290
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel fibro-inflammatory biomarkers associated with disease activity in patients with Crohn’s disease

, , , &
Pages 575-587 | Received 22 Dec 2022, Accepted 05 May 2023, Published online: 24 May 2023

References

  • Daperno M, Castiglione F, de Ridder L, et al. Results of the 2nd part Scientific Workshop of the ECCO. II: measures and markers of prediction to achieve, detect, and monitor intestinal healing in inflammatory bowel disease. J Crohns Colitis. 2011;5(5):484–498. DOI:10.1016/j.crohns.2011.07.003
  • Sostegni R, Daperno M, Scaglione N, et al. Review article: crohn’s disease: monitoring disease activity. Alimentary Pharmacol and Therapeutics, Supplement. 2003;17:11–17.
  • Bruining DH, Zimmermann EM, Loftus EVJ, et al. Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel crohn’s disease. Radiology. 2018;286(3):776–799. DOI:10.1148/radiol.2018171737
  • Lin S-N, Musso A, Wang J, et al. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - a novel mechanism for maintenance of intestinal inflammation. Matrix Biol. 2022;113:1–21.
  • Mortensen JH, Lindholm M, Langholm LL, et al. The intestinal tissue homeostasis–the role of extracellular matrix remodeling in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol Taylor & Francis. 2019;13(10):977–993. DOI:10.1080/17474124.2019.1673729
  • Karsdal MA, Bay-Jensen AC, Leeming DJ, et al. Quantification of “end products” of tissue destruction in inflammation may reflect convergence of cytokine and signaling pathways – implications for modern clinical chemistry. Biomarkers. 2013;18(5):375–378. DOI:10.3109/1354750X.2013.789084
  • Karsdal MA, Henriksen K, Leeming DJ, et al. Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers—are they the cause or the consequence of the disease? Clin Biochem. 2010;43(10–11):793–804. DOI:10.1016/j.clinbiochem.2010.03.015
  • Karsdal MA, Nielsen SH, Leeming DJ, et al. The good and the bad collagens of fibrosis – their role in signaling and organ function. Adv Drug Deliv Rev. 2017;121:43–56.
  • Mortensen JH, Godskesen LE, Jensen MD, et al. Fragments of Citrullinated and MMP-degraded Vimentin and MMP-degraded Type III Collagen are novel serological biomarkers to differentiate Crohn’s disease from ulcerative colitis. J Crohns Colitis. 2015;9(10):863–872. DOI:10.1093/ecco-jcc/jjv123
  • van Haaften WT, Mortensen JH, Karsdal MA, et al. Misbalance in type III collagen formation/degradation as a novel serological biomarker for penetrating (Montreal B3) Crohn’s disease. Aliment Pharmacol Ther. 2017;46(1):26–39. DOI:10.1111/apt.14092
  • Bourgonje AR, Alexdottir MS, Otten AT, et al. Serological biomarkers of type I, III and IV collagen turnover are associated with the presence and future progression of stricturing and penetrating Crohnʼs disease. Aliment Pharmacol Ther. 2022;56(4):675–693. DOI:10.1111/apt.17063
  • Lawrance IC, Maxwell L, Doe W. Inflammation Location, but Not Type, Determines the Increase in TGF-β1 and IGF-1 Expression and Collagen Deposition in IBD Intestine. Inflamm Bowel Dis. 2001;7(1):16–26.
  • Rieder F, Fiocchi C. Mechanisms of tissue remodeling in inflammatory bowel disease. Dig Dis. 2013;31(2):186–193.
  • Latella G, Di Gregorio J, Flati V, et al. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2014;50(1):53–65. DOI:10.3109/00365521.2014.968863
  • Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):340–350.e6.
  • Pehrsson M, Mortensen JH, Manon-Jensen T, et al. Enzymatic cross-linking of collagens in organ fibrosis – resolution and assessment. Expert Rev Mol Diagn. 2021;00:1–16.
  • Wagatsuma K, Yokoyama Y, Nakase H. Role of biomarkers in the diagnosis and treatment of inflammatory bowel disease. Life. 2021;11(12):1375.
