971
Views
68
CrossRef citations to date
0
Altmetric
Original Article

Genetic studies of amyotrophic lateral sclerosis: Controversies and perspectives

&
Pages 1-14 | Received 02 Sep 2008, Published online: 10 Jul 2009

References

  • Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial ‘Clinical limits of amyotrophic lateral sclerosis’ workshop contributors. J Neurol Sci 1994; 124(Suppl)96–107
  • Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000; 1: 293–9
  • Abhinav K, Stanton B, Johnston C, Hardstaff J, Orrell RW, Howard R, et al. Amyotrophic lateral sclerosis in south-east England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology. 2007; 29: 44–8
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993; 362: 59–62
  • Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006; 7: 710–23
  • Siddique T, Figlewicz DA, Pericak-Vance MA, Haines JL, Rouleau G, Jeffers AJ, et al. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. N Engl J Med. 1991; 324: 1381–4
  • Kabashi E, Valdmanis PN, Dion P, Rouleau GA. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?. Ann Neurol. 2007; 62: 553–9
  • Hentati A, Bejaoui K, Pericak-Vance MA, Hentati F, Speer MC, Hung WY, et al. Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33-q35. Nat Genet. 1994; 7: 425–8
  • Hand CK, Khoris J, Salachas F, Gros-Louis F, Lopes AA, Mayeux-Portas V, et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet. 2002; 70: 251–6
  • Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004; 74: 1128–35
  • Hentati A, Ouahchi K, Pericak-Vance MA, Nijhawan D, Ahmad A, Yang Y, et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics. 1998; 2: 55–60
  • Ruddy DM, Parton MJ, Al-Chalabi A, Lewis CM, Vance C, Smith BN, et al. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am J Hum Genet. 2003; 73: 390–6
  • Sapp PC, Hosler BA, McKenna-Yasek D, Chin W, Gann A, Genise H, et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet. 2003; 73: 397–403
  • Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004; 75: 822–31
  • Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA. 2000; 284: 1664–9
  • Froelich S, Basun H, Forsell C, Lilius L, Axelman K, Andreadis A, et al. Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12-21. Am J Med Genet. 1997; 74: 380–5
  • Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, Sreedharan J, et al. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain. 2006; 129: 868–76
  • Gopinath S, Blair IP, Kennerson ML, Durnall JC, Nicholson GA. A novel locus for distal motor neuron degeneration maps to chromosome 7q34-q36. Hum Genet. 2007; 121: 559–64
  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008; 319: 1668–72
  • Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008; 4: e1000193
  • Graham AJ, Macdonald AM, Hawkes CH. British motor neuron disease twin study. J Neurol Neurosurg Psychiatry. 1997; 62: 562–9
  • Fallis B, Hardiman O. Aggregation of neurodegenerative disease in ALS kindreds. Amyotroph Lateral Scler. 2008; 18: 1–4
  • Tomblyn M, Kasarskis EJ, Xu Y, St Clair DK. Distribution of MnSOD polymorphisms in sporadic ALS patients. J Mol Neurosci. 1998; 10: 65–6
  • Tomkins J, Banner SJ, McDermott CJ, Shaw PJ. Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis. Neuroreport. 2001; 12: 2319–22
  • Silahtaroglu AN, Brondum-Nielsen K, Gredal O, Werdelin L, Panas M, Petersen MB, et al. Human CCS gene: genomic organization and exclusion as a candidate for amyotrophic lateral sclerosis (ALS). BMC Genet. 2002; 3: 5
  • Goodall EF, Greenway MJ, van Marion I, Carroll CB, Hardiman O, Morrison KE. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology. 2005; 65: 934–7
  • Sutedja NA, Sinke RJ, van Vught PW, van der Linden MW, Wokke JH, van Duijn CM, et al. The association between H63D mutations in HFE and amyotrophic lateral sclerosis in a Dutch population. Arch Neurol. 2007; 64: 63–76
  • Bos IW, Hoogland G, Meine Jansen CF, Willigen G, Spierenburg HA, van den Berg LH, et al. Increased glutamine synthetase but normal EAAT2 expression in platelets of ALS patients. Neurochem Int. 2006; 48: 306–11
  • Flowers JM, Powell JF, Leigh PN, Andersen P, Shaw CE. Intron 7 retention and exon 9 skipping EAAT2 mRNA variants are not associated with amyotrophic lateral sclerosis. Ann Neurol. 2001; 49: 643–9
  • Jackson M, Steers G, Leigh PN, Morrison KE. Polymorphisms in the glutamate transporter gene EAAT2 in European ALS patients. J Neurol. 1999; 246: 1140–4
  • Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH, Jr, Pasinelli P, et al. A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem. 2007; 282: 32480–90
  • Lambrechts D, Poesen K, Fernández-Santiago R, Al-Chalabi A, Del Bo R, van Vught PW, et al. Meta-analysis of VEGF variations in ALS: increased susceptibility in male carriers of the 2578AA genotype. J Med Genet. 2008 Jul 17 (Epub ahead of print).
  • Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motor neurons against ischemic death. Nat Genet. 2003; 34: 383–94
  • Chen D, Shen L, Wang L, Lu A, Zhang H, Zhang X, et al. Association of polymorphisms in vascular endothelial growth factor gene with the age of onset of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007; 8: 144–9
  • Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet. 2001; 28: 131–8
  • Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motor neurons against ischemic death. Nat Genet. 2003; 34: 383–94
  • Tolosa L, Mir M, Asensio VJ, Olmos G, Lladó J. Vascular endothelial growth factor protects spinal cord motor neurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem. 2007; 105: 1080–90
  • Kowalska A, Konagaya M, Sakai M, Hashizume Y, Tabira T. Familial amyotrophic lateral sclerosis and Parkinsonism-dementia complex: tauopathy without mutations in the tau gene?. Folia Neuropathol. 2003; 41: 59–64
  • Figlewicz DA, Krizus A, Martinoli MG, Meininger V, Dib M, Rouleau GA, et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet. 1994; 3: 1757–61
  • Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet. 1999; 8: 157–64
  • Tomkins J, Usher P, Slade JY, Ince PG, Curtis A, Bushby K, Shaw PJ. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport. 1998; 9: 3967–70
  • Gros-Louis F, Larivière R, Gowing G, Laurent S, Camu W, Bouchard JP, et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem. 2004; 279: 45951–6
  • Leung CL, He CZ, Kaufmann P, Chin SS, Naini A, Liem RK, et al. A pathogenic peripherin gene mutation in a patient with amyotrophic lateral sclerosis. Brain Pathol. 2004; 14: 290–6
  • Flowers JM, Leigh PN, Davies AM, Ninkina NN, Buchman VL, Vaughan J, et al. Mutations in the gene encoding human persyn are not associated with amyotrophic lateral sclerosis or familial Parkinson's disease. Neurosci Lett. 1999; 274: 21–4
  • Chen YZ, Hashemi SH, Anderson SK, Huang Y, Moreira MC, Lynch DR, et al. Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis. 2006; 23: 97–108
  • McDermott CJ, Roberts D, Tomkins J, Bushby KM, Shaw PJ. Spastin and paraplegin gene analysis in selected cases of motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord. 2003; 4: 96–9
  • Münch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology. 2004; 63: 724–6
  • Ahmad-Annuar A, Shah P, Hafezparast M, Hummerich H, Witherden AS, Morrison KE, et al. No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003; 4: 150–7
  • Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science. 2003; 300: 808–12
  • Kamel F, Umbach DM, Lehman TA, Park LP, Munsat TL, Shefner JM, et al. Amyotrophic lateral sclerosis, lead, and genetic susceptibility: polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ Health Perspect. 2003; 111: 1335–9
  • Kamel F, Umbach DM, Hu H, Munsat TL, Shefner JM, Taylor JA, et al. Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener Dis. 2005; 2: 195–201
  • Siddons MA, Pickering-Brown SM, Mann DM, Owen F, Cooper PN. Debrisoquine hydroxylase gene polymorphism frequencies in patients with amyotrophic lateral sclerosis. Neurosci Lett. 1996; 208: 65–8
  • Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G, et al. A study of five candidate genes in Parkinson's disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology. 1999; 53: 1415–21
  • Chioza BA, Ujfalusy A, Csiszar K, Leigh PN, Powell JF, Radunovic A. Mutations in the lysyl oxidase gene are not associated with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001; 2: 93–7
  • Orrù S, Mascia V, Casula M, Giuressi E, Loizedda A, Carcassi C, et al. Association of monoamine oxidase B alleles with age at onset in amyotrophic lateral sclerosis. Neuromuscul Disord. 1999; 9: 593–7
  • Saeed M, Siddique N, Hung WY, Usacheva E, Liu E, Sufit RL, et al. Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology. 2006; 67: 771–6
  • Cronin S, Greenway MJ, Prehn JH, Hardiman O. Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007; 78: 984–6
  • Crabtree B, Thiyagarajan N, Prior SH, Wilson P, Iyer S, Ferns T, et al. Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis. Biochemistry. 2007; 46: 11810–8
  • Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, et al. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet. 2006; 38: 411–3
  • Gellera C, Colombrita C, Ticozzi N, Castellotti B, Bragato C, Ratti A, et al. Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics. 2008; 9: 33–40
  • Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, et al. Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol. 2007; 62: 609–17
  • Hayward C, Colville S, Swingler RJ, Brock DJ. Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology. 1999; 52: 1899–1901
  • Olkowski ZL., Mutant AP. endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport. 1998; 9: 2239–42
  • Tomkins J, Dempster S, Banner SJ, Cookson MR, Shaw PJ. Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS). Neuroreport. 2000; 11: 1695–7
  • Dubourg O, Azzedine H, Yaou RB, Pouget J, Barois A, Meininger V, et al. The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology. 2006; 66: 1721–6
  • Antonellis A, Lee-Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, et al. Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J Neurosci. 2006; 26: 10397–406
  • Chen YZ, Hashemi SH, Anderson SK, Huang Y, Moreira MC, Lynch DR, et al. Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis. 2006; 23: 97–108
  • Veldink JH, van den Berg LH, Cobben JM, Stulp RP, de Jong JM, Vogels OJ, et al. Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology. 2001; 56: 749–52
  • Veldink JH, Kalmijn S, van der Hout AH, Lemmink HH, Groeneveld GJ, Lummen C, et al. SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS. Neurology. 2005; 65: 820–5
  • Zou T, Ilangovan R, Yu F, Xu Z, Zhou J. SMN protects cells against mutant SOD1 toxicity by increasing chaperone activity. Biochem Biophys Res Commun. 2007; 364: 850–5
  • Dickson DW, Josephs KA, Amador-Ortiz C. TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol. 2007; 114: 71–9
  • Gijselinck I, Sleegers K, Engelborghs S, Robberecht W, Martin JJ, van den Berghe R, et al. Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS. Neurobiol Aging. 2007 ( Epub ahead of print).
  • Fujita Y, Mizuno Y, Takatama M, Okamoto K. Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J Neurol Sci. 2008 ( Epub ahead of print).
  • Dhaliwal GK, Grewal RP. Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport. 2000; 11: 2507–9
  • Ro LS, Lai SL, Chen CM, Chen ST. Deleted 4977-bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospital-based case-control study. Muscle Nerve. 2003; 28: 737–43
  • Gajewski CD, Lin MT, Cudkowicz ME, Beal MF, Manfredi G. Mitochondrial DNA from platelets of sporadic ALS patients restores normal respiratory functions in rho(0) cells. Exp Neurol. 2003; 179: 229–35
  • Mawrin C, Kirches E, Dietzmann K. Single-cell analysis of mtDNA in amyotrophic lateral sclerosis: towards the characterization of individual neurons in neurodegenerative disorders. Pathol Res Pract. 2003; 199: 415–8
  • Lin FH, Lin R, Wisniewski HM, Hwang YW, Grundke-Iqbal I, Healy-Louie G, Iqbal K. Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer's brains. Biochem Biophys Res Commun. 1992; 182: 238–46
  • Meyer T, Schwan A, Dullinger JS, Brocke J, Hoffmann KT, Nolte CH, et al. Early-onset ALS with long-term survival associated with spastin gene mutation. Neurology. 2005; 65: 141–3
  • Hand CK, Devon RS, Gros-Louis F, Rochefort D, Khoris J, Meininger V, et al. Mutation screening of the ALS2 gene in sporadic and familial amyotrophic lateral sclerosis. Arch Neurol. 2003; 60: 1768–71
  • Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001; 29: 160–5
  • Moulard B, Sefiani A, Laamri A, Malafosse A, Camu W. Apolipoprotein E genotyping in sporadic amyotrophic lateral sclerosis: evidence for a major influence on the clinical presentation and prognosis. J Neurol Sci 1996; 139(Suppl)34–7
  • Siddique T, Pericak-Vance MA, Caliendo J, Hong ST, Hung WY, Kaplan J, et al. Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis. Neurogenetics. 1998; 1: 213–6
  • Haasdijk ED, Vlug A, Mulder MT, Jaarsma D. Increased apolipoprotein E expression correlates with the onset of neuronal degeneration in the spinal cord of G93A-SOD1 mice. Neurosci Lett. 2002; 335: 29–33
  • Al-Chalabi A, Scheffler MD, Smith BN, Parton MJ, Cudkowicz ME, Andersen PM, et al. Ciliary neurotrophic factor genotype does not influence clinical phenotype in amyotrophic lateral sclerosis. Ann Neurol. 2003; 54: 130–4
  • Orrell RW, King AW, Lane RJ, de Belleroche JS. Investigation of a null mutation of the CNTF gene in familial amyotrophic lateral sclerosis. J Neurol Sci. 1995; 132: 126–8
  • Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G, Thoenen H. Disruption of the CNTF gene results in motor neuron degeneration. Nature. 1993; 365: 27–32
  • Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat Genet. 1994; 7: 79–84
  • Giess R, Beck M, Goetz R, Nitsch RM, Toyka KV, Sendtner M. Potential role of LIF as a modifier gene in the pathogenesis of amyotrophic lateral sclerosis. Neurology. 2000; 54: 1003–5
  • Kihira T, Suzuki A, Kubo T, Miwa H, Kondo T. Expression of insulin-like growth factor-II and leukemia inhibitory factor antibody immunostaining on the ionized calcium-binding adaptor molecule 1-positive microglias in the spinal cord of amyotrophic lateral sclerosis patients. Neuropathology. 2007; 27: 257–68
  • Panas M, Karadima G, Kalfakis N, Psarrou O, Floroskoufi P, Kladi A, et al. Genotyping of presenilin-1 polymorphism in amyotrophic lateral sclerosis. J Neurol. 2000; 247: 940–2
  • Orrell RW, Habgood JJ, de Belleroche JS, Lane RJ. The relationship of spinal muscular atrophy to motor neuron disease: investigation of SMN and NAIP gene deletions in sporadic and familial ALS. J Neurol Sci. 1997; 145: 55–61
  • Pari G, Berrada F, Verge G, Karpati G, Nalbantoglu J. Immunolocalization of NAIP in the human brain and spinal cord. Neuroreport. 2000; 11: 9–14
  • Jackson M, Morrison KE, Al-Chalabi A, Bakker M, Leigh PN. Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case. Ann Neurol. 1996; 39: 796–800
  • Garofalo O, Figlewicz DA, Leigh PN, Powell JF, Meininger V, Dib M, et al. Androgen receptor gene polymorphisms in amyotrophic lateral sclerosis. Neuromuscul Disord. 1993; 3: 195–9
  • Drory VE, Birnbaum M, Peleg L, Goldman B, Korczyn AD. Hexosaminidase A deficiency is an uncommon cause of a syndrome mimicking amyotrophic lateral sclerosis. Muscle Nerve. 2003; 28: 109–12
  • Saunderson R, Yu B, Trent RJ, Pamphlett R. A polymorphism in the poliovirus receptor gene differs in motor neuron disease. Neuroreport. 2004; 15: 383–6
  • Jubelt B, Lipton HL. ALS: persistent scientists do not find persisting enteroviruses. Neurology. 2004; 2: 1250–1
  • Göring HH, Terwilliger JD, Blangero J. Large upward bias in estimation of locus-specific effects from genome-wide scans. Am J Hum Genet. 2001; 69: 1357–6139
  • Johnston CA, Stanton BR, Turner MR, Gray R, Blunt AH, Butt D, et al. Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol. 2006;253:1642–3. No abstract available.
  • Kasperaviciute D, Weale ME, Shianna KV, Banks GT, Simpson CL, Hansen VK, et al. Large-scale pathways based association study in amyotrophic lateral sclerosis. Brain. 2007; 130: 2292–301
  • Kruglyak L. The road to genome-wide association studies. Nat Rev Genet. 2008; 9: 314–8
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001; 409: 860–921
  • Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, et al. Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 2007; 3: 1827–37
  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661–78.
  • Schymick JC, Scholz SW, Fung HC, Britton A, Arepalli S, Gibbs JR, et al. Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol. 2007; 6: 322–8
  • Forner K, Lamarine M, Guedj M, Dauvillier J, Wojcik J. Universal false discovery rate estimation methodology for genome-wide association studies. Hum Hered. 2007; 65: 183–94
  • Dunckley T, Huentelman MJ, Craig DW, Pearson JV, Szelinger S, Joshipura K, et al. Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med. 2007; 357: 775–88
  • van Es MA, van Vught PW, Blauw HM, Franke L, Saris CG, Andersen PM, et al. ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol. 2007; 6: 869–77
  • Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, et al. A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet. 2008; 17: 768–74
  • van Es MA, van Vught PW, Blauw HM, Franke L, Saris CG, van den Bosch L, et al. Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet. 2008; 40: 29–31
  • Shen F, Huang J, Fitch KR, Truong VB, Kirby A, Chen W, et al. Improved detection of global copy number variation using high density, non-polymorphic oligonucleotide probes. BMC Genet. 2008; 9: 27
  • Mulle JG. Genomic structural variation and schizophrenia. Curr Psychiatry Rep. 2008; 10: 171–7
  • Nadal MS, Amarillo Y, Vega-Saenz de Miera E, Rudy B. Differential characterization of three alternative spliced isoforms of DPPX. Brain Res. 2006; 1094: 1–12
  • Miller RG. Simultaneous Statistical Inference, 2nd edn. Springer Verlag New York 1981; ISBN 0-387-90548-0.
