642
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Review of assistive devices for the prevention of pressure ulcers: an engineering perspective

ORCID Icon, , , &
Pages 1511-1530 | Received 21 Oct 2022, Accepted 13 Apr 2023, Published online: 26 Apr 2023

References

  • EPUAP/NPIAP/PPPIA. Prevention and treatment of pressure ulcers/injuries: clinical practice guideline. The International Guideline. 2019.
  • McInnes E, Jammali-Blasi A, Bell-Syer SEM, et al. Support surfaces for treating pressure ulcers. Cochrane Database Syst Rev. 2018;10(10):CD009490.
  • Gorecki C, Brown JM, Nelson EA, et al. Impact of pressure ulcers on quality of life in older patients: a systematic review: clinical investigations. J Am Geriatr Soc. 2009;57(7):1175–1183.
  • National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and treatment of pressure ulcers: clinical practice guideline. Cambridge Media, Osborne Park. 2014.
  • Hoogendoorn I, Reenalda J, Koopman BFJM, et al. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review. J Tissue Viability. 2017;26(3):157–171.
  • Olesen CG, De Zee M, Rasmussen J. Missing links in pressure ulcer research - An interdisciplinary overview. J Appl Physiol. 2010;108(6):1458–1464.
  • Van Geffen P, Reenalda J, Veltink PH, et al. Effects of sagittal postural adjustments on seat reaction load. J Biomech. 2008;41(10):2237–2245.
  • Yoshikawa Y, Maeshige N, Sugimoto M, et al. Positioning bedridden patients to reduce interface pressures over the sacrum and great trochanter. J Wound Care. 2015;24(7):319–325.
  • Källman U, Bergstrand S, Ek AC, et al. Different lying positions and their effects on tissue blood flow and skin temperature in older adult patients. J Adv Nurs. 2013;69(1):133–144.
  • Defloor T. The effect of position and mattress on interface pressure. Appl Nurs Res. 2000;13(1):2–11.
  • Beeckman D, Schoonhoven L, Verhaeghe S, et al. Pressure ulcer prevention, the state of the art: the contribution of tom defloor. Int J Nurs Stud. 2011;48(7):787–790.
  • Lyder CH. Pressure ulcer prevention and management. Am. Med. Assoc. 2003;289(2):223–226.
  • Bansal C, Scott R, Stewart D, et al. Decubitus ulcers: a review of the literature. Int J Dermatol. 2005;44(10):805–810.
  • Stockton L, Parker D. Pressure relief behaviour and the prevention of pressure ulcers in wheelchair users in the community. J. Tissue Viability. 2002;12(3):84–99.
  • Roy B, Basmajian A, Asada HH. Maneuvering a bed sheet for repositioning a bedridden patient. In: Proceedings of IEEE international conference on robotics and automation, Taipei. 2003. p. 2224–2229.
  • Moore Z, Van Etten M. Repositioning and pressure ulcer prevention in the seated individual. Wounds UK. 2011;7(3):34–40.
  • Rich M, Margolis SE, Shardell D, et al. Frequent manual repositioning and incidence of pressure ulcers among bed-bound elderly hip fracture patients. Wound Repair Regen. 2011;19(1):10–18.
  • OSHA. Safe Patient Handling - Preventing musculoskeletal disorders in nursing homes. Occupational Safety and Health Administration. 2014. https://www.osha.gov/Publications/OSHA3708.pdf
  • Cape Co. Ltd. Small Change Laguna [Brochure]. 2021. http://www.cape.co.jp/products/pdt001
  • Permobil. ROHO Products [Brochure]. https://permobilwebcdn.azureedge.net/media/hl5le5fp/productcatalog052018-us.pdf
  • LINET. Passive mattresses. 2022. https://www.linet.com/en/health-care/mattresses/passive-mattresses
  • Invacare Corporation. microAIR alternating pressure true low air loss mattress. 2021. http://www.invacare.com/cgi-bin/imhqprd/inv_catalog/prod_cat_detail.jsp?s=0&prodID=MA85&catOID=-536885308
  • Takashima A, Misaki A, Takasugi S, et al. Characteristic analysis of an air cell for active air mattress of prevention for pressure ulcer. Adv. Robot. 2014;28(7):497–504.
  • Carrigan W, Nuthi P, Pande C, et al. Design and operation verification of an automated pressure mapping and modulating seat cushion for pressure ulcer prevention. Med Eng Phys. 2019;69:17–27.
