3,712
Views
114
CrossRef citations to date
0
Altmetric
Review

Prosthetic feet: State-of-the-art review and the importance of mimicking human ankle–foot biomechanics

, , , , &
Pages 65-75 | Accepted 01 Dec 2008, Published online: 09 Jul 2009

References

  • Nielsen D, Shurr D, Golden J, Meier K. Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet: A preliminary report. J Prosthet Orthotics 1989; 1: 24–31
  • Waters R, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees: The influence of level amputation. J Bone Joint Surg Am 1976; 58: 42–46
  • Torburn L, Perry J, Ayyappa E, Shanfield S. Below knee amputee gait with dynamic elastic response prosthetic feet: A pilot study. J Rehabil Res Dev 1990; 27: 369–384
  • Klute G, Kallfelz C, Czerniecki J. Mechanical properties of prosthetic limbs: Adapting to the patient. J Rehabil Res Dev 2001; 38: 299–307
  • Perry J, Boyd L, Sreesha S, Mulroy S. Prosthetic weight acceptance mechanics in transtibial amputees wearing the single axis, Seattle lite, and flex foot. IEEE Trans Rehabil Eng 1997; 5: 283–289
  • Winter D. Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clin Orthop 1983; 175: 147–154
  • Bresler B, Frankel J. The forces and moments in the leg during level walking. TRANS ASME 1950; 72: 27–36
  • Hafner B J, Sanders J E, Czerniecki J M, Fergason J. Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 2002; 39: 1–11
  • Perry J. Gait analysis: Normal and pathological function. Slack Inc., ThorofareUS 1992
  • Winter D. The biomechanics and motor control of human gait: Normal, elderly and pathological. University of Waterloo Press, Ontario 1991
  • Gage J. An overview of normal walking. Instructional course lectures. University of Waterloo Press, Ontario 1990; 39
  • Inman V, Ralston H, Todd F. Human walking. Williams and Wilkins, PhiladelphiaUS 1981
  • Rodgers M. Dynamic foot biomechanics. J Orthop Sports Phys Ther 1995; 21: 306–316
  • Au S, Dilworth P, Herr H. An ankle–foot emulation system for the study of human walking biomechanics. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, OrlandoUS , 2006, 2939–2945
  • Hansen A, Childress D, Miff S, Gard S, Mesplay K. The human ankle during walking: Implications for design of biomimetic ankle prostheses. J Biomech 2004; 37: 1467–1474
  • Dollar A, Herr H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans Robotics 2008; 24: 144–158
  • Louwerens J, van Linge L, de Klerk B, Mulder P, Snijders C. Peroneus longus and tibialis anterior muscle activity in the stance phase. A quantified electromyographic study of 10 controls and 25 patients with chronic ankle instability. Acta Orthop Scand 1995; 66: 517–523
  • Ishikawa M, Pakaslahti J, Komi P. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 2007; 25: 380–384
  • te Riele F. The heelfoot – design of a plantarflexing prosthetic foot [PhD thesis]. Universiteit Twente, Enschede 2003
  • Merlette J. Springlite foot: A composite material engineer's approach to design. J Assoc Child Prosthet Orthot Clin 1989; 24: 86
  • Seymour R. Prosthetics and orthotics: Lower limb and spinal. Lippincott Williams and Wilkins, PhiladelphiaUS 2002
  • Menard M, Murray D. Subjective and objective analysis of an energy-storing prosthetic foot. J Prosthet Orthotics 1989; 1: 220–230
  • Colborne G, Naumann S, Longmuir P, Berbrayer D. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet. Am J Phys Med Rehabil 1992; 71: 272–278
  • Torburn L, Powers C, Guitterez R, Perry J. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: A comparison of five prosthetic feet. J Rehabil Res Dev 1995; 32: 111–119
  • Macfarlane P, Nielsen D, Shurr D, Meier K. Gait comparisons for below-knee amputees using a flex-foot(tm) versus a conventional prosthetic foot. J Prosthet Orthotics 1991; 3: 150–161
  • Alaranta H, Kinnunen A, Karkkainen M, Pohjolainen T, Heliovaara M. Practical benefits of flex-foot in below-knee amputees. J Prosthet Orthotics 1991; 3: 179–181
  • Gitter A, Czerniecki J, DeGroot D. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med 1991; 70: 142–148
  • Barr A, Lohmann Siegel K, Danoff J, McGarvey C, Tomasko A, Sable I, Stanhope S. Biomechanical comparison of the energy-storing capabilities of SACH and carbon copy ii prosthetic feet during the stance phase of gait in a person with below-knee amputation. Phys Ther 1992; 72: 344–354
  • Lehmann J, Price R, Boswell-Besette S, Dralle A, Questad K, deLateur B. Comprehensive analysis of energy storing prosthetic feet: Flex foot and Seattle foot versus standard SACH foot. Arch Phys Med Rehabil 1993; 74: 1225–1231
  • Casillas J, Dulieu V, Cohen M, Marcer I, Didier J. Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 1995; 76: 39–44
  • Barth D, Schumacher L, Sienko Thomas S. Gait analysis and energy cost of below-knee amputees wearing six different prosthetic feet. J Prosthet Orthotics 1992; 4: 63–75
