109
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent developments in the diagnosis of pancreatic neuroendocrine neoplasms

, , , , , , , , & show all
Pages 155-169 | Received 21 Oct 2023, Accepted 10 Apr 2024, Published online: 02 May 2024

References

  • Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–1492. doi: 10.1053/j.gastro.2008.05.047
  • Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2018;68(6):471–487. doi: 10.3322/caac.21493
  • Öberg K. Biology, diagnosis, and treatment of neuroendocrine tumors of the gastrointestinal tract. Curr Opin Oncol. 1994;6(4):441–451. doi: 10.1097/00001622-199407000-00018
  • Kim DW, Kim HJ, Kim KW, et al. Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour. Eur Radiol. 2015;25(5):1375–1383. doi: 10.1007/s00330-014-3532-z
  • Couvelard A, O’Toole D, Turley H, et al. Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression. Br J Cancer. 2005;92(1):94–101. doi: 10.1038/sj.bjc.6602245
  • Marion–Audibert A, Barel C, Gouysse G, et al. Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Gastroenterology. 2003;125(4):1094–1104. doi: 10.1016/S0016-5085(03)01198-3
  • Guilmette JM, Nosé V. Neoplasms of the neuroendocrine pancreas: an update in the classification, definition, and molecular genetic advances. Adv Anat Pathol. 2019;26(1):13–30. doi: 10.1097/PAP.0000000000000201
  • Frilling A, Modlin IM, Kidd M, et al. Review recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014;15(1):e8–e21. doi: 10.1016/S1470-2045(13)70362-0
  • Gangi A, Howe JR. The landmark series: neuroendocrine tumor liver metastases. Ann Surg Oncol Springer. 2020;27(9):3270–3280. doi: 10.1245/s10434-020-08787-x
  • Lloyd R, Osamura R, Klopper G, et al. WHO classification of tumours of endocrine organs. 4th. Lyon: IARC; 2017.
  • Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182–188. doi: 10.1111/his.13975
  • Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–1342. doi: 10.1001/jamaoncol.2017.0589
  • Kuo EJ, Salem RR. Population-level analysis of pancreatic neuroendocrine tumors 2 cm or less in size. Ann Surg Oncol. 2013;20(9):2815–2821. doi: 10.1245/s10434-013-3005-7
  • Kimura W, Kuroda A, Morioka Y. Clinical pathology of endocrine tumors of the pancreas. Dig Dis Sci. 1991;36(7):933–942. doi: 10.1007/BF01297144
  • Hallet J, Law CHL, Cukier M, et al. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–597. doi: 10.1002/cncr.29099
  • Halfdanarson TR, Rubin J, Farnell MB, et al. Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocri Related Cancer. 2008;15(2):409–427. doi: 10.1677/ERC-07-0221
  • Pavel M, Öberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(7):844–860. doi: 10.1016/j.annonc.2020.03.304
  • Falconi M, Eriksson B, Kaltsas G, et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology S Karger AG. 2016;103(2):153–171. doi: 10.1159/000443171
  • Partelli S, Cirocchi R, Crippa S, et al. Systematic review of active surveillance versus surgical management of asymptomatic small non-functioning pancreatic neuroendocrine neoplasms. Br J Surg. 2016;104(1):34–41. doi: 10.1002/bjs.10312
  • Sandvik OM, Søreide K, Gudlaugsson E, et al. Epidemiology and classification of gastroenteropancreatic neuroendocrine neoplasms using current coding criteria. Br J Surg. 2016;103(3):226–232. doi: 10.1002/bjs.10034
  • Pulvirenti A, Javed AA, Michelakos T, et al. Recurring pancreatic neuroendocrine tumor: timing and pattern of recurrence, and current treatment. Annals Of Surgery. 2023;278(5):e1063–e1067. doi: 10.1097/SLA.0000000000005809
  • Genç CG, Jilesen AP, Partelli S, et al. A new scoring system to predict recurrent disease in grade 1 and 2 nonfunctional pancreatic neuroendocrine tumors. Ann Surg. 2018;267(6):1148–1154. doi: 10.1097/SLA.0000000000002123
  • Hofland J, Zandee WT, de Herder WW. Role of biomarker tests for diagnosis of neuroendocrine tumours. Nat Rev Endocrinol. 2018;14(11):656–669. doi: 10.1038/s41574-018-0082-5
  • Hofland J, Falconi M, Christ E, et al. European neuroendocrine tumor society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes. J Neuroendocrinol. 2023;35(8):e13318. doi: 10.1111/jne.13318
  • Vinik AI, Woltering EA, Warner RRP, et al. NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas. 2010;39(6):713–734. doi: 10.1097/MPA.0b013e3181ebaffd
  • Tao M, Yuan C, Xiu D, et al. Analysis of risk factors affecting the prognosis of pancreatic neuroendocrine tumors. Chinese Medical Journal. 2014;127(16):2924–2928. doi: 10.3760/cma.j.issn.0366-6999.20132104
  • Zhuge X, Guo C, Chen Y, et al. The levels of tumor markers in pancreatic neuroendocrine carcinoma and their values in differentiation between pancreatic neuroendocrine carcinoma and pancreatic ductal adenocarcinoma. Pancreas. 2018;47(10):1290–1295. doi: 10.1097/MPA.0000000000001181
  • Smolkova B, Kataki A, Earl J, et al. Liquid biopsy and preclinical tools for advancing diagnosis and treatment of patients with pancreatic neuroendocrine neoplasms. Crit Rev Oncol Hematol. 2022;180:103865. doi: 10.1016/j.critrevonc.2022.103865
  • Bocchini M, Nicolini F, Severi S, et al. Biomarkers for pancreatic neuroendocrine neoplasms (PanNens) management—an updated review. Front Oncol. 2020;10:831. doi: 10.3389/fonc.2020.00831
