76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the influence of discontinuity parameters on blast-induced fragmentation

, &
Received 24 Jul 2023, Accepted 18 Apr 2024, Published online: 03 May 2024

References

  • Q. Liu and P.D. Katsabanis A theoretical approach to the stress waves around a borehole and their effect on rock crushing, Proceedings of the Fourth International Symposium on Rock Fragmentation by Blasting-Fragblast-4, Vienna, Austria, 1993, pp. 9–16.
  • S. Esen, I. Onederra, and H.A. Bilgin, Modelling the size of the crushed zone around a blasthole, Int. J. Rock Mech. Min. Sci. 40 (4) (2003), pp. 485–495. https://doi.org/10.1016/S1365-1609(03)00018-2.
  • D.E. Grady, M.E. Kipp, Continuum modelling of explosive fracture in oil shale, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17 (3) (1980), pp. 147–157. https://doi.org/10.1016/0148-9062(80)91361-3
  • Z. Zhu, B. Mohanty, and H. Xie, Numerical investigation of blasting-induced crack initiation and propagation in rocks, Int. J. Rock Mech. Min. Sci. 44 (3) (2007), pp. 412–424. https://doi.org/10.1016/j.ijrmms.2006.09.002.
  • J. Yoon and S. Jeon, eds. Use of a modified particle-based method in simulating blast-induced rock fracture, Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting, Gnanada, Spain, Fragblast, 2010.
  • I.A. Onederra, J.K. Furtney, E. Sellers, and S. Iverson, Modelling blast induced damage from a fully coupled explosive charge, Int. J. Rock Mech. Min. Sci. 58 (2013), pp. 73–84. https://doi.org/10.1016/j.ijrmms.2012.10.004.
  • K. Fleetwood, E. Villaescusa, and J. Li, eds. Limitations of using PPV damage models to predict rock mass damage, Thirty-Fifth Annual Conference on Explosives and Blasting Technique, Denver, CO, International Society of Explosives Engineers, 2009.
  • P.A. Persson, R. Holmberg, and J. Lee, Rock Blasting and Explosives Engineering, CRC Press: Boca Raton, Florida, United States, 1994.
  • C. Sun, Damage Zone Prediction for Rock Blasting, University of Utah, Salt Lake City, UT, USA, 2013.
  • Y. Lizotte and M. Scoble, Geological control over blast fragmentation, CIM Bull. 87 (1994), pp. 57–71.
  • R.L. Yang, P. Rocque, P. Katsabanis, and W.F. Bawden, Measurement and analysis of near-field blast vibration and damage, Geotech. Geol. Eng 12 (3) (1994), pp. 169–182. https://doi.org/10.1007/BF00426985.
  • S. Bhandari, Changes in Fragmentation Processes with Blasting Conditions. Fragmentation by Blasting. Fragblast 5, A. A. Balkema, Quebec, Canada, 1996, pp. 301–309.
  • A. Mortazavi, M. Paventi, R.K. Brummer, and B. Mohanty, Modelling of blast-induced stress wave propagation and fracturing in hard rock material, Canadian Institute of Mining (CIM)-Annual Conference; May, 2002, Vancouver, BC, Canada, 2002.
  • Z.L. Wang and H. Konietzky, Modelling of blast-induced fractures in jointed rock masses, Eng Fract Mech 76 (12) (2009), pp. 1945–1955. https://doi.org/10.1016/j.engfracmech.2009.05.004.
  • Z. Wang, Y. Huang, and F. Xiong, Three-dimensional numerical analysis of blast-induced damage characteristics of the intact and Jointed Rockmass, Comput. Mater Continua 60 (3) (2019), pp. 1189–1206. https://doi.org/10.32604/cmc.2019.04972.
  • X. Jiang, Y. Xue, F. Kong, H. Gong, Y. Fu, and W. Zhang, Dynamic responses and damage mechanism of rock with discontinuity subjected to confining stresses and blasting loads, Int J Impact Eng 172 (2023), pp. 104404. https://doi.org/10.1016/j.ijimpeng.2022.104404.
  • F. Zhang, L. Yang, H. Hu, C. Huang, and S. Chen, Study on the crack propagation behaviour of eccentric uncoupled blasting in a deep-level rock mass, Int. J. Min. Reclam. Environ. 37 (6) (2023), pp. 419–440. https://doi.org/10.1080/17480930.2023.2213546.
  • Livermore Software Technology Corporation L, LS-DYNA keyword User’s manual R11 volume II material models 2018 June 15, 2 (2023). https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_manual_volume_ii_r11.pdf.
  • G.W. Ma and X.M. An, Numerical simulation of blasting-induced rock fractures, Int. J. Rock Mech. Min. Sci. 45 (6) (2008), pp. 966–975. https://doi.org/10.1016/j.ijrmms.2007.12.002.