  • State M, Negreanu L, Voiosu T, et al. Surrogate markers of mucosal healing in inflammatory bowel disease: a systematic review. World J Gastroenterol. 2021;27(16):1828–1840. DOI:10.3748/wjg.v27.i16.1828
  • Chen R, Zheng J, Li L, et al. Metabolomics facilitate the personalized management in inflammatory bowel disease. Therap Adv Gastroenterol. 2021;14:175628482110644.
  • Alghoul Z, Yang C, Merlin D. The current status of molecular biomarkers for inflammatory bowel disease. Biomedicines. 2022;10(7):1492.
  • Krzystek-Korpacka M, Kempiński R, Bromke M, et al. Biochemical biomarkers of mucosal healing for inflammatory bowel disease in adults. Diagnostics. 2020;10(6):367. DOI:10.3390/diagnostics10060367
  • Sakurai T, Saruta M. Positioning and usefulness of biomarkers in inflammatory bowel disease. Digestion. 2023;104(1):30–41.
  • Elhag DA, Kumar M, Saadaoui M, et al. Inflammatory bowel disease treatments and predictive biomarkers of therapeutic response. Int J Mol Sci. 2022;23(13):6966. DOI:10.3390/ijms23136966
  • Ananthakrishnan AN. Microbiome-based biomarkers for IBD. Inflamm Bowel Dis. 2020;26(10):1463–1469.
  • Guo X, Huang C, Xu J, et al. Gut microbiota is a potential biomarker in inflammatory bowel disease. Front Nutr Frontiers Media SA. 2022;8. DOI:10.3389/fnut.2021.818902
  • Agrawal M, Colombel J-F. Treat-to-target in inflammatory bowel diseases, what is the target and how do we treat? Gastrointest Endosc Clin N Am. 2019;29(3):421–436.
  • Plevris N, Lees CW. Disease monitoring in inflammatory bowel disease: evolving principles and possibilities. Gastroenterology. 2022;162(5):1456–1475.e1. InternetAvailable from. DOI:10.1053/j.gastro.2022.01.024
  • Mazzuoli S, Guglielmi FW, Antonelli E, et al. Definition and evaluation of mucosal healing in clinical practice. Digestive Liver Dis. 2013;45(12):969–977. InternetAvailable from. DOI:10.1016/j.dld.2013.06.010
  • Krzystek-Korpacka M, Kempiński R, Bromke M, et al. Biochemical biomarkers of mucosal healing for inflammatory bowel disease in adults. Diagnostics. 2020;10(6):1–31. DOI:10.3390/diagnostics10060367
  • Shah SC, Colombel J-F, Sands BE, et al. Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn’s disease. Aliment Pharmacol Ther. 2016;43(3):317–333. DOI:10.1111/apt.13475
  • Reinink AR, Lee TC, Higgins PDR. Endoscopic mucosal healing predicts favorable clinical outcomes in inflammatory bowel disease: a meta-analysis. Inflamm Bowel Dis. 2016;22(8):1859–1869.
  • Daperno M, D’Haens G, Van Assche G, et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: the SES-CD. Gastrointest Endosc. 2004;60(4):505–512. DOI:10.1016/S0016-5107(04)01878-4
  • Christensen B, Erlich J, Gibson PR, et al. Histologic healing is more strongly associated with clinical outcomes in ileal crohn’s disease than endoscopic healing. Clin Gastroenterol Hepatol. 2020;18(11):2518–2525.e1. DOI:10.1016/j.cgh.2019.11.056
  • Schnitzler F, Fidder H, Ferrante M, et al. Mucosal healing predicts long-term outcome of maintenance therapy with infliximab in Crohn's disease. Inflamm Bowel Dis. 2009;15(9):1295–1301. DOI:10.1002/ibd.20927
  • Peyrin-Biroulet L, Sandborn W, Sands BE, et al. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE): determining Therapeutic Goals for Treat-to-Target. Official Journal of the American College of Gastroenterology | ACG. 2015;110(9) :1324–1338.