  • Yang X, Yang Y, Li Z, et al. Diagnostic value of circulating chromogranin a for neuroendocrine tumors: a systematic review and meta-analysis. PLoS ONE. 2015;10(4):e0124884. doi: 10.1371/journal.pone.0124884
  • Modlin IM, Gustafsson BI, Moss SF, et al. Chromogranin A—biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol. 2010;17(9):2427–2443. doi: 10.1245/s10434-010-1006-3
  • Modlin IM, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: from monoanalytes to transcripts and algorithms. Best Pract Res Clin Endocrinol Metab. 2016;30(1):59–77. doi: 10.1016/j.beem.2016.01.002
  • Giusti M, Sidoti M, Augeri C, et al. Effect of short-term treatment with low dosages of the proton-pump inhibitor omeprazole on serum chromogranin a levels in man. Eur J Endocrinol. 2004:299–303. doi: 10.1530/eje.0.1500299
  • Sansone A, Lauretta R, Vottari S, et al. Specific and non-specific biomarkers in neuroendocrine gastroenteropancreatic tumors. Cancers (Basel). 2019;11(8):1113. doi: 10.3390/cancers11081113
  • Nguyen M, Li M, Travers A, et al. Role of chromogranin a in the diagnosis and follow-up of neuroendocrine tumors. Pancreas. 2022;51(8):1007–1010. doi: 10.1097/MPA.0000000000002132
  • Andreasi V, Partelli S, Manzoni MF, et al. Role of chromogranin A-derived fragments after resection of nonfunctioning pancreatic neuroendocrine tumors. J Endocrinol Invest. 2022;45(6):1209–1217. doi: 10.1007/s40618-022-01750-5
  • Fang JM, Li J, Shi J. An update on the diagnosis of gastroenteropancreatic neuroendocrine neoplasms. WJG. 2022;28(10):1009–1023. doi: 10.3748/wjg.v28.i10.1009
  • Hoej LB, Parkner T, Knudsen CS, et al. A comparison of ree chromogranin a assays in patients with neuroendocrine tumours. JGLD. 2014;23(4):419–424. doi: 10.15403/jgld.2014.1121.234.3ca
  • Pulvirenti A, Rao D, Mcintyre CA, et al. Limited role of chromogranin a as clinical biomarker for pancreatic neuroendocrine tumors. HPB. 2019;21(5):612–618. doi: 10.1016/j.hpb.2018.09.016
  • Massironi S, Conte D, Sciola V, et al. Plasma chromogranin a response to octreotide test: prognostic value for clinical outcome in endocrine digestive tumors. Am J Gastroenterol. 2010;105(9):2072–2078. doi: 10.1038/ajg.2010.154
  • Ma Z-Y, Gong Y-F, Zhuang H-K, et al. Pancreatic neuroendocrine tumors: a review of serum biomarkers, staging, and management. World J Gastroenterol. 2020;26(19):2305–2322. doi: 10.3748/wjg.v26.i19.2305
  • Andreasi V, Partelli S, Manzoni M, et al. Association between preoperative vasostatin-1 and pathological features of aggressiveness in localized nonfunctioning pancreatic neuroendocrine tumors (NF-PanNET). Pancreatology. 2019;19(1):57–63. doi: 10.1016/j.pan.2018.11.005
  • Corsello A, Di Filippo L, Massironi S, et al. Vasostatin-1: A novel circulating biomarker for ileal and pancreatic neuroendocrine neoplasms. PLoS ONE. 2018;13(5):e0196858. doi: 10.1371/journal.pone.0196858
  • Melen-Mucha G, Niedziela A, Mucha S, et al. Elevated peripheral blood plasma concentrations of tie-2 and angiopoietin 2 in patients with neuroendocrine tumors. Int J Mol Sci. 2012;13(2):1444–1460. doi: 10.3390/ijms13021444
  • Simon T, Riemer P, Jarosch A, et al. DNA methylation reveals distinct cells of origin for pancreatic neuroendocrine carcinomas and pancreatic neuroendocrine tumors. Genome Med. 2022;14(1):24. doi: 10.1186/s13073-022-01018-w
  • Detjen KM, Rieke S, Deters A, et al. Angiopoietin-2 promotes disease progression of neuroendocrine tumors. Clin Cancer Res. 2010;16(2):420–429. doi: 10.1158/1078-0432.CCR-09-1924
  • Figueroa-Vega N, Díaz Á, Adrados M, et al. The association of the angiopoietin/Tie-2 system with the development of metastasis and leukocyte migration in neuroendocrine tumors. Endocr Relat Cancer. 2010;17(4):897–908. doi: 10.1677/ERC-10-0020
  • Srirajaskanthan R, Dancey G, Hackshaw A, et al. Circulating angiopoietin-2 is elevated in patients with neuroendocrine tumours and correlates with disease burden and prognosis. Endocr Relat Cancer. 2009;16(3):967–976. doi: 10.1677/ERC-09-0089
  • Kidd M, Modlin IM, Drozdov I, et al. A liquid biopsy for bronchopulmonary/lung carcinoid diagnosis. Oncotarget. 2018;9(6):7182–7196. doi: 10.18632/oncotarget.23820
  • Al-Toubah T, Cives M, Valone T, et al. Sensitivity and specificity of the NETest: a validation study. Neuroendocrinology. 2021;111(6):580–585. doi: 10.1159/000509866
  • Pavel M, Jann H, Prasad V, et al. NET blood transcript analysis defines the crossing of the clinical rubicon: when stable disease becomes progressive. Neuroendocrinology. 2017;104(2):170–182. doi: 10.1159/000446025
  • van Treijen MJC, Korse CM, Verbeek WH, et al. NETest: serial liquid biopsies in gastroenteropancreatic NET surveillance. Endocr Connect. 2022;11(10):e220146. doi: 10.1530/EC-22-0146
  • Partelli S, Andreasi V, Muffatti F, et al. Circulating neuroendocrine gene transcripts (NETest): a postoperative strategy for early identification of the efficacy of radical surgery for pancreatic neuroendocrine tumors. Ann Surg Oncol. 2020;27(10):3928–3936. doi: 10.1245/s10434-020-08425-6
  • Malczewska A, Kos-Kudła B, Kidd M, et al. The clinical applications of a multigene liquid biopsy (NETest) in neuroendocrine tumors. Adv Med Sci. 2020;65(1):18–29. doi: 10.1016/j.advms.2019.10.002
  • Öberg K, Califano A, Strosberg JR, et al. A meta-analysis of the accuracy of a neuroendocrine tumor mRNA genomic biomarker (NETest) in blood. Ann Oncol. 2020;31:202–212.