  • Fiedler G, Papaioannou G, Mitrogiannis C, et al. Development of a new bed system with improved decubitus prophylaxis for bed-ridden patients. In: Proceedings of the 9th international conference on information technology and applications in biomedicine, Larnaca. 2009. p. 5–7.
  • Raeisinezhad M, Pagliocca N, Koohbor B, et al. IntelliPad: intelligent soft robotic pad for pressure injury prevention. In: IEEE/ASME international conference on advanced intelligent mechatronics, Boston. 2020. pp. 685–690.
  • Yu CH, Chou TY, Chen CH, et al. Development of a modularized seating system to actively manage interface pressure. Sensors. 2014;14(8):14235–14252.
  • Moon I, Kang S-J, Kim G-S, et al. Control of air-cell mattress for preventing pressure ulcer based on approximate anthropometric model. In Proceedings of the 2005 IEEE 9th international conference on rehabilitation robotics, Chicago. 2005. p. 164–167.
  • Misaki A, Imanishi K, Takasugi SI, et al. Body pressure sensing mattress for bedsore prevention. SEI Tech. Rev. 2014;78:95–99.
  • Alwasel A, Alossimi B, Alsadun M, et al. Bedsores management: efficiency simulation of a new mattress design. Healthc. 2021;9(12):1–9.
  • Alsadun M. Protector of injuries and bedsores. Saudi Arabia Patent Office Filed. SA 112340007, issued 4501 B1 2015.11.15. 2015. https://ipsearch.saip.gov.sa/wopublish-search/public/detail/patents?id=112340007
  • Nair P, Mathur S, Bhandare R, et al. Bed sore Prevention using Pneumatic controls. In: Proceedings CONECCT 2020 - 6th International Conference on Electronics, Computing and Communication Technologies, CONECCT, Bangalore. 2020. pp. 1–5.
  • Lee K-H, Kwon Y-E, Lee H, et al. Active body pressure relief system with time-of-flight optical pressure sensors for pressure ulcer prevention. Sensors. 2019;19(18):3862.
  • Nakagami G, Sanada H, Sugama J. Development and evaluation of a self-regulating alternating pressure air cushion. Disabil Rehabil Assist Technol. 2015;10(2):165–169.
  • Fadil R, Hoffmann B, Lovelace S, et al. Design and evaluation of a dynamic air cushion for pressure ulcers prevention. J Tissue Viability. 2022;31(3):491–500.
  • Arias S, Cardiel E, Garay L, et al. A pressure distribution measurement system for supporting areas of wheelchair users. In: Proceedings annual international conference of the IEEE engineering in medicine and biology society (EMBS), Osaka. 2013. pp. 4751–4754.
  • Mannella D, Bellusci M, Graziani F, et al. Modelling, design and control of a new seat-cushion for pressure ulcers prevention. Proc Inst Mech Eng H. 2022;236(4):592–602.
  • Chenu O, Vuillerme N, Bucki M, et al. TexiCare: an innovative embedded device for pressure ulcer prevention. Preliminary results with a paraplegic volunteer. J Tissue Viability. 2013;22(3):83–90.
  • Li S, Zhang Z, Wang J. Development and evaluation of a new contoured cushion system with an optimized normalization algorithm. Biomed Mater Eng. 2014;24(6):3427–3438.
  • Elfehri J, Boussu F, Koncar V, et al. Novel approach of ulcer prevention based on pressure distribution control algorithm. In: Proceedings of the 2011 IEEE international conference on mechatronics and automation, Beijing. 2011. pp. 265–270.
  • Cernasov A, Cernasov N, Cernasov A. Supporting surface with programmable supports and method to reduce pressure on selected areas of a body. U.S. Patent 10,531,996 B2. 2020.
  • Seon M, Lee Y, Moon C. Medical robotic bed to prevent pressure sores. Appl Sci 2021;11(18):8459.
  • Prius Healthcare USA. Enhance Dx support surface. 2021. http://priushealth.publishpath.com/Default.aspx?shortcut=enhance-dx
  • LINET. Precioso antidecubitus system no 11/1/2019. 2021. https://www.linet.com/en/nursing-care/mattresses/antidecubitus-systems/precioso
  • Cape Co. Ltd. Air mattress. 2021. http://www.cape.co.jp/products#pdtid1
  • Yousefi R, Ostadabbas S, Faezipour M, et al. A smart bed platform for monitoring & ulcer prevention. In: 2011 4th International conference on biomedical engineering and informatics, Shanghai. 2011. p. 1362–1366.