  • M.M. Dehghan Banadaki and B. Mohanty, Numerical simulation of stress wave induced fractures in rock, Int J Impact Eng 40–41 (2012), pp. 16–25. https://doi.org/10.1016/j.ijimpeng.2011.08.010.
  • J. Wang, Y. Yin, and K. Esmaieli, Numerical simulations of rock blasting damage based on laboratory-scale experiments, J. Geophys. Eng. 15 (6) (2018), pp. 2399–2417. https://doi.org/10.1088/1742-2140/aacf17.
  • T.J. Holmquist, G.R. Johnson, and W.H. Cook (ed.), A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressures. 14th International Symposium, Vol 2; Warhead Mechanisms, Terminal Ballistics, ADPA, Arlington, Quebec, Canada, 1993.
  • W. Riedel, K. Thoma, S. Hiermaier, and E. Schmolinske (ed.), Penetration of Reinforced Concrete by BETA-B-500 Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes. 9th International Symposiumon Interaction of the Effects of Munitions with Structures, Federal Republic of Germany, Berlin, Germany, 1999.
  • Z. Wang, H. Wang, J. Wang, and N. Tian, Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks, Comput. Geotech. 135 (2021), pp. 104172. https://doi.org/10.1016/j.compgeo.2021.104172.
  • L.X. Xie, W.B. Lu, Q.B. Zhang, Q.H. Jiang, M. Chen, and J. Zhao, Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses, Tunnelling Underground Space Technol. 66 (2017), pp. 19–33. https://doi.org/10.1016/j.tust.2017.03.009.
  • C. Yi, J. Sjöberg, and D. Johansson, Numerical modelling for blast-induced fragmentation in sublevel caving mines, Tunnelling Underground Space Technol. 68 (2017), pp. 167–173. https://doi.org/10.1016/j.tust.2017.05.030.
  • T. Borrvall and W. Riedel, eds. The RHT concrete model in LS-DYNA. 8th European LS-DYNA users conference, Strasbourg, Austria, 2011.
  • ORICA, Technical Data Sheet - Fortis Extra System - Africa, Orica: Johannesburg, South Africa, 2018.
  • E.L. Lee, H.C. Hornig, and J.W. Kury, Adiabatic expansion of high explosive detonation products, Contract No: UCRL-50422, United States, 1968.
  • H. Hansson Determination of properties for emulsion explosives using cylinder expansion tests and numerical simulation, Report No: ISSN 1653–5006, Swebrec - Swedish Blasting Research Centre, 2009.
  • H. Jeong and S. Jeon, Characteristic of size distribution rock chip produced by rock cutting with a pick cutter, Geomech. Eng. 15 (2018). https://doi.org/10.12989/gae.2018.15.3.811.
  • W.A. Hustrulid, Blasting Principles for Open Pit Mining, CRC Press: Boca Raton, Florida, United States, 1999.
  • M.S. Dotto, Y. Pourrahimian, T. Joseph, and D. Apel, Assessment of blast energy usage and induced rock damage in hard rock surface mines, Cim J. 13 (4) (2022), pp. 166–180. https://doi.org/10.1080/19236026.2022.2126924.
  • S.G. Chen and J. Zhao, A study of UDEC modelling for blast wave propagation in jointed rock masses, Int. J. Rock Mech. Min. Sci. 35 (1) (1998), pp. 93–99. https://doi.org/10.1016/S0148-9062(97)00322-7.
  • M.A. Ismail and J.S. Gozon, Effects of discontinuities on fragmentation by blasting, Int. J. Min. Reclam. Environ. 1 (1) (1987), pp. 21–25. https://doi.org/10.1080/09208118708944098.
  • R. Yang, C. Ding, L. Yang, and C. Chen, Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions, Tunnelling Underground Space Technol. 74 (2018), pp. 145–152. https://doi.org/10.1016/j.tust.2018.01.017.
  • A. Saadatmand Hashemi and P. Katsabanis, The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation, Rock Mech. Rock Eng. 53 (5) (2020), pp. 2327–2346. https://doi.org/10.1007/s00603-019-02043-9.
  • WipWare, Sampling and analysis Guide, 2021.
  • M.S. Dotto and Y. Pourrahimian, The influence of explosive and rock Mass properties on blast damage in a single-hole blasting, Mining 4 (1) (2024), pp. 168–188. https://doi.org/10.3390/mining4010011.
  • J. Cui, L. Xie, W. Qiao, L. Qiu, Z. Hu, and L. Wu, Study on blasting characteristics of rock mass with weak interlayer based on energy field, Sci. Rep. 12 (1) (2022), pp. 12698. https://doi.org/10.1038/s41598-022-17028-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.