  • Malczewska A, Oberg K, Kos-Kudla B. Netest is superior to chromogranin a in neuroendocrine neoplasia: a prospective ENETS CoE analysis. Endocr Connect. 2021;10(1):110–123. doi: 10.1530/EC-20-0417
  • Modlin IM, Kidd M, Falconi M, et al. A multigenomic liquid biopsy biomarker for neuroendocrine tumor disease outperforms CgA and has surgical and clinical utility. Ann Oncol. 2021;32(11):1425–1433. doi: 10.1016/j.annonc.2021.08.1746
  • Gleeson FC, Voss JS, Kipp BR, et al. Assessment of pancreatic neuroendocrine tumor cytologic genotype diversity to guide personalized medicine using a custom gastroenteropancreatic next-generation sequencing panel. Oncotarget. 2017;8(55):93464–93475. doi: 10.18632/oncotarget.18750
  • Zakka K, Nagy R, Drusbosky L, et al. Blood-based next-generation sequencing analysis of neuroendocrine neoplasms. Oncotarget. 2020;11(19):1749–1757. doi: 10.18632/oncotarget.27588
  • Panarelli N, Tyryshkin K, Wong JJM, et al. Evaluating gastroenteropancreatic neuroendocrine tumors through microRNA sequencing. Endocr Relat Cancer. 2019;26(1):47–57. doi: 10.1530/ERC-18-0244
  • Korotaeva A, Mansorunov D, Apanovich N, et al. MiRNA expression in neuroendocrine neoplasms of frequent localizations. Noncoding RNA. 2021;7(3):38. doi: 10.3390/ncrna7030038
  • Khan MS, Kirkwood A, Tsigani T, et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2013;31(3):365–372. doi: 10.1200/JCO.2012.44.2905
  • Khanna L, Prasad SR, Sunnapwar A, et al. Pancreatic neuroendocrine neo-plasms: 2020 update on pathologic and imaging findings and classification. Radiographics. 2020;40(5):1240–1262. doi: 10.1148/rg.2020200025
  • Sundin A, Arnold R, Baudin E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging. Neuroendocrinology. 2017;105(3):212–244. doi: 10.1159/000471879
  • Kim C, Byun JH, Hong SM, et al. A comparison of enhancement patterns on dynamic enhanced CT and survival between patients with pancreatic neuroendocrine tumors with and without intratumoral fibrosis. Abdom Radiol. 2017;42(12):2835–2842. doi: 10.1007/s00261-017-1212-6
  • Cappelli C, Boggi U, Mazzeo S, et al. Contrast enhancement pattern on multidetector CT predicts malignancy in pancreatic endocrine tumours. Eur Radiol. 2015;25(3):751–759. doi: 10.1007/s00330-014-3485-2
  • Battistella A, Partelli S, Andreasi V, et al. Preoperative assessment of microvessel density in nonfunctioning pancreatic neuroendocrine tumors (NF-PanNETs). Surgery. 2022;172(4):1236–1244. doi: 10.1016/j.surg.2022.06.017.
  • d’Assignies G, Couvelard A, Bahrami S, et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion ct reflects angiogenesis and correlates with prognostic factors 1. Radiology. 2009;250(2):407–416. doi: 10.1148/radiol.2501080291
  • Takumi K, Fukukura Y, Higashi M, et al. Pancreatic neuroendocrine tumors: correlation between the contrast-enhanced computed tomography features and the pathological tumor grade. Eur J Radiol. 2015;84:1436–1443.
  • Partelli S, Bartsch DK, Capdevila J, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumours: surgery for small intestinal and pancreatic neuroendocrine tumours. Neuroendocrinology. 2017;105(3):255–265. doi: 10.1159/000464292
  • Pellegrino F, Granata V, Fusco R, et al. Diagnostic management of gastroenteropancreatic neuroendocrine neoplasms: technique optimization and tips and tricks for radiologists. Tomography. 2023;9(1):217–246. doi: 10.3390/tomography9010018
  • Chiti G, Grazzini G, Cozzi D, et al. Imaging of pancreatic neuroendocrine neoplasms. Int J Environ Res Public Health. 2021;18(17):8895. doi: 10.3390/ijerph18178895
  • d’Assignies G, Fina P, Bruno O, et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013;268(2):390–399. doi: 10.1148/radiol.13121628.