  • Lafeuille P, Hordonneau C, Vignette J, et al. Sa465 Transmural healing and MRI healing are associated with lower risk of bowel damage progression than endoscopic mucosal healing in patients with Crohn’s disease. Aliment Pharmacol Ther. 2021;53(6):577–586. DOI:10.1016/S0016-5085(21)01921-1
  • Bettenworth D, Bokemeyer A, Baker M, et al. Assessment of Crohn’s disease-associated small bowel strictures and fibrosis on cross-sectional imaging: a systematic review. Gut. 2019;68(6):1115–1126. DOI:10.1136/gutjnl-2018-318081
  • McCurdy JD, Enders FT, Jones A, et al. Detection of cytomegalovirus in patients with inflammatory bowel disease: where to biopsy and how many biopsies? Inflamm Bowel Dis. 2015;21(12):2833–2838. DOI:10.1097/MIB.0000000000000556
  • Langner C, Magro F, Driessen A, et al. The histopathological approach to inflammatory bowel disease: a practice guide. Virchows Arch. 2014;464:511–527.
  • Henriksen K, Leeming DJ, Byrjalsen I, et al. Osteoclasts prefer aged bone. Osteoporos Int. 2007;18:751–759.
  • Leeming DJ, Nielsen MJ, Dai Y, et al. Enzyme-linked immunosorbent serum assay specific for the 7S domain of Collagen Type IV (P4NP 7S): a marker related to the extracellular matrix remodeling during liver fibrogenesis. Hepatol Res. 2012;42(5):482–493. DOI:10.1111/j.1872-034X.2011.00946.x
  • Nielsen MJ, Nedergaard AF, Sun S, et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res. 2013;5(3):303–315. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/23634241
  • Mortensen JH, Sinkeviciute D, Manon-Jensen T, et al. A specific calprotectin neo-epitope (CPa9-HNE) in serum from inflammatory bowel disease patients is associated with neutrophil activity and endoscopic severity. J Crohns Colitis [Internet]. 2022; Available from: http://www.ncbi.nlm.nih.gov/pubmed/35304895
  • Barascuk N, Veidal SS, Larsen L, et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem. 2010;43(10–11):899–904. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/20380828
  • Sand JM, Larsen L, Hogaboam C, et al. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis–validation of two novel biomarker assays. PLoS ONE. 2013;8:e84934. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/24376856
  • Pehrsson M, Manon-Jensen T, Sun S, et al. An MMP-degraded and cross-linked fragment of type III collagen as a non-invasive biomarker of hepatic fibrosis resolution. Liver Int. 2022;42(7):1605–1617. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/35384259
  • Bin CH, Hao B, Sun J, et al. C-Terminal cross-linked telopeptides of type ii collagen as biomarker for radiological knee osteoarthritis: a meta-analysis. Cartilage. 2020;11:512–520.
  • Cloos PA, Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J. 2000;345(Pt 3):473–480. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/10642504
  • Vassiliadis E, Oliveira CP, Alvares-da-Silva MR, et al. Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology. Am J Transl Res. 2012;4(4):403–414. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/23145208
  • Karsdal MA, Genovese F, Rasmussen DGK, et al. Considerations for understanding protein measurements: identification of formation, degradation and more pathological relevant epitopes. Clin Biochem. 2021;97:11–24. InternetAvailable from. DOI:10.1016/j.clinbiochem.2021.08.007
  • Leeming DJ, He Y, Veidal SS, et al. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers. 2011;16(7):616–628. DOI:10.3109/1354750X.2011.620628
  • Veidal SS, Karsdal MA, Vassiliadis E, et al. MMP mediated degradation of type VI collagen is highly associated with liver fibrosis–identification and validation of a novel biochemical marker assay. PLoS ONE. 2011;6(9):e24753. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/21935455
  • Gudmann NS, Manon-Jensen T, Sand JMB, et al. Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease. Biochem Biophys Res Commun. 2018;503(3):1284–1290. InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S0006291X1831533X
  • Vassiliadis E, Veidal SS, Simonsen H, et al. Immunological detection of the type V collagen propeptide fragment, PVCP-1230, in connective tissue remodeling associated with liver fibrosis. Biomarkers. 2011;16(5):426–433. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/21612338
  • Sand JMB, Knox AJ, Lange P, et al. Accelerated extracellular matrix turnover during exacerbations of COPD. Respir Res. 2015;16(1).