  • ErgoMatrix Inc. U-Turner. 2021. http://www.theuturner.com/
  • LINET. Multicare [Brochure]. 2020. https://www.linet.com/en/health-care/beds/intensive-care-beds/multicare
  • Hasty CE. Air mattress overlay for lateral patient roll. U.S. Patent 5,092,007. 1992.
  • Bodine OH, Jr., Wilkerson J. Lateral rotation therapy mattress system and method. U.S. Patent 5,375,273. 1994.
  • Prius Healthcare USA. Rhythm.Turn [Brochure]. 2021. https://medmartonline.com/amfile/file/download/file/380/product/30522/
  • Collymore DD. Articulated air mattress. U.S. Patent 6,298,511 B1. 2001.
  • Blevins J, Brook T. Inflatable air mattress for rotating patients. U.S. Patent 2009/0106893 A1. 2009.
  • Haas TB. Patient torso support and turning system. U.S. Patent 6,119,292. 2000.
  • MangarHealth. Ekamove [Brochure]. 2017. https://mangarhealth.com/uk/wp-content/uploads/sites/2/2017/05/Mangar_Ekamove_technical_leaflet_May_Print.pdf
  • Galer JK, Lafleche P, Slominski PJ, et al. Patient turning device for a patient support apparatus. U.S. Patent 2019/0201262 A1. 2019.
  • Chugo D, Fujita K, Sakaida Y, et al. Depressurization assistance according to a posture of a seated patient. In: 4th international conference on human system interactions, Yokohama. 2011. p. 287–292.
  • Frontier Medical Group. Toto Lateral Turning System [Brochure]. 2021. https://www.reposedirect.com/content/uploads/2021/06/Toto-Brochure.pdf
  • Zhang Y, Zou X, Zhang B, et al. A flexible turning and sensing system for pressure ulcers prevention. Electron. 2021;10(23):1–16.
  • Fraiszudeen A, Yeow CH. Soft actuating sit-to-stand trainer seat. J Mech Robot 2019;11(1):1–5.
  • Hsu PE, Hsu YL, Lu JM, et al. Seat adjustment design of an intelligent robotic wheelchair based on the Stewart platform. Int J Adv Robot Syst. 2013;10:1.
  • Basmajian A, Blanco EE, Asada HH. The marionette bed: automated rolling and repositioning of bedridden patients. In: Proceedings 2002 IEEE international conference on robotics and automation, Washington, DC. 2002. p. 1422–1427.
  • Tan L, Lu S, Zhang W. A robotic nursing bed design and its control system. In: Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin. 2009. p. 2002–2006.
  • Brush Z, Bowling A, Tadros M, et al. Design and control of a smart bed for pressure ulcer prevention. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong. 2013. p. 1033–1038.
  • Nakamura T, Tsukagoshi H. Soft pneumatic manipulator capable of sliding under the human body and its application to preventing bedsores. In: Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Auckland. 2018. p. 956–961.
  • Andhare AB, Onkar AM. Design and development of multifunctional patient bed with integrated toilet. SN Appl Sci 2021;3(10):813.
  • Ezzet A, El-Shenawy A, Zakzouk EED. A new approach for pressure sore prevention. In: ICCTA 2018: 28th International conference on computer theory and applications, Alexandria. 2018. pp. 112–116.
  • ProBed Medical Technologies Inc. THE FREEDOM BED [Brochure]. 2021. https://www.pro-bed.com/?gclid=Cj0KCQjwssyJBhDXARIsAK98ITR1ef6qaNvcFz_jV4TtuI1IY9CUyqmDrzquzJs0uf69lbKZvwLofskaAvKdEALw_wcB
  • Toyota. Toyota patient transfer-assist robot. 2011. https://global.toyota/en/detail/210795
  • Loh C, Tsukagoshi H. Pneumatic big-hand gripper with slip-in tip aimed for the transfer support of the human body. In: 2014 IEEE International Conference on Robotics and Automation, Hong Kong. 2014. p. 475–481.
  • Mukai T, Hirano S, Nakashima H, et al. Development of a nursing-care assistant robot RIBA that can lift a human in its arms. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei. 2010. p. 5996–6001.