  • Ronot M, Clift AK, Baum RP, et al. Morphological and functional imaging for detecting and assessing the resectability of neuroendocrine liver metastases. Neuroendocrinology. 2018;106(1):74–88. doi: 10.1159/000479293
  • Dromain C, de Baere T, Lumbroso J, et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol. 2005;23(1):70–78. doi: 10.1200/JCO.2005.01.013
  • Segaran N, Devine C, Wang M, et al. Current update on imaging for pancreatic neuroendocrine neoplasms. World J Clin Oncol. 2021;12(10):897–911. doi: 10.5306/wjco.v12.i10.897
  • Scott AT, Howe JR. Evaluation and management of neuroendocrine tumors of the pancreas. Vol. 99. Surgical Clinics Of North America: W.B. Saunders; 2019. p. 793–814.
  • Hayoz R, Vietti-Violi N, Duran R, et al. The combination of hepatobiliary phase with Gd-EOB-DTPA and DWI is highly accurate for the detection and characterization of liver metastases from neuroendocrine tumor. Eur Radiol. 2020;30(12):6593–6602. doi: 10.1007/s00330-020-06930-6
  • Tirumani SH, Jagannathan JP, Braschi-Amirfarzan M, et al. Value of hepatocellular phase imaging after intravenous gadoxetate disodium for assessing hepatic metastases from gastroenteropancreatic neuroendocrine tumors: comparison with other MRI pulse sequences and with extracellular agent. Abdom Radiol. 2018;43(9):2329–2339. doi: 10.1007/s00261-018-1496-1
  • Ringe KI, Husarik DB, Sirlin CB, et al. Gadoxetate disodium–enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am J Roentgenol. 2010;195(1):13–28. doi: 10.2214/AJR.10.4392
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
  • Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–1069. doi: 10.1016/j.crad.2004.07.008
  • Savadjiev P, Chong J, Dohan A, et al. Image-based biomarkers for solid tumor quantification. Eur Radiol. 2019;29(10):5431–5440. doi: 10.1007/s00330-019-06169-w
  • Guo C, Ren S, Chen X, et al. Pancreatic neuroendocrine tumor: prediction of the tumor grade using magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance. Cancer Manag Res. 2019;11:1933–1944. doi: 10.2147/CMAR.S195376
  • Li X, Zhu H, Qian X, et al. MRI texture analysis for differentiating nonfunctional pancreatic neuroendocrine neoplasms from solid pseudopapillary neoplasms of the pancreas. Acad Radiol. 2020;27(6):815–823. doi: 10.1016/j.acra.2019.07.012
  • De Robertis R, Maris B, Cardobi N, et al. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors? Eur Radiol. 2018;28(6):2582–2591. doi: 10.1007/s00330-017-5236-7
  • Loi S, Mori M, Benedetti G, et al. Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys Med. 2020;76:125–133. doi: 10.1016/j.ejmp.2020.06.025
  • Mori M, Palumbo D, Muffatti F, et al. Prediction of the characteristics of aggressiveness of pancreatic neuroendocrine neoplasms (PanNens) based on CT radiomic features. Eur Radiol. 2023;33(6):4412–4421. doi: 10.1007/s00330-022-09351-9.
  • Mori M, Benedetti G, Partelli S, et al. Ct radiomic features of pancreatic neuroendocrine neoplasms (panNEN) are robust against delineation uncertainty. Phys Med. 2019;57:41–46. doi: 10.1016/j.ejmp.2018.12.005
  • Benedetti G, Mori M, Panzeri MM, et al. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol Med. 2021;126(6):745–760. doi: 10.1007/s11547-021-01333-z
  • Guo C, Zhuge X, Wang Q, et al. The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer Imaging. 2018;18(1):37. doi: 10.1186/s40644-018-0170-8
  • Canellas R, Burk KS, Parakh A, et al. Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. AJR Am J Roentgenol. 2018;210(2):341–346. doi: 10.2214/AJR.17.18417
  • Bian Y, Jiang H, Ma C, et al. CT-Based radiomics score for distinguishing between grade 1 and grade 2 nonfunctioning pancreatic neuroendocrine tumors. Am J Roentgenol. 2020;215(4):852–863. doi: 10.2214/AJR.19.22123
  • Gu D, Hu Y, Ding H, et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol. 2019;29(12):6880–6890. doi: 10.1007/s00330-019-06176-x
  • Ricci C, Mosconi C, Ingaldi C, et al. The 3-dimensional-computed tomography texture is useful to predict pancreatic neuroendocrine tumor grading. Pancreas. 2021;50(10):1392–1399. doi: 10.1097/MPA.0000000000001927
  • Javed AA, Zhu Z, Kinny-Köster B, et al. Accurate non-invasive grading of nonfunctional pancreatic neuroendocrine tumors with a CT derived radiomics signature. Diagn Interv Imaging. 2023;105(1):33–39. doi: 10.1016/j.diii.2023.08.002
  • Liang W, Yang P, Huang R, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clin Cancer Res. 2019;25(2):584–594. doi: 10.1158/1078-0432.CCR-18-1305
