380
Views
4
CrossRef citations to date
0
Altmetric
Review

Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia

, &
Pages 285-293 | Received 01 Feb 2019, Accepted 16 Apr 2019, Published online: 27 Apr 2019

References

  • Von Boros JKA. Uber einen fall von akuter megakaryocyblasten-leukamie, zugleich einige bemerkungen zum Problem der akuten leukemie. Z Klin Med. 1931;118:679–718. (In German).
  • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–951.
  • Cazzola M. Introduction to a review series: the 2016 revision of the WHO classification of tumors of hematopoietic and lymphoid tissues. Blood. 2016;127(20):2361–2364.
  • Giri S, Pathak R, Prouet P, et al. Acute megakaryocytic leukemia is associated with worse outcomes than other types of acute myeloid leukemia. Blood. 2014;124(25):3833–3834.
  • Downing JR, Shannon KM. Acute leukemia: A pediatric perspective. Cancer Cell. 2002;2(6):437–445.
  • Ries LAG, Smith MA, Gurney JG, et al. Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995. NIH. 1999. Pub. No. 99-4649. 179 pp.
  • Pagano L, Pulsoni A, Vignetti M, et al. Acute megakaryoblastic leukemia: experience of GIMEMA trials. Leukemia. 2002;16(9):1622–1626.
  • Hasle H, Friedman JM, Olsen JH, et al. Low risk of solid tumors in persons with down syndrome. Genet Med. 2016;18(11):1151–1157.
  • Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with down’s syndrome. Lancet. 2000;355(9199):165–169.
  • Paredes-Aguilera R, Romero-Guzman L, Lopez-Santiago N, et al. Biology, clinical, and hematologic features of acute megakaryoblastic leukemia in children. Am J Hematol. 2003;73(2):71–80.
  • Hahn AW, Li B, Prouet P, et al. Acute megakaryocytic leukemia: what have we learned. Blood Rev. 2016;30(1):49–53.
  • Lorsbach RB. Megakaryoblastic disorders in children. Am J Clin Pathol. 2004;122(Suppl):S33–46.
  • Roy A1, Roberts I, Norton A, et al. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in down syndrome: A multi-step model of myeloid leukaemogenesis. Br J Haematol. 2009;147(1):3–12.
  • Roberts I, Alford K, Hall G, et al. GATA1-mutant clones are frequent and often unsuspected in babies with down syndrome: identification of a population at risk of leukemia. Blood. 2013;122(24):3908–3917.
  • Chou ST, Opalinska JB, Yao Y, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood. 2008;112(12):4503–4506.
  • Tunstall-Pedoe O, Roy A, Karadimitris A, et al. Abnormalities in the myeloid progenitor compartment in down syndrome fetal liver precede acquisition of GATA1 mutations. Blood. 2008;112(12):4507–4511.
  • Maclean GA1, Menne TF, Guo G, et al. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc Natl Acad Sci U S A. 2012;109(43):17567–17572.
  • Yoshida K, Toki T, Okuno Y, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–1299.
  • Taub JW, Berman JN, Hitzler JK, et al. Improved outcomes for myeloid leukemia of down syndrome: a report from the children‘s oncology group AAML0431 trial. Blood. 2017;129(25):3304–3313.
  • Taub JW, Huang X, Matherly LH, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood. 1999;94(4):1393–1400.
  • Ge Y, Dombkowski AA, LaFiura KM, et al. Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of down syndrome megakaryocytic leukemia. Blood. 2006;107(4):1570–1581.
  • Carroll A, Civin C, Schneider N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a pediatric oncology group study. Blood. 1991;78(3):748–752.
  • Athale UH, Razzouk BI, Raimondi SC, et al. Biology and outcome of childhood acute megakaryoblastic leukemia: A single institution’s experience. Blood. 2001;97(12):3727–3732.
  • Orazi A, O‘Malley DP, Jiang J, et al. Acute panmyelosis with myelofibrosis: an entity distinct from acute megakaryoblastic leukemia. Mod Pathol. 2005;18(5):603–614.
  • Crispino JD, Horwitz MS. GATA factor mutations in hematologic disease. Blood. 2017;129(15):2103–2110.
  • Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of down syndrome. Nat Genet. 2002;32(1):148–152.
  • Shimizu R, Kobayashi E, Engel JD, et al. Induction of hyperproliferative fetal megakaryopoiesis by an N-terminally truncated GATA1 mutant. Genes Cells. 2009;14(9):1119–1131.
  • Chlon TM, McNulty M, Goldenson B, et al. Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression. Haematologica. 2015;100(5):575–584.
  • Byrska-Bishop M, VanDorn D, Campbell AE, et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest. 2015;125(3):993–1005.