  • Ding J, Lim YJ, Solano M, et al. Giving patients a lift - The robotic nursing assistant (RoNA). In: 2014 IEEE International Conference on Technologies for Practical Robot Applications, Woburn. 2014. p. 1–5.
  • Japan Logic Machine. Yurina. 2021. https://newatlas.com/the-usd40000-robotic-bed/13471/
  • Wang H, Kasagami F. A patient transfer apparatus between bed and stretcher. IEEE Trans Syst Man Cybern B Cybern. 2008;38(1):60–67.
  • Mascaro S, Spano J, Asada HH. Reconfigurable holonomic omnidirectional mobile bed with unified seating (RHOMBUS) for bedridden patients. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque. 1997. p. 1277–1282.
  • Panasonic Corporation. Resyone. 2021. https://news.panasonic.com/global/topics/2014/26411.html
  • Peng SW, Lian FL, Fu LC. Mechanism design and mechatronic control of a multifunctional test bed for bedridden healthcare. IEEE/ASME Trans. Mechatronics. 2010;15(2):234–241.
  • Spano JS, Asada HH. Kinematic analysis and design of surface wave distributed actuators with application to a powered bed for bedridden patients. IEEE Trans Robot Automat. 2000;16(1):1–11.
  • Jing Kai S, Yee SLK. “Mechanical design and simulation of patient transfer lift. ACM Int. Conf. Proceeding Ser. 2022;4(c):121–125.
  • Takahashi Y, Manabe G, Takahashi K, et al. Simple self-transfer aid robotic system. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei. 2003. p. 2305–2310.
  • Takahashi Y, Suzuki T, Obuchi Y, et al. Motion analysis of transfer aid system aiming for development of self-transfer aid system. IECON Proc. 2004;1:175–180.
  • Takahashi Y, Manabe G, Takahashi K, et al. Basic study on self-transfer aid robotics. J. Robot. Mechatron. 2006;18(1):4–10.
  • Takahashi Y, Suzuki T, Takahashi K. Development and motion analysis of simple self-transfer aid robotic system. In: Proceedings 2007 4th IEEE International Conference on Mechatronics, ICM 2007, Kumamoto. 2007. pp. 8–10.
  • Asker A, Assal SFM. Development of a parallel Manipulator-Based multifunction mobility assistive device. J Mech Robot. 2019;11(6):064503.
  • Liu Y, Guo S, Yin Y, et al. Design and compliant control of a piggyback transfer robot. J Mech Robot. 2022;14(3):1–10.
  • Onishi M, Luo ZW, Odashima T, et al. Generation of human care behaviors by human-interactive robot RI-MAN. In: 2007 EEE International Conference on Robotics and Automation, Roma. 2007. pp. 3128–3129.
  • Arjo. Floor lifters. 2021. https://www.arjo.com/en-us/products/patient-handling/floor-lifters/
  • Joerns Healthcare. Hoyer ceiling lift solutions. 2014. https://www.joerns.com/wp-content/uploads/2020/03/JHC-Ceiling-Lift-Solutions.pdf
  • Hill-rom Services Inc. Overhead Patient Lifts. 2021. https://www.hillrom.com/en/products/sph-overhead-lifts/
  • Arjo. Ceiling lift. 2021. https://www.arjo.com/en-us/products/patient-handling/ceiling-lift/
  • SureHands Lift & Care Systems. Wall-to-Wall lift [Brochure]. 2018. https://www.surehands.com/assets/pdf/productsheet/PSH_2420_us.pdf
  • Krishnan RH, Pugazhenthi S. Design and development of a robotic self-transfer device for wheelchair users. JET. 2017;11(2):59–72.
  • Martino J. PowerNurse [Brochure]. 2012. https://www.maxongroup.com/medias/sys_master/root/8803403169822/FB-Astir-en.pdf?attachment=true
  • Kazushige Kakutani KT, Iwaki T, Takaoka D, et al. Developmet of a transfer supporting equipment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh. 1995. p. 268–273.
  • Tian Y, Wang H, Zhang Y, et al. Structural design and preliminary tests of a novel patient transfer apparatus for medical scenarios. J. Healthc. Eng. 2021;2021:1–12.
  • Phillips CJ. Hospital bed with a movable mattress and a method for moving a patient. U.S. Patent, 2019/0117485 A1. 2019.