  • McGovern JM, Singhi AD, Borhani AA, et al. CT radiogenomic characterization of the alternative lengthening of telomeres phenotype in pancreatic neuroendocrine tumors. AJR Am J Roentgenol. 2018;211(5):1020–1025. doi: 10.2214/AJR.17.19490
  • Bodalal Z, Trebeschi S, Nguyen-Kim TDL, et al. Radiogenomics: bridging imaging and genomics. Abdom Radiol. 2019;44(6):1960–1984. doi: 10.1007/s00261-019-02028-w
  • Baumann T, Rottenburger C, Nicolas G, et al. Gastroenteropancreatic neuroendocrine tumours (GEP-NET) – Imaging and staging. Best Pract Res Clin Endocrinol Metab. 2016;30(1):45–57. doi: 10.1016/j.beem.2016.01.003
  • Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA. Eur J Nucl Med Mol Imaging. 2017;44(9):1588–1601. doi: 10.1007/s00259-017-3728-y
  • Sawicki LM, Deuschl C, Beiderwellen K, et al. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT. Eur Radiol. 2017;27(10):4091–4099. doi: 10.1007/s00330-017-4803-2
  • Mapelli P, De Cobelli F, Picchio M. PET/MRI in neuroendocrine tumours: blessings and curses. CRP. 2019;12(2):96–97. doi: 10.2174/1874471012999190404151701
  • Mapelli P, Ironi G, Fallanca F, et al. 68Ga-DOTA-peptides PET/MRI in pancreatico-duodenal neuroendocrine tumours: a flash pictorial essay on assets and lacks. Clin Transl Imaging. 2019;7(5):363–371. doi: 10.1007/s40336-019-00341-4
  • Geijer H, Breimer LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(11):1770–1780. doi: 10.1007/s00259-013-2482-z
  • Nicolas GP, Beykan S, Bouterfa H, et al. Safety, biodistribution, and radiation dosimetry of 68 Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase I imaging study. J Nucl Med. 2018;59(6):909–914. doi: 10.2967/jnumed.117.199737
  • Pauwels E, Cleeren F, Bormans G, et al. Somatostatin receptor PET ligands - the next generation for clinical practice. Am J Nucl Med Mol Imaging. 2018;8(5):311–331.
  • Johnbeck CB, Knigge U, Loft A, et al. Head-to-head comparison of 64 Cu-DOTATATE and 68 Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58(3):451–457. doi: 10.2967/jnumed.116.180430
  • Hope TA, Bergsland EK, Bozkurt MF, et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med. 2018;59(1):66–74. doi: 10.2967/jnumed.117.202275
  • Subramaniam RM, Bradshaw ML, Lewis K, et al. ACR practice parameter for the performance of gallium-68 DOTATATE PET/CT for neuroendocrine tumors. Clin Nucl Med. 2018;43(12):899–908. doi: 10.1097/RLU.0000000000002309
  • Ambrosini V, Campana D, Polverari G, et al. Prognostic value of 68 Ga-DOTANOC PET/CT SUV max in patients with neuroendocrine tumors of the pancreas. J Nucl Med. 2015;56(12):1843–1848. doi: 10.2967/jnumed.115.162719
  • Campana D, Ambrosini V, Pezzilli R, et al. Standardized uptake values of 68 Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med. 2010;51(3):353–359. doi: 10.2967/jnumed.109.066662
  • Kandathil A, Subramaniam RM. Gastroenteropancreatic neuroendocrine tumor diagnosis: DOTATATE PET/CT. PET Clin. 2023;18(2):189–200. doi: 10.1016/j.cpet.2022.11.001
  • Christ E, Wild D, Forrer F, et al. Glucagon-Like Peptide-1 Receptor Imaging for Localization of Insulinomas. J Clin Endocrinol Metab. 2009;94(11):4398–4405. doi: 10.1210/jc.2009-1082
  • Sowa-Staszczak A, Pach D, Mikołajczak R, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013;40(4):524–531. doi: 10.1007/s00259-012-2299-1
  • Binderup T, Knigge U, Loft A, et al. 18F-Fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–985. doi: 10.1158/1078-0432.CCR-09-1759
  • Mapelli P, Tam HH, Sharma R, et al. Frequency and significance of physiological versus pathological uptake of 68Ga-DOTATATE in the pancreas. Nucl Med Commun. 2014;35(6):613–619. doi: 10.1097/MNM.0000000000000106
  • Calabrò D, Argalia G, Ambrosini V. Role of PET/CT and therapy management of pancreatic neuroendocrine tumors. Diagnostics. 2020;10(12):1059. doi: 10.3390/diagnostics10121059
  • Zhang P, Yu J, Li J, et al. Clinical and prognostic value of PET/CT imaging with combination of 68 Ga-DOTATATE and 18 F-FDG In gastroenteropancreatic neuroendocrine neoplasms. Contrast Media Mol Imaging. 2018;2018:1–9. doi: 10.1155/2018/2340389
  • Muffatti F, Partelli S, Cirocchi R, et al. Combined 68Ga-DOTA-peptides and 18F-FDG PET in the diagnostic work-up of neuroendocrine neoplasms (NEN). Clin Transl Imaging. 2019;7(3):181–188. doi: 10.1007/s40336-019-00328-1
  • Andreasi V, Partelli S, Muffatti F, et al. Update on gastroenteropancreatic neuroendocrine tumors. Digestive Liver Dis. 2021;53(2):171–182. doi: 10.1016/j.dld.2020.08.031