  • Nissen NI, Kehlet S, Johansen AZ, et al. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer. 2021;149(1):228–238. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/33687786
  • Madsen EA, Thorlacius-Ussing J, Nissen NI, et al. Type XXII collagen complements fibrillar collagens in the serological assessment of tumor fibrosis and the outcome in pancreatic cancer. Cells. 2022;11(23):11. DOI:10.3390/cells11233763
  • Veidal SS, Karsdal MA, Nawrocki A, et al. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair. 2011;4(1):22. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/21970406
  • Vassiliadis E, Larsen DV, Clausen RE, et al. Measurement of CO3-610, a potential liver biomarker derived from matrix metalloproteinase-9 degradation of collagen type iii, in a rat model of reversible carbon-tetrachloride-induced fibrosis. Biomark Insights. 2011;6:49–58. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/21499440
  • Chang S, Malter L, Hudesman D. Disease monitoring in inflammatory bowel disease. World J Gastroenterol. 2015;21(40):11246–11259.
  • Kiss LS, Papp M, Lovasz BD, et al. High-sensitivity C-reactive protein for identification of disease phenotype, active disease, and clinical relapses in Crohn's disease: a marker for patient classification? Inflamm Bowel Dis. 2012;18(9):1647–1654. DOI:10.1002/ibd.21933
  • Henriksen M, Jahnsen J, Lygren I, et al. C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study. Gut. 2008;57(11):1518–1523. DOI:10.1136/gut.2007.146357
  • Lynn AM, Jr EVL. Luminal Crohn’s Disease: biomarkers in Inflammatory Bowel Diseases. Ding NS, Cruz P De editors. Cham, Switzerland: Springer Nature Switzerland; 2019.
  • Mumolo MG, Bertani L, Ceccarelli L, et al. From bench to bedside: fecal calprotectin in inflammatory bowel diseases clinical setting. World J Gastroenterol. 2018;24:3681–3694.
  • Pehrsson M, Mortensen JH, Manon-Jensen T, et al. Enzymatic cross-linking of collagens in organ fibrosis–resolution and assessment. Expert Rev Mol Diagn. 2021;21:1049–1064. InternetAvailable from. DOI:10.1080/14737159.2021.1962711
  • Hansen JF, Juul Nielsen M, Nyström K, et al. PRO-C3: a new and more precise collagen marker for liver fibrosis in patients with chronic hepatitis C. Scand J Gastroenterol. 2018;53(1):83–87. InternetAvailable from. DOI:10.1080/00365521.2017.1392596
  • Luo Y, Oseini A, Gagnon R, et al. An evaluation of the collagen fragments related to fibrogenesis and fibrolysis in nonalcoholic steatohepatitis. Sci Rep. 2018;8:1–9. InternetAvailable from. DOI:10.1038/s41598-018-30457-y
  • Jessen H, Hoyer N, Prior TS, et al. Longitudinal serological assessment of type VI collagen turnover is related to progression in a real-world cohort of idiopathic pulmonary fibrosis. BMC Pulm Med. 2021;21(1):382. DOI:10.1186/s12890-021-01684-3
  • Jessen H, Hoyer N, Prior TS, et al. Turnover of type I and III collagen predicts progression of idiopathic pulmonary fibrosis. Respir Res. 2021;22:205.
