock (stress) genes in the mammalian brain by hyperthermia and other traumatic events: a current perspective. J Neurosci Res 1990; 27: 247–55
  • Lovis C, Mach F, Donati YR, Bonventre JV, Polla BS. Heat shock proteins and the kidney. Ren Fail 1994; 16: 179–92
  • Yang L, Didenko VV, Noda A, Bilyeu TA, Darlington GD, Smith JR, Hornsby PJ. Increased expression of p21Sdi1 in adrenocortical cells when they are placed in culture. Exp Cell Res 1995; 221: 126–31
  • Tunstead JR, Hornsby PJ. Relationship of p21WAF1/CIP1/SDI1 to cell proliferation in primary cultures of adrenocortical cells. Age (J Am Aging Assoc) 1999; 22: 39–44
  • Thomas M, Popnikolov NK, Scott C, Smith JR, Hornsby PJ. Contrasting roles of p57Kip2 and p21WAF1/CIP1/SDI1 in transplanted human and bovine adrenocortical cells. Exp Cell Res 2001; 266: 106–13
  • Kovacs K, Carroll R, Tapp E. Temporary ischaemia of the rat adrenal gland. J Pathol Bacteriol 1966; 91: 235–40
  • Giampaolo C, Gray AT, Olshen RA, Szabo S. Predicting chemically induced duodenal ulcer and adrenal necrosis with classification trees. Proc Natl Acad Sci USA 1991; 88: 6298–302
  • Hoerr N. The cells of the suprarenal cortex in the guinea-pig. Their reaction to injury and their replacement. Am J Anat 1931; 48: 139–50
  • Yarrington JT. Chemically induced adrenocortical lesions. Monographs on pathology of laboratory animals – endocrine system, TC Jones, U Mohr, RD Hunt. Springer, Berlin 1983; 69–75
  • Colby HD, Eacho PI. Chemical-induced adrenal injury: role of metabolic activation. Endocrine toxicology, JA Thomas, KS Korach, JA McLachlan. Raven, New York 1985; 35–66
  • Szabo S, Lippe IT. Adrenal gland: chemically induced structural and functional changes in the cortex. Toxicol Pathol 1989; 17: 317–29
  • Pudney J, Price GM, Whitehouse BJ, Vinson GP. Effects of chronic ACTH stimulation on the morphology of the rat adrenal cortex. Anat Rec 1984; 210: 603–15
  • Ryzhavskii BI. Izmenenie kory nadpochechnikov krys pri stresse posle udaleniia gipofiza, shchitovidnoi zhelezy i iaichka. Arkh Anat Gistol Embriol 1978; 74(4)40–6
  • Blake MJ, Udelsman R, Feulner GJ, Norton DD, Holbrook NJ. Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci USA 1991; 88: 9873–7
  • DeFouw DO, Meyenhofer MF, Rizzo VJ, Henry CBS. Ultrastructural aspects of capillary barrier function after injury. Reperfusion injuries and clinical capillary leak syndrome, BA Zikria, MO Oz, RW Carlson. Futura, Armonk, NY 1994; 3–30
  • Hinshaw LB. Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 1996; 24: 1072–8
  • Yamamoto K, Loskutoff DJ. Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue-type plasminogen activator. J Clin Invest 1996; 97: 2440–51
  • Semple CG, Gray CE, Beastall GH. Adrenal androgens and illness. Acta Endocrinol (Copenh) 1987; 116: 155–60
  • Lindh A, Carlstrom K, Eklund J, Wilking N. Serum steroids and prolactin during and after major surgical trauma. Acta Anaesthesiol Scand 1992; 36: 119–24
  • Khoury EL, Greenspan JS, Greenspan FS. Adrenocortical cells of the zona reticularis normally express HLA-DR antigenic determinants. Am J Pathol 1987; 127: 580–91
  • Khoury EL, Berline JW. HLA-DR expression by adrenocortical cells of the zona reticularis: structural and allotypic characterization. Tissue Antigens 1988; 31: 191–203
  • Guardiola J, Maffei A. Control of MHC class II gene expression in autoimmune, infectious, and neoplastic diseases. Crit Rev Immunol 1993; 13: 247–68
  • Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA. Sympathoadrenal system and immune system in the regulation of adrenocortical function. Eur J Endocrinol 1996; 135: 19–26
  • Wolkersdorfer GW, Ehrhart-Bornstein M, Brauer S, Marx C, Scherbaum WA, Bornstein SR. Differential regulation of apoptosis in the normal human adrenal gland. J Clin Endocrinol Metab 1996; 81: 4129–36
  • Wolkersdorfer GW, Marx C, Brown JW, Scherbaum WA, Bornstein SR. Evaluation of apoptotic parameters in normal and neoplastic human adrenal. Endocrine Res 1996; 22: 411–9
  • Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–56
  • Khoury EL, Marshall LA. Luteinization of human granulosa cells in, vivo is associated with expression of MHC class II antigens. Cell Tissue Res 1990; 262: 217–24
  • Benyo DF, Pate JL. Tumor necrosis factor-α alters bovine luteal cell synthetic capacity and viability. Endocrinology 1992; 130: 854–60
  • Quirk SM, Cowan RG, Joshi SG, Henrikson KP. Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol Reprod 1995; 52: 279–87
  • Pate JL. Cellular components involved in luteolysis. J Anim Sci 1994; 72: 1884–90
  • Hornsby PJ. Aging of the human adrenal cortex. Ageing Res Rev 2002; 1: 229–42
  • Hornsby PJ. Aging of the human adrenal cortex. Sci Aging Knowl Environ 2004; 2004: RE6
  • Parker CR, Mixon RL, Brissie RM, Grizzle WE. Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab 1997; 82: 3898–901
  • Parker CR, Jr. Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging. Steroids 1999; 64: 640–7
  • Kreiner E, Dhom G. Altersveranderungen der menschlichen Nebenniere. Zbl Allg Pathol Pathol Anat 1979; 123: 351–6
  • New MI. Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol 2003; 211: 75–83
  • Neville AM. The nodular adrenal. Invest Cell Pathol 1978; 1: 99–111
  • Neville AM, O'Hare MJ. Histopathology of the human adrenal cortex. Clin Endocrinol Metab 1985; 14: 791–820
  • Lack EE. Atlas of tumor pathology. Third series. Fascicle 19. Tumors of the adrenal gland and extra-adrenal paraganglia. Armed Forces Institute of Pathology, Washington, DC 1997
  • Magennis DP, McNicol AM. Vascular patterns in the normal and pathological human adrenal cortex. Virchows Arch 1998; 433: 69–73
  • Boscaro M, Barzon L, Sonino N. The diagnosis of Cushing's syndrome: atypical presentations and laboratory shortcomings. Arch Intern Med 2000; 160: 3045–53
  • Giacaglia LR, Mendonca BB, Madureira G, Melo KF, Suslik CA, Arnhold IJ, Bachega TA. Adrenal nodules in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: regression after adequate hormonal control. J Pediatr Endocrinol Metab 2001; 14: 415–9
  • Hedeland H, Ostberg G, Hokfelt B. On the prevalence of adrenocortical adenomas in an autopsy material in relation to hypertension and diabetes. Acta Med Scand 1968; 184: 211–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.