  • Matsumoto T, Okabe H, Yamashita Y, et al. Clinical role of fludeoxyglucose (18F) positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with pancreatic neuroendocrine tumors. Surg Today. 2019;49(1):21–26. doi: 10.1007/s00595-018-1703-2
  • Magi L, Prosperi D, Lamberti G, et al. Role of [18F]FDG PET/CT in the management of G1 gastro-entero-pancreatic neuroendocrine tumors. Endocrine. 2022;76(2):484–490. doi: 10.1007/s12020-022-03000-3
  • Werner RA, Weich A, Higuchi T, et al. Imaging of chemokine receptor 4 expression in neuroendocrine tumors - a triple tracer comparative approach. Theranostics. 2017;7(6):1489–1498. doi: 10.7150/thno.18754
  • Bezzi C, Mapelli P, Presotto L, et al. Radiomics in pancreatic neuroendocrine tumors: methodological issues and clinical significance. Eur J Nucl Med Mol Imaging. 2021;48(12):4002–4015. doi: 10.1007/s00259-021-05338-8
  • Ha S, Choi H, Paeng JC, et al. Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging. 2019;53(1):14–29. doi: 10.1007/s13139-019-00571-4
  • Mapelli P, Partelli S, Salgarello M, et al. Dual tracer 68Ga-DOTATOC and18F-FDG PET/computed tomography radiomics in pancreatic neuroendocrine neoplasms: an endearing tool for preoperative risk assessment. Nuclear Medicine Communications. 2020;41(9):896–905. doi: 10.1097/MNM.0000000000001236
  • Werner RA, Ilhan H, Lehner S, et al. Pre-therapy somatostatin receptor-based heterogeneity predicts overall survival in pancreatic neuroendocrine tumor patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2019;21(3):582–590. doi: 10.1007/s11307-018-1252-5
  • Önner H, Abdülrezzak Ü, Tutuş A. Could the skewness and kurtosis texture parameters of lesions obtained from pretreatment Ga-68 DOTA-TATE PET/CT images predict receptor radionuclide therapy response in patients with gastroenteropancreatic neuroendocrine tumors? Nucl Med Commun. 2020;41(10):1034–1039. doi: 10.1097/MNM.0000000000001231
  • Mapelli P, Bezzi C, Palumbo D, et al. 68Ga-DOTATOC PET/MR imaging and radiomic parameters in predicting histopathological prognostic factors in patients with pancreatic neuroendocrine well-differentiated tumours. Eur J Nucl Med Mol Imaging. 2022;49(7):2352–2363. doi: 10.1007/s00259-022-05677-0
  • Mapelli P, Partelli S, Salgarello M, et al. Diagnostics dual tracer 68Ga-DOTATOC and 18F-FDG PET improve preoperative evaluation of aggressiveness in resectable pancreatic neuroendocrine neoplasms. Diagnostics. 2021;11(2):192. doi: 10.3390/diagnostics11020192
  • Ma J, Wang X, Tang M, et al. Preoperative prediction of pancreatic neuroendocrine tumor grade based on 68Ga-DOTATATE PET/CT. Endocrine. 2023;83(2):502–510. doi: 10.1007/s12020-023-03515-3
  • Mapelli P, Bezzi C, Muffatti F, et al. Somatostatin receptor activity assessed by 68Ga-DOTATOC PET can preoperatively predict DAXX/ATRX loss of expression in well-differentiated pancreatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2023;50(9):2818–2829. doi: 10.1007/s00259-023-06210-7
  • Bruckmann NM, Rischpler C, Kirchner J, et al. Correlation between contrast enhancement, standardized uptake value (SUV), and diffusion restriction (ADC) with tumor grading in patients with therapy-naive neuroendocrine neoplasms using hybrid 68Ga-DOTATOC PET/MRI. Eur J Radiol. 2021;137:109588. doi: 10.1016/j.ejrad.2021.109588
  • Zilli A, Arcidiacono PG, Conte D, et al. Clinical impact of endoscopic ultrasonography on the management of neuroendocrine tumors: lights and shadows. Digestive Liver Dis. 2018;50(1):6–14. doi: 10.1016/j.dld.2017.10.007
  • Anderson M, Carpenter S, Thompson NW. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. Am J Gastroenterol. 2000;95(9):2271–2277. doi: 10.1111/j.1572-0241.2000.02480.x
  • Di Leo M, Poliani L, Rahal D, et al. Pancreatic neuroendocrine tumours: the role of endoscopic ultrasound biopsy in diagnosis and grading based on the WHO 2017 classification. Dig Dis. 2019;37(4):325–333. doi: 10.1159/000499172
  • Partelli S, Muffatti F, Andreasi V, et al. A single-center prospective observational study investigating the accuracy of preoperative diagnostic procedures in the assessment of lymph node metastases in nonfunctioning pancreatic neuroendocrine tumors. Ann Surg. 2022;276(5):921–928. doi: 10.1097/SLA.0000000000005615.
  • O’Toole D, Palazzo L. Endoscopy and endoscopic ultrasound in assessing and managing neuroendocrine neoplasms. Front Horm Res. 2015;44:88–103.