  • Mascaro S, Asada HH. Docking control of holonomic omnidirectional vehicles with applications to a hybrid wheelchair/bed system. In: Proc. 1998 IEEE Int. Conf. Robot. Autom., Vol. 1998;1:399–405.
  • StiegelmyerGroup. Vertica care [Brochure]. 2019. https://www.stiegelmeyer.com/fileadmin/media/produkte/02-pflegeheim/01-pflegebetten/Vertica-care/downloads/Stiegelmeyer-Vertica-Care-Bed-brochure-EN-V05a.pdf
  • Finger WH, Asada HH. Design and control of an active mattress for moving bedridden patients. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit. 1999. p. 2044–2050.
  • Sivakanthan S, Blaauw E, Greenhalgh M, et al. Person transfer assist systems: a literature review. Disabil Rehabil Assist Technol. 2021;16(3):270–279.
  • Wilkinson JW, Raburn RW. Automated pressure relief mattress support system. U.S. Patent 5,487,196. 1996.
  • Biggie LB, Gillis J. Support surface with integral patient turning mechanism. U.S. Patent 7,681.269 B2. 2010.
  • Votel TW. Portable device for patient pullup, rollover, and transfer and methods thereof. U.S. Patent 6,772,456 B2. 2004.
  • Ching-Hua W, Ting-Chun T, Shin-Chieh H, et al. Hospital bed with auxiliary functions of lateral positioning and transferring for immobilized patients. In: IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei. 2007. p. 2991–2995.
  • Ning M, Ren M, Fan Q, et al. Mechanism design of a robotic chair/bed system for bedridden aged. Adv Mech Eng. 2017;9(3):168781401769569.
  • Shafi I, Farooq MS, De La Torre Díez I, et al. Design and development of smart weight measurement, lateral turning and transfer bedding for unconscious patients in pandemics. Healthc. 2022;10(11):1–17.
  • Wang YL. Device for turning over and transferring the patient. U.S. Patent 9.248,063 B2. 2016.
  • AKTC. Optimal Series [Brochure]. 2021. http://www.aktc.com.tw/upload/files/Turning_Series_DM.pdf
  • Wai A, Foo S, Huang W, et al. Lying posture classification for pressure ulcer prevention. J Healthc Eng. 2010;1(2):217–238.
  • Wang TY, Chen SL, Huang HC, et al. The development of an intelligent monitoring and caution system for pressure ulcer prevention. In: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, Guilin. 2011. p. 566–571.
  • Wang TY, Chen SL, Wang WL, et al. A ZigBee-based wireless monitoring and automatic information pushing and caution system for pressure ulcer prevention. J Chinese Soc Mech Eng. 2011;32(3):243–255.
  • Yousefi R, Ostadabbas S, Faezipour M, et al. Bed posture classification for pressure ulcer prevention. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7175–7178.
  • Ostadabbas S, Yousefi R, Faezipour M, et al. Pressure ulcer prevention: an efficient turning schedule for bed-bound patients. In: 2011 IEEE/NIH Life Science Systems and Applications Workshop. 2011. pp. 159–162.
  • Ostadabbas S, Yousefi R, Nourani M, et al. A resource-efficient planning for pressure ulcer prevention. IEEE Trans Inf Technol Biomed. 2012;16(6):1265–1273.
  • Ostadabbas S, Baran Pouyan M, Nourani M, et al. In-bed posture classification and limb identification. In: IEEE 2014 Biomedical Circuits and Systems Conference, Lausanne. 2014. pp. 133–136.
  • Farshbaf M, Ostadabbas S, Yousefi R, et al. Pressure ulcer monitoring and intervention: a software platform. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Atlanta. 2011. p. 897–898.
  • Pouyan MB, Ostadabbas S, Farshbaf M, et al. Continuous eight-posture classification for bed-bound patients. In: 2013 6th International Conference on Biomedical Engineering and Informatics, Hangzhou. 2013. p. 121–126.
  • Liu JJ, Xu W, Huang M-C, et al. Sleep posture analysis using a dense pressure sensitive bedsheet. Pervasive Mob. Comput. 2014;10:34–50.
  • Matar G, Lina JM, Carrier J, et al. Internet of things in sleep monitoring: an application for posture recognition using supervised learning. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services, Munich. 2016. p. 1–6.