  • Shaham L, Vendramini E, Ge Y, et al. MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of down syndrome. Blood. 2015;125(8):1292–1301.
  • Klusmann JH, Li Z, Böhmer K, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 2010;24(5):478–490.
  • Solomon DA, Kim JS, Waldman T. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB Rep. 2014;47(6):299–310.
  • Xu J, Shao Z, Glass K, et al. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell. 2012;23(4):796–811.
  • Yu M, Riva L, Xie H, et al. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell. 2009;36(4):682–695.
  • Malinge S, Ragu C, Della-Valle V, et al. Activating mutations in human acute megakaryoblastic leukemia. Blood. 2008;112(10):4220–4226.
  • Salek-Ardakani S, Smooha G, de Boer J, et al. ERG is a megakaryocytic oncogene. Cancer Res. 2009;69(11):4665–4673.
  • Elagib KE, Racke FK, Mogass M, et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood. 2003;101(11):4333–4341.
  • Bourquin JP, Subramanian A, Langebrake C, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci U S A. 2006;103(9):3339–3344.
  • Gruber TA, Downing JR. The biology of pediatric acute megakaryoblastic leukemia. Blood. 2015;126(8):943–949.
  • de Rooij JD, Masetti R, van Den Heuvel-Eibrink MM, et al. Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood. 2016;127(26):3424–3430.
  • Gruber TA, Larson Gedman A, Zhang J, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell. 2012;22(5):683–697.
  • Thirant C, Ignacimouttou C, Lopez CK, et al. ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia. Cancer Cell. 2017;31(3):452–465.
  • Halene S, Gao Y, Hahn K, et al. Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood. 2010;116(11):1942–1950.
  • Smith EC, Teixeira AM, Chen RC, et al. Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation. Blood. 2013;121(7):1094–1101.
  • Cheng EC, Luo Q, Bruscia EM, et al. Role for MKL1 in megakaryocytc maturation. Blood. 2009;113(12):2826–2834.
  • Oswald F, Kostezka U, Astrahantseff K, et al. SHARP is a novel component of the Notch/RBP-Jκ signalling pathway. Embo J. 2002;21(20):5417–5426.
  • Raffel GD, Mercher T, Shigematsu H, et al. Ott1(Rbm15) has pleiotropic roles in hematopoietic development. Proc Natl Acad Sci U S A. 2007;104(14):6001–6006.
  • Descot A, Rex-Haffner M, Courtois G, et al. OTT-MAL is a deregulated activator of serum response factor-dependent gene expression. Mol Cell Biol. 2008;28(20):6171–6181.
  • Mercher T, Raffel GD, Moore SA, et al. The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Invest. 2009;119(4):852–864.
  • Wang GG, Song J, Wang Z, et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature. 2009;459(7248):847–851.
  • Gough SM, Slape CI, Aplan PD. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood. 2011;118(24):6247–6257.
  • de Rooij JD, Branstetter C, Ma J, et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet. 2017;49(3):451–456.
  • Breems DA, Van Putten WL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: A better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791–4797.
  • Abdelhaleem M, Beimnet K, Kirby-Allen M, et al. High incidence of CALM-AF10 fusion and the identification of a novel fusion transcript in acute megakaryoblastic leukemia in children without down’s syndrome. Leukemia. 2007;21(2):352–353.
  • Dang J, Nance S, Ma J, et al. AMKL chimeric transcription factors are potent inducers of leukemia. Leukemia. 2017;31(10):2228–2234.
  • Masetti R, Vendemini F, Zama D, et al. Acute myeloid leukemia in infants: biology and treatment. Front Pediatr. 2015;3:37.
  • Shenoy S, Smith FO. Hematopoietic stem cell transplantation for childhood malignancies of myeloid origin. Bone Marrow Transplant. 2008;41(2):141–148.
  • Taga T, Saito AM, Kudo K, et al. Clinical characteristics and outcome of refractory/relapsed myeloid leukemia in children with down syndrome. Blood. 2012;120(9):1810–1815.
  • Inaba H, Zhou Y, Abla O, et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: A retrospective international study. Blood. 2015;126(13):1575–1584.
  • Duchayne E, Fenneteau O, Pages MP, et al. Acute megakaryoblastic leukaemia: A national clinical and biological study of 53 adult and childhood cases by the Groupe Français d’Hématologie Cellulaire (GFHC). Leuk Lymphoma. 2003;44(1):49–58.
  • Hara Y, Shiba N, Ohki K, et al. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-down syndrome. Genes Chromosomes Cancer. 2017;56(5):394–404.
  • Hasle H, Alonzo TA, Auvrignon A, et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood. 2007;109(11):4641–4647.