  • Tacelli M, Bina N, Francesco Crinò S, et al. Reliability of grading preoperative pancreatic neuroendocrine tumors on EUS specimens: a systematic review with meta-analysis of aggregate and individual data. Gastrointest Endosc. 2022;96(6):898–908.e23. doi: 10.1016/j.gie.2022.07.014
  • Howe JR, Merchant NB, Conrad C, et al. The North American Neuroendocrine Tumor Society consensus paper on the surgical management of pancreatic neuroendocrine tumors. Pancreas. 2020;49(1):1–33. doi: 10.1097/MPA.0000000000001454
  • Ishii T, Katanuma A, Toyonaga H, et al. Role of endoscopic ultrasound in the diagnosis of pancreatic neuroendocrine neoplasms. Diagnostics. 2021;11(2):316. doi: 10.3390/diagnostics11020316
  • Tacelli M, Petrone M, Capurso G, et al. Diagnostic accuracy of EUS-FNA in the evaluation of pancreatic neuroendocrine neoplasms grading: possible clinical impact of misclassification. Endosc Ultrasound. 2021;10(5):372–380. doi: 10.4103/EUS-D-20-00261
  • Paiella S, Landoni L, Rota R, et al. Endoscopic ultrasound-guided fine-needle aspiration for the diagnosis and grading of pancreatic neuroendocrine tumors: a retrospective analysis of 110 cases. Endoscopy. 2020;52(11):988–994. doi: 10.1055/a-1180-8614
  • Hijioka S, Hara K, Mizuno N, et al. Diagnostic performance and factors influencing the accuracy of EUS-FNA of pancreatic neuroendocrine neoplasms. J Gastroenterol. 2016;51(9):923–930. doi: 10.1007/s00535-016-1164-6
  • Leeds JS, Nayar MK, Bekkali NLH, et al. Endoscopic ultrasound-guided fine-needle biopsy is superior to fine-needle aspiration in assessing pancreatic neuroendocrine tumors. Endosc Int Open. 2019;7(10):E1281–7. doi: 10.1055/a-0990-9611
  • Crinò SF, Ammendola S, Meneghetti A, et al. Comparison between EUS-guided fine-needle aspiration cytology and EUS-guided fine-needle biopsy histology for the evaluation of pancreatic neuroendocrine tumors. Pancreatology. 2021;21(2):443–450. doi: 10.1016/j.pan.2020.12.015.
  • Ghabi EM, Habib JR, Shoucair S, et al. Detecting somatic mutations for well-differentiated pancreatic neuroendocrine tumors in endoscopic ultrasound-guided fine needle aspiration with next-generation sequencing. Ann Surg Oncol. 2023;30(12):7720–7730. doi: 10.1245/s10434-023-13965-8
  • Mastrosimini MG, Manfrin E, Remo A, et al. Endoscopic ultrasound fine-needle biopsy to assess DAXX/ATRX expression and alternative lengthening of telomeres status in non-functional pancreatic neuroendocrine tumors. Pancreatology. 2023;23(4):429–436. doi: 10.1016/j.pan.2023.05.002
  • Vanden Bussche CJ, Allison DB, Graham MK, et al. Alternative lengthening of telomeres and ATRX/DAXX loss can be reliably detected in FNAs of pancreatic neuroendocrine tumors. Cancer Cytopathol. 2017;125(7):544–551. doi: 10.1002/cncy.21857
  • Hackeng WM, Morsink FHM, Moons LMG, et al. Assessment of ARX expression, a novel biomarker for metastatic risk in pancreatic neuroendocrine tumors, in endoscopic ultrasound fine‐needle aspiration. Diagn Cytopathol. 2020;48(4):308–315. doi: 10.1002/dc.24368
  • Asokkumar R, Yung Ka C, Loh T, et al. Comparison of tissue and molecular yield between fine-needle biopsy (FNB) and fine-needle aspiration (FNA): a randomized study. Endosc Int Open. 2019;7(08):E955–63. doi: 10.1055/a-0903-2565
  • Yamada M, Hara K, Mizuno N, et al. The role of needle-based confocal laser endoscopy in the diagnosis of pancreatic neuroendocrine tumors. Clin Endosc. 2023. Epub ahead of print.
  • Iglesias-Garcia J, Larino-Noia J, Abdulkader I, et al. EUS elastography for the characterization of solid pancreatic masses. Gastrointest Endosc. 2009;70(6):1101–1108. doi: 10.1016/j.gie.2009.05.011
  • Kuwahara T, Hara K, Mizuno N, et al. Present status of ultrasound elastography for the diagnosis of pancreatic tumors: review of the literature. J Med Ultrasonics. 2020;47(3):413–420. doi: 10.1007/s10396-020-01026-6
  • Iglesias–Garcia J, Larino–Noia J, Abdulkader I, et al. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses. Gastroenterology. 2010;139(4):1172–1180. doi: 10.1053/j.gastro.2010.06.059
  • Giovannini M, Hookey L, Bories E, et al. Endoscopic ultrasound elastography: the first step towards virtual biopsy? Preliminary results in 49 patients. Endoscopy. 2006;38(4):344–348. doi: 10.1055/s-2006-925158
  • Carrara S, Di Leo M, Grizzi F, et al. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions. Gastrointest Endosc. 2018;87(6):1464–1473. doi: 10.1016/j.gie.2017.12.031
  • Havre RF, Ødegaard S, Gilja OH, et al. Characterization of solid focal pancreatic lesions using endoscopic ultrasonography with real-time elastography. Scand J Gastroenterol. 2014;49(6):742–751. doi: 10.3109/00365521.2014.905627
  • Ishikawa T, Itoh A, Kawashima H, et al. Usefulness of EUS combined with contrast-enhancement in the differential diagnosis of malignant versus benign and preoperative localization of pancreatic endocrine tumors. Gastrointest Endosc. 2010;71(6):951–959. doi: 10.1016/j.gie.2009.12.023
  • Palazzo M, Napoléon B, Gincul R, et al. Contrast harmonic EUS for the prediction of pancreatic neuroendocrine tumor aggressivenes. Gastrointestinal Endoscopy. 2018;87(6):1481–1488. doi: 10.1016/j.gie.2017.12.033
  • Ishikawa R, Kamata K, Hara A, et al. Utility of contrast-enhanced harmonic endoscopic ultrasonography for predicting the prognosis of pancreatic neuroendocrine neoplasms. Digestive Endoscopy. 2021;33(5):829–839. doi: 10.1111/den.13862
  • Săftoiu A, Vilmann P, Dietrich CF, et al. Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). Gastrointest Endosc. 2015;82(1):59–69. doi: 10.1016/j.gie.2014.11.040
  • Takada S, Kato H, Saragai Y, et al. Contrast-enhanced harmonic endoscopic ultrasound using time–intensity curve analysis predicts pathological grade of pancreatic neuroendocrine neoplasm. J Med Ultrasonics. 2019;46(4):449–458. doi: 10.1007/s10396-019-00967-x
  • Constantin AL, Cazacu I, Burtea DE, et al. Quantitative contrast-enhanced endoscopic ultrasound in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors: can we predict survival using perfusion parameters? A pilot study. Med Ultrason. 2022;24(4):393. doi: 10.11152/mu-3503
  • Săftoiu A, Vilmann P, Gorunescu F, et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc. 2008;68(6):1086–1094. doi: 10.1016/j.gie.2008.04.031
  • Klöppel G, Couvelard A, Perren A, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology. 2009;90(2):162–166. doi: 10.1159/000182196
  • Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol. 2022;33(1):115–154. doi: 10.1007/s12022-022-09708-2
  • Shi M, Fan Z, Xu J, et al. Gastroenteropancreatic neuroendocrine neoplasms G3: novel insights and unmet needs. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188637. doi: 10.1016/j.bbcan.2021.188637
  • Perren A, Couvelard A, Scoazec J-Y, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pathology - diagnosis and prognostic stratification. Neuroendocrinology. 2017;105(3):196–200. doi: 10.1159/000457956.