  • Matar G, Lina JM, Kaddoum G. Artificial neural network for in-bed posture classification using bed-sheet pressure sensors. IEEE J Biomed Health Inform. 2020;24(1):101–110.
  • Chung P, Rowe A, Etemadi M, et al. “Fabric-based pressure sensor array for decubitus ulcer monitoring,” in. Annu Int Conf IEEE Eng Med Biol Soc. 2013 35th;2013:6506–6509.
  • Manohar A, Bhatia D. Pressure detection and wireless interface for patient bed. In: 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore. 2008. pp. 389–392.
  • Vuillerme N, Chenu O, Pinsault N, et al. Pressure sensor-based tongue-placed electrotactile biofeedback for balance improvement-Biomedical application to prevent pressure sores formation and falls. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon. 2007. pp. 6114–6117.
  • Yip M, Da He D, Winokur E, et al. A flexible pressure monitoring system for pressure ulcer prevention. In: 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, Minneapolis. 2009. pp. 1212–1215.
  • Ahmad J, Andersson H, Siden J. Sitting posture recognition using screen printed large area pressure sensors. In: 2017 IEEE Sensors. 2017. pp. 1–3.
  • Verbunt M, Bartneck C. Sensing senses: tactile feedback for the prevention of decubitus ulcers. Appl Psychophysiol Biofeedback. 2010;35(3):243–250.
  • Tavares C, Domingues MF, Paixão T, et al. Wheelchair pressure ulcer prevention using FBG based sensing devices. Sensors, Vol. 2019;20(1):212.
  • Tavares C, Real D, de M, et al. Sensor cell network for pressure, temperature and position detection on wheelchair users. Int J Environ Res Public Health. 2022;19(4):2195.
  • Jaichandar KS, Elara MR, Kumar S, et al. A semi autonomous control and monitoring system for bed sores prevention. In: Proceedings of the 1st International Convention on Rehabilitation Engineering, 2007. p. 245–248.
  • Jaichandar KS, Kumar S, KweeTiang C, et al. An intelligent FPGA based anti-sweating system for bed sore prevention in a clinical environment. Appl. Bionics Biomech. 2011;8(3-4):361–365.
  • Pereira S, Simoes R, Fonseca J, et al. Textile embedded sensors matrix for pressure sensing and monitoring applications for the pressure ulcer prevention. In: 2018 International Conference on Biomedical Engineering Applications, Funchal. 2018. p. 1–6.
  • Akbari H, Heravi MY. Designing and constructing blood flow monitoring system to predict pressure ulcers on heel. J Biomed Phys Eng. 2014;4(2):61.
  • Jaichandar KS, Garcia EAM. Intelli-sense bed patient movement sensing and anti-sweating system for bed sore prevention in a clinical environment. In: 2011 8th International Conference on Information, Communications & Signal Processing, Singapore. 2011. p. 1–5.
  • Fard FD, Moghimi S, Lotfi R. Pressure ulcer risk assessment by monitoring interface pressure and temperature. In: 2013 21st Iranian Conference on Electrical Engineering, Mashhad. 2013. pp. 1–5.
  • Wang F, Lam Y, Mehrnia A, et al. A wireless biomedical instrument for evidence-based tissue wound characterization. In: Wireless Health 2010. 2010. pp. 222–223.
  • Chiou YS, Chung KC, Hou CR. A multi-channel microprocessor system for interface pressure, temperature and humidity measurement. Chinese J Med Biol Eng. 1999;19(3):169–178.
  • Chen CF, Luh JJ, Cheng YM, et al. Design and clinical evaluation for patient status monitoring system of air-mattress. Biomed Eng Appl Basis Commun. 2008;20(06):387–391.
  • McNeill J, Crivello M, Mendelson Y, et al. Flexible sensor for measurement of skin pressure and temperature in a clinical setting. In: Proceedings IEEE Sensors. 2016. pp. 1–3.
  • McNeill J, Sen D, Mendelson Y, et al. Wearable wireless sensor patch for continuous monitoring of skin temperature, pressure, and relative humidity. In: IEEE International Symposium Circuits and Systems. 2017. pp. 1–4
  • Sen D, McNeill J, Xie S, et al. Time-domain-based measurement technique for pressure measurement in a wearable wireless sensor patch. In: 2018 EEE International Symposium Circuits and Systems. 2018. pp. 1–5.