  • Robinson J, Smidt G, Arora J. Accelerographic, temporal, and distance gait. Phys Ther 1977; 57: 898–904
  • Powers C, Torburn L, Perry J, Ayyappa E. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Arch Phys Med Rehabil 1994; 75: 825–829
  • van der Linden M, Solominidis S, Spence W, Ning L, Paul J. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 1999; 32: 877–889
  • Miller L, Childress D. Analysis of a vertical compliance prosthetic foot. J Rehabil Res Dev 1997; 34: 52–57
  • Gard S, Konz R. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. J Rehabil Res Dev 2003; 40: 109–124
  • Koehler S, Gard S, Meier M. Lower-limb prosthetics – an investigation of shock-absorbing components in persons with unilateral transfemoral amputations. J Proc Am Acad Orthot Prosthet 2005, http://www.oandp.org/publications/job/2005/2005-35.asp
  • Klute G, Berge J, Orendurff M, Czerniecki J. Lower limb amputee activity uneffected by shock-absorbing pylon or c-leg knee. ISB XXth Congress – ASB 29th Annual Meeting, Cleveland, Ohio, 2005
  • Adderson J, Parker K, Macleod D, Kirby R, Mcphail C. Effect of a shock-absorbing pylon on transmission of heel strike forces during the gait of people with unilateral trans-tibial amputations: A pilot study. Prosthet Orthot Int 2007; 31: 384–393
  • Günther M, Blickhan R. Joint stiffness of the ankle and the knee in running. J Biomech 2002; 35: 1459–1474
  • Klute G, Czerniecki J, Hannaford B. Development of powered prosthetic lower limb. Proceedings of the First National Meeting, Veterans Affairs Rehabilitation Research and Development Service, Washington, DC, 1998
  • Klute G, Czerniecki J, Hannaford B. Muscle-like pneumatic actuators for below-knee prostheses. Proceedings of the 7th International Conference on New Actuators, BremenGermany, 2000, 289–292
  • Klute G, Czerniecki J, Hannaford B. Artificial muscles: Actuators for biorobotic systems. Int J Robotics Res 2002; 21: 295–309
  • Versluys R, Peeraer L, Van der Perre G, Van Gheluwe B, Lefeber D. Design of a powered below-knee prosthesis. Proceedings of the 12th World Congress of the International Society of Prosthetics and Orthotics, Vancouver, 2007, 783–805
  • Daerden F, Lefeber D. The concept and design of pleated pneumatic artificial muscles. Int J Fluid Power 2001; 2: 41–50
  • Daerden F, Lefeber D. Pneumatic artificial muscles: Actuators for robotics and automation. Eur J Mech Environ Eng 2002; 47: 10–21
  • Verrelst B, Van Ham R, Vanderborght B, Lefeber D, Daerden F, Van Damme M. Second generation pleated pneumatic artificial muscle and its robotic applications. Adv Robotics 2006; 20: 783–805
  • Vanderborght B, Van Ham R, Vanderborght B, Lefeber D, Daerden F, Van Damme M. Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. Robotica 2006; 24: 401–410
  • Van Damme M, Vanderborght B, Van Ham R, Verrelst B, Daerden F, Lefeber D. Proxy-based sliding mode control of a manipulator actuated by pleated pneumatic artificial muscles. Proceedings of the 2007 IEEE International Conference on Robotics and Automation, RomaItaly, 2007
  • Versluys R, Desomer A, Lenaerts G, Van Damme M, Beyl P, Van der Perre G, Peeraer L, Lefeber D. A pneumatically powered below-knee prosthesis: Design specifications and first experiments with an amputee. Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, ArizonaUSA, 2008, 19–22
  • Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Robotics Res 2008; 27: 263–273
  • Varol H, Goldfarb M. Decomposition-based control for a powered knee and ankle transfemoral prosthesis. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics. 2007. Netherlands, 783–789
  • Au S, Weber J, Herr H. Biomechanical design of a powered ankle–foot prosthesis. Proceedings of the 2007 IEEE 10th International Conference on Robotics and Automation, RomaItaly, 2007, 298–303
  • Pratt G, Williamson M. Series elastic actuators. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots', Pittsburgh, PennsylvaniaUS, 1995. 1: 399–406
  • Robinson D, Pratt J, Paluska D, Pratt G. Series elastic actuator development for a biomimetic walking robot. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 1999. ASME, Atlanta, GeorgiaUS , 561–568
  • Au S, Bonato P, Herr H. An EMG-position controlled system for an active ankle–foot prosthesis: an initial experimental study. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics, Chicago, IllinoisUS, 2005, 375–379
  • Hitt J, Bellman R, Holgate M, Sugar T, Hollander K. The sparky (spring ankle with regenerative kinetics) project: Design and analysis of a robotic transtibial prosthesis with regenerative kinetics. Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2007. ASME, Las VegasUS, 1–10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.