  • Ziegler A, König IR, Thompson JR. Biostatistical aspects of genome-wide association studies. Biom J. 2008; 50: 8–28
  • Wall JD, Pritchard JK. Assessing the performance of the haplotype block model of linkage disequilibrium. Am J Hum Genet. 2003; 73: 502–15
  • Rao DC, Gu C. False positives and false negatives in genome scans. Adv Genet. 2001; 42: 487–98
  • Cheverud JM. A simple correction for multiple comparisons in interval mapping genome scans. Heredity. 2001; 87: 52–8
  • Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004; 74: 765–9
  • Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigen values of a correlation matrix. Heredity. 2005; 95: 221–7
  • Ji Y, Lu Y, Mills GB. Bayesian models based on test statistics for multiple hypothesis testing problems. Bioinformatics. 2008; 24: 943–9
  • Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. Am J Hum Genet. 2004; 75: 353–62
  • Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet. 2001; 17: 502–10
  • Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant or not?. Hum Mol Genet. 2002; 11: 2417–23
  • Charlesworth B. Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation-accumulation theory of ageing. J Theor Biol. 2001; 210: 47–65
  • Williams PD, Day T, Fletcher Q, Rowe L. The shaping of senescence in the wild. Trends Ecol Evol. 2006; 21: 458–63
  • Neel JV. Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’?. Am J Hum Genet. 1962; 14: 353–62
  • Di Rienzo A. Population genetics models of common diseases. Curr Opin Genet Dev. 2006; 16: 630–6
  • Pritchard JK. Are rare variants responsible for susceptibility to complex diseases?. Am J Hum Genet. 2001; 69: 124–37
  • Wright AF, Hastie ND. Complex genetic diseases: controversy over the Croesus code. Genome Biol. 2001;2: COMMENT2007.
  • Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs?. Nat Genet. 2000; 26: 151–7
  • Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975; 26: 221–35
  • Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet. 2007; 8: 639–46
  • McCarroll SA, Altshuler DM. Copy number variation and association studies of human disease. Nat Genet. 2007; 39(Suppl 7)S37–42
  • Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008; 453: 56–64
  • Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R. A gene expression profile of Alzheimer's disease. DNA Cell Biol. 2001; 20: 683–95
  • Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984; 25: 138–93
  • Zhang XS, Wang J, Hill WG. Influence of dominance, leptokurtosis and pleiotropy of deleterious mutations on quantitative genetic variation at mutation-selection balance. Genetics. 2004; 166: 597–610
  • Zhang XS, Hill WG. Genetic variability under mutation selection balance. Trends Ecol Evol. 2005; 20: 468–70
  • Kimura M. A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci U S A. 1965; 54: 731–6
  • Ahituv N, Kavaslar N, Schackwitz W, Ustaszewska A, Martin J, Hebert S, et al. Medical sequencing at the extremes of human body mass. Am J Hum Genet. 2007; 80: 779–91
  • Kryukov GV, Pennacchio LA, Sunyaev SR. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet. 2007; 80: 727–39
  • Keller MC, Miller G. Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best?. Behav Brain Sci. 2006; 29: 385–404
  • Cronin S, Blauw HM, Veldink JH, van Es MA, Ophoff RA, Bradley DG, et al. Analysis of genome-wide copy number variation in Irish and Dutch ALS populations. Hum Mol Genet. 2008 Aug 21. (Epub ahead of print).
  • Blauw HM, Veldink JH, van Es MA, van Vught PW, Saris CG, van der Zwaag B, et al. Copy number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol. 2008; 7: 319–26
  • Lederer CW, Torrisi A, Pantelidou M, Santama N, Cavallaro S. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics. 2007; 23: 8–26
  • Tanaka F, Niwa J, Ishigaki S, Katsuno M, Waza M, Yamamoto M, et al. Gene expression profiling toward understanding of ALS pathogenesis. Ann N Y Acad Sci. 2006; 1086: 1–10
  • Pantelidou M, Zographos SE, Lederer CW, Kyriakides T, Pfaffl MW, Santama N. Differential expression of molecular motors in the motor cortex of sporadic ALS. Neurobiol Dis. 2007; 26: 577–89
  • van den Bosch L, Timmerman V. Genetics of motor neuron disease. Curr Neurol Neurosci Rep. 2006; 6: 423–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.