  • Sen D, Mcneill J, Mendelson Y, et al. Pressure ulcer prevention system: validation in a clinical setting. In: 2018 IEEE Life Sciences Conference (LSC), Montreal. 2018. p. 105–10 8.
  • Silva A, Metrôlho J, Ribeiro F, et al. A review of intelligent Sensor-Based systems for pressure ulcer prevention. Computers. 2021;11(1):6.
  • Karvounis E, Polymeni S, Tsipouras M, et al. Smart beds and bedding surfaces for personalized patient care: a review. In: 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Preveza. 2021. pp. 1–8.
  • Sung CS, Park JY. A monitoring sensor-based eHealth image system for pressure ulcer prevention. Multimed Tools Appl. 2019;78(5):5255–5267.
  • Azman AW, Fajingbesi FE, Ahmad Z, et al. Electrical stimulation in combating pressure ulcer for immobilize subjects: a conceptual framework. J Phys Conf Ser. 2019;1372(1):012056.
  • Gallinger S, Jankowski N, Bister M, et al. Development of a modular decubitus prophylaxis system: dekuProSys. Curr Dir Biomed Eng. 2019;5(1):277–279.
  • Saleh ZS, Al-Neami AQ, Raad HK. Smart monitoring pad for prediction of pressure ulcers with an automatically activated integrated electro-therapy system. Designs. 2021;5(3):47.
  • Marchione FG, Araújo LMQ, Araújo LV. Approaches that use software to support the prevention of pressure ulcer: a systematic review. Int J Med Inform. 2015;84(10):725–736.
  • Jiang N, Ma M, Guo Y, et al. Using machine learning technologies in pressure injury management: systematic review. JMIR Med. Informatics. 2021;9(3):1–10.
  • Dai R, Sonenblum SE, Sprigle S. A robust wheelchair pressure relief monitoring system. In: Proceedings annual international conference of the IEEE engineering in medicine and biology society (EMBS), San Diego. 2012. pp. 6107–6110.
  • Md Nadzri N, Hamzaid NA, Chung TY. Design and development of a wheelchair seating pressure relief reminder system for pressure ulcer prevention among paraplegics. J Med Eng Technol. 2021;45(7):574–581.
  • Wong G, Gabison S, Dolatabadi E, et al. Toward mitigating pressure injuries: detecting patient orientation from vertical bed reaction forces. J Rehabil Assist Technol Eng. 2020;7:205566832091216.
  • Huang W, Wai AAP, Foo SF, et al. Multimodal sleeping posture classification. In: 2010 20th International conference on pattern recognition, Istanbul. 2010. p. 4336–4339.
  • Nuksawn L, Nantajeewarawat E. Real-time sensor- and camera-based logging of sleep postures. In: 2015 International Computer Science and Engineering Conference, Chiang Mai. 2015. pp. 1–6.
  • Dhillon MS, McCombie SA, McCombie DB. Towards the prevention of pressure ulcers with a wearable patient posture monitor based on adaptive accelerometer alignment. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4513–4516.
  • Cicceri G, De Vita F, Bruneo D, et al. A deep learning approach for pressure ulcer prevention using wearable computing. Human Centric Comput. Inf Sci. 2020;10(1):1–21.
  • Barsocchi P. Position recognition to support bedsores prevention. IEEE J Biomed Health Inform. 2013;17(1):53–59.
  • Yue S, Yang Y, Wang H, et al. “BodyCompass: monitoring sleep posture with wireless signals,” in. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020;4(2):1–25.
  • Kosmopoulos DI, Tzevelekou FL. Automated pressure ulcer lesion diagnosis for telemedicine systems. IEEE Eng Med Biol Mag. 2007;26(5):18–22.
  • Chang M-C, Yu T, Luo J, et al. Multimodal sensor system for pressure ulcer wound assessment and care. IEEE Trans Ind Inf. 2018;14(3):1186–1196.
  • Han D, Lee H. Recent advances in multi-material additive manufacturing: methods and applications. Curr Opin Chem Eng. 2020;28:158–166.
  • Arumugam S, Ranganathan R, Pugalendhi A. Development of customized support for the prevention of pressure ulcer (PU) using multi-materials printing. J Phys Conf Ser. 2021;1969;(1):012014.
  • Stanley AA, Okamura AM. Controllable surface haptics via particle jamming and pneumatics. IEEE Trans Haptics. 2015;8(1):20–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.