  • Ono R, Hasegawa D, Hirabayashi S, et al. Acute megakaryoblastic leukemia with acquired trisomy 21 and GATA1 mutations in phenotypically normal children. Eur J Pediatr. 2015;174(4):525–531.
  • Creutzig U, Reinhardt D, Diekamp S, et al. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia. 2005;19(8):1355–1360.
  • Taga T, Shimomura Y, Horikoshi Y, et al. Continuous and high-dose cytarabine combined chemotherapy in children with down syndrome and acute myeloid leukemia: report from the Japanese children’s cancer and leukemia study group (JCCLSG) AML 9805 down study. Pediatr Blood Cancer. 2011;57(1):36–40.
  • Hatakeyama N, Hori T, Yamamoto M, et al. Extramedullary tumor of cerebral falx: an unusual presentation of acute megakaryocytic leukemia. J Pediatr Hematol Oncol. 2015;37(3):e170–2.
  • O‘Brien MM, Cao X, Pounds S, et al. Prognostic features in acute megakaryoblastic leukemia in children without down syndrome: A report from the AML02 multicenter trial and the children’s oncology group study POG 9421. Leukemia. 2013;27(3):731–734.
  • Schweitzer J, Zimmermann M, Rasche M, et al. Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial. Ann Hematol. 2015;94(8):1327–1336.
  • Teyssier AC, Lapillonne H, Pasquet M, et al. Acute megakaryoblastic leukemia (excluding down syndrome) remains an acute myeloid subgroup with inferior outcome in the French ELAM02 trial. Pediatr Hematol Oncol. 2017;34(8):425–427.
  • Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2(1):3.
  • Bista R, Lee DW, Pepper OB, et al. Disulfiram overcomes bortezomib and cytarabine resistance in down-syndrome-associated acute myeloid leukemia cells. J Exp Clin Cancer Res. 2017;36(1):22.
  • Thiollier C, Lopez CK, Gerby B, et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J Exp Med. 2012;209(11):2017–2031.
  • Wen Q, Goldenson B, Silver SJ, et al. Integrative screening approach identifies regulators of polyploidization and targets for acute megakaryocytic leukemia. Cell. 2012;150(3):575–589.
  • Wellbrock J, Latuske E, Köhler J, et al. Expression of hedgehog pathway mediator GLI represents a negative prognostic marker in human acute myeloid leukemia and its inhibition exerts antileukemic effects. Clin Cancer Res. 2015;21(10):2388–2398.
  • Masetti R, Bertuccio SN, Astolfi A, et al. Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene. J Hematol Oncol. 2017;10(1):26.
  • Ishikawa Y, Gamo K, Yabuki M, et al. A Novel LSD1 inhibitor T-3775440 disrupts GFI1B-containing complex leading to transdifferentiation and impaired growth of AML cells. Mol Cancer Ther. 2017;16(2):273–284.
  • Edwards H, Xie C, LaFiura KM, et al. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood. 2009;114(13):2744–2752.
  • Liang X, Kong P, Wang J, et al. Effects of metformin on proliferation and apoptosis of human megakaryoblastic Dami and MEG-01 cells. J Pharmacol Sci. 2017;135(1):14–21.
  • Rodríguez-Lirio A, Pérez-Yarza G, Fernández-Suárez MR, et al. Metformin induces cell cycle arrest and apoptosis in drug-resistant leukemia cells. Leuk Res Treatment. 2015;2015:516460.
  • Liu TT, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget. 2016;7(26):40800–40815.
  • Liu T, Zhang Z, Yu C, et al. Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol. 2017;174(23):4308–4328.
  • Caldwell JT, Edwards H, Dombkowski AA, et al. Overexpression of GATA1 confers resistance to chemotherapy in acute megakaryocytic leukemia. PLoS One. 2013;8(7):e68601.
  • Xavier AC, Edwards H, Dombkowski AA, et al. A unique role of GATA1S in down syndrome acute megakaryocytic leukemia biology and therapy. PLoS One. 2011;6(11):e27486.
  • Novotny-Diermayr V1, Hart S, Goh KC, et al. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J. 2012;2(5):e69.
  • Stankov MV, El Khatib M, Kumar Thakur B, et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia. 2014;28(3):577–588.
  • Sharifi M, Salehi R. Blockage of miR-92a-3p with locked nucleic acid induces apoptosis and prevents cell proliferation in human acute megakaryoblastic leukemia. Cancer Gene Ther. 2016;23(1):29–35.
  • Gomes-Silva D, Atilla E, Atilla PA, et al. CD7 CAR T cells for the therapy of acute myeloid leukemia. Mol Ther. 2019 Jan 2;27(1):272–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.