  • Alexdottir MS, Bourgonje AR, Karsdal MA, et al. Serological biomarkers of extracellular matrix turnover and neutrophil activity are associated with long-term use of vedolizumab in patients with crohn’s disease. Int J Mol Sci. 2022;23(15):i468–469. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/35897710
  • Alexdottir MS, Bourgonje AR, Karsdal MA, et al. Serological biomarkers of intestinal collagen turnover identify early response to infliximab therapy in patients with crohn’s disease. Front Med. 2022;9. DOI:10.3389/fmed.2022.933872
  • Mortensen J, Feagan B, Bay-Jensen AC, et al. P516 Serological biomarkers of tissue remodeling are associated with endoscopic remission in Crohn’s disease patients treated with GED-0301 (mongersen). J Crohns Colitis. 2021;15(Supplement_1):S494–495. DOI:10.1093/ecco-jcc/jjab076.638
  • Domislovic V, Høg Mortensen J, Lindholm M, et al. Inflammatory biomarkers of extracellular matrix remodeling and disease activity in crohn’s disease and ulcerative colitis. J Clin Med. 2022;11(19):11. DOI:10.3390/jcm11195907
  • Goffin L, Fagagnini S, Vicari A, et al. Anti-MMP-9 antibody: a promising therapeutic strategy for treatment of inflammatory bowel disease complications with fibrosis. Inflamm Bowel Dis. 2016;22(9):2041–2057. DOI:10.1097/MIB.0000000000000863
  • van Haaften WT, Mortensen JH, Dige AK, et al. Serological biomarkers of tissue turnover identify responders to anti-tnf therapy in Crohn’s disease: a pilot study. Clin Transl Gastroenterol. 2020;11(9):e00217. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/33094957
  • Lindholm M, Manon-Jensen T, Madsen GI, et al. Extracellular matrix fragments of the basement membrane and the interstitial matrix are serological markers of intestinal tissue remodeling and disease activity in dextran sulfate sodium colitis. Dig Dis Sci. 2019;64(11):3134–3142. DOI:10.1007/s10620-019-05676-6
  • Lindholm M, Godskesen LE, Manon-Jensen T, et al. Endotrophin and C6Ma3, serological biomarkers of type VI collagen remodelling, reflect endoscopic and clinical disease activity in IBD. Sci Rep. 2021;11(1):14713. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/34282237
  • Mortensen JH, van Haaften WT, Karsdal MA, et al. The Citrullinated and MMP-degraded Vimentin Biomarker (VICM) Predicts Early Response to Anti-TNFα Treatment in Crohn’s Disease. J Clin Gastroenterol. 2021;55(1):59–66. DOI:10.1097/MCG.0000000000001341
  • Mortensen JH, Manon-Jensen T, Jensen MD, et al. Ulcerative colitis, Crohn’s disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn’s disease. PLoS ONE. 2017;12(10):1–16. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/29028807
  • Mortensen J, Focht G, Pehrsson M, et al. P204 Endotrophin (PRO-C6) is associated with MRE confirmed intestinal strictures and Protein FingerPrint biomarkers of collagen degradation is associated with ulcerations in paediatric Crohn’s disease patients – results from the ImageKids study. J Crohns Colitis. 2022;16(Supplement_1):i264–265. InternetAvailable from: https://academic.oup.com/ecco-jcc/article/16/Supplement_1/i264/6512851
  • Karsdal MA, Leeming DJ, Henriksen K, et al., editors. Biochemistry of collagens, laminins and elastin: structure, function and biomarkers. 2nd ed. London, UK: Elsevier Inc.; 2019.
  • Kirkegaard T, Hansen A, Bruun E, et al. Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn’s disease. Gut. 2004;53(5):701–709. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/15082589
  • Best WR. Predicting the Crohn's disease activity index from the Harvey-Bradshaw index. Inflamm Bowel Dis. 2006;12(4):304–310. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/16633052
  • Koutroumpakis E, Katsanos KH. Implementation of the simple endoscopic activity score in Crohn’s disease. Saudi J Gastroenterol. 2016;22(3):183–191.