  • Choe J, Kim KW, Kim HJ, et al. What is new in the 2017 World Health Organization classification and 8th American Joint Committee on Cancer staging system for pancreatic neuroendocrine neoplasms? Korean J Radiol Korean Radiological Society. 2019;20(1):5–17. doi: 10.3348/kjr.2018.0040
  • Singhi AD, Klimstra DS. Well-differentiated pancreatic neuroendocrine tumours (PanNets) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNecs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases. Histopathology. 2018;72(1):168–177. doi: 10.1111/his.13408
  • Maharjan C, Ear P, Tran C, et al. Pancreatic neuroendocrine tumors: molecular mechanisms and therapeutic targets. Cancers (Basel). 2021;13(20):5117. doi: 10.3390/cancers13205117
  • Scarpa A, Chang DK, Nones K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71. doi: 10.1038/nature21063
  • Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science (1979). 2011;331(6021):1199–1203. doi: 10.1126/science.1200609
  • Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014;146(2):453–60.e5. doi: 10.1053/j.gastro.2013.10.020
  • Heaphy CM, Singhi AD. The diagnostic and prognostic utility of incorporating DAXX, ATRX, and alternative lengthening of telomeres to the evaluation of pancreatic neuroendocrine tumors. Hum Pathol. 2022;129:11–20. doi: 10.1016/j.humpath.2022.07.015
  • Hackeng WM, Brosens LAA, Kim JY, et al. Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut. 2022;71(5):961–973. doi: 10.1136/gutjnl-2020-322595
  • Geurts JL. Inherited syndromes involving pancreatic neuroendocrine tumors. J Gastrointest Oncol. 2020;11(3):559–566. doi: 10.21037/jgo.2020.03.09
  • Michael IP, Saghafinia S, Hanahan D A set of microRnas coordinately controls tumorigenesis, invasion, and metastasis. Proc Natl Acad Sci USA. 2019;116(48):24184–24195. doi: 10.1073/pnas.1913307116
  • Havasi A, Sur D, Cainap SS, et al. Current and new challenges in the management of pancreatic neuroendocrine tumors: the role of miRNA-based approaches as new reliable biomarkers. Int J Mol Sci. 2022;23(3):1109. doi: 10.3390/ijms23031109
  • Saller J, White D, Hough B, et al. An miRNA signature predicts grading of pancreatic neuroendocrine neoplasms. Cancer Genomics - Proteomics. 2023;20(2):154–164. doi: 10.21873/cgp.20370
  • Lakis V, Lawlor RT, Newell F, et al. DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Commun Biol. 2021;4(1):155. doi: 10.1038/s42003-020-01469-0
  • Yang KC, Kalloger SE, Aird JJ, et al. Proteotranscriptomic classification and characterization of pancreatic neuroendocrine neoplasms. Cell Rep. 2021;37(2):109817. doi: 10.1016/j.celrep.2021.109817
  • Tirosh A, Kebebew E. Genetic and epigenetic alterations in pancreatic neuroendocrine tumors. J Gastrointest Oncol. 2020;11(3):567–577. doi: 10.21037/jgo.2020.03.11
  • Rindi G, Klöppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449(4):395–401. doi: 10.1007/s00428-006-0250-1
  • Boyar Centinkaya R, Vatn M, Aabakken L, et al. Survival and prognostic factors in well-differentiated pancreatic neuroendocrine tumors. Scandinavian Journal Of Gastroenterology. 2014;49(6):734–741. doi: 10.3109/00365521.2014.903432
  • Partelli S, Javed AA, Andreasi V, et al. The number of positive nodes accurately predicts recurrence after pancreaticoduodenectomy for nonfunctioning neuroendocrine neoplasms. Eur J Surg Oncol. 2018;44(6):778–783. doi: 10.1016/j.ejso.2018.03.005
  • Pomianowska E, Gladhaug IP, Grzyb K, et al. Survival following resection of pancreatic endocrine tumors: importance of R-status and the WHO and TNM classification systems. Scand J Gastroenterol. 2010;45(7–8):971–979. doi: 10.3109/00365521003782363
  • Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2012;26(6):803–818. doi: 10.1016/j.bpg.2012.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.