  • Sipponen T, Nuutinen H, Turunen U, et al. Endoscopic evaluation of Crohn's disease activity. Inflamm Bowel Dis. 2010;16(12):2131–2136. InternetAvailable from: http://www.ncbi.nlm.nih.gov/pubmed/20848462
  • Nanni P, Parisi D, Roda G, et al. Serum protein profiling in patients with inflammatory bowel diseases using selective solid-phase bulk extraction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and chemometric data analysis. Rapid Commun Mass Spectrom. 2007;21(24):4142–4148. DOI:10.1002/rcm.3323
  • Wik L, Nordberg N, Broberg J, et al. Proximity extension assay in combination with next- generation sequencing for high-throughput proteome-wide analysis authors proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol & Cell Proteomics. 2021;20:100168.
  • Gold L, Ayers D, Bertino J, et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PLoS ONE. 2010;5(12):e15004. DOI:10.1371/journal.pone.0015004
  • Heier CR, Fiorillo AA, Chaisson E, et al. Identification of pathway-specific serum biomarkers of response to glucocorticoid and infliximab treatment in children with inflammatory bowel disease. Nat Publishing Group. 2016;7(9):1–8. DOI:10.1038/ctg.2016.49
  • Kalla R, Adams AT, Bergemalm D, et al. Serum proteomic profiling at diagnosis predicts clinical course, and need for intensification of treatment in inflammatory bowel disease. J Crohns Colitis. 2020;1:1–10.
  • Soomro S, Venkateswaran S, Vanarsa K, et al. Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen. Nat Commun. 2021;12(1):1–11. DOI:10.1038/s41467-021-24235-0
  • Pierre N, Huynh-Thu VA, Marichal T, et al. Distinct blood protein profiles associated with the risk of short-term and mid/long-term clinical relapse in patients with Crohn’s disease stopping infliximab: when the remission state hides different types of residual disease activity. Gut. 2023;72(3):443–450. 2022;gutjnl-2022-327321. DOI:10.1136/gutjnl-2022-327321
  • Leptak C, Menetski JP, Wagner JA, et al. What evidence do we need for biomarker qualification? Sci, trans med. 2017;9(417):1–5. DOI:10.1126/scitranslmed.aal4599
  • Dingare C, Niedzwetzki A, Klemmt PA. The Hippo pathway effector Taz is required for cell morphogenesis and fertilization in zebrafish. Pathways for Bio Integration in Drug Develop. 2018;145(22). DOI:10.1242/dev.167023
  • Rasmussen DGK, Anstee QM, Torstenson R, et al. NAFLD and NASH biomarker qualification in the LITMUS consortium - Lessons learned. J Hepatol. 2022;78(4):852–865. DOI:10.1016/j.jhep.2022.11.028
  • Honig G, Heller C, Hurtado-Lorenzo A. Defining the path forward for biomarkers to address unmet needs in inflammatory bowel diseases. Inflamm Bowel Dis. 2020;26(10):1451–1462.
  • FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. US Food and Drug Administration Web Site. 2021. https://www.ncbi.nlm.nih.gov/books/NBK338449/
  • Masucci GV, Cesano A, Hawtin R, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I — pre-analytical and analytical validation. J Immunother Cancer. 2016;4(1):1–25. DOI:10.1186/s40425-016-0178-1
  • Dobbin KK, Cesano A, Alvarez J, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume II — clinical validation and regulatory considerations. J Immunother Cancer. 2016;4(1):1–14. DOI:10.1186/s40425-016-0179-0
  • U.S Food & Drug Administration: center for Drug Evaluation and Research. More About Biomarkers & Qualification. 2021. https://www.fda.gov/drugs/biomarker-qualification-program/more-about-biomarkers-qualification
  • Dulai PS, Peyrin-Biroulet L, Danese S, et al. Approaches to integrating biomarkers into clinical trials and care pathways as targets for the treatment of inflammatory bowel diseases. Gastroenterology. 2019;157(4):1032–1043.e1. DOI:10.1053/j.gastro.2019.06.018
  • Karsdal MA, Kraus VB, Shevell D, et al. Profiling and targeting connective tissue remodeling in autoimmunity - a novel paradigm for diagnosing and treating chronic diseases. Autoimmun Rev. 2020;20(1):102706. DOI:10.1016/j.autrev.2020.102706

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.