912
Views
33
CrossRef citations to date
0
Altmetric
Review

Pharmacological treatment options for severe hypertriglyceridemia and familial chylomicronemia syndrome

, &
Pages 589-598 | Received 31 Jan 2018, Accepted 21 May 2018, Published online: 11 Jun 2018

References

  • Sathiyakumar V, Park JW, Toth P, et al. Modern-day prevalence of Fredricksen-Levy-Lees dyslipidemias: more common than you think. J Am Coll Cardiol. 2018;71(11 supplement):1772.
  • Brunzell JD, Bierman EL. Chylomicronemia syndrome. Interaction of genetic and acquired hypertriglyceridemia. Med Clin North Am. 1982;66(2):455–468.
  • Stroes E, Moulin P, Parhofer KG, et al. Diagnostic algorithm for familial chylomicronemia syndrome. Atheroscler Suppl. 2017;23:1–7.
  • Hegele RA, Berberich AJ, Ban MR, et al. Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J Clin Lipidol. 2018 Apr 4. pii: S1933-2874(18)30198-3. doi: 10.1016/j.jacl.2018.03.093. [Epub ahead of print]
  • Brahm AJ, Hegele RA. Chylomicronaemia – current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11(6):352–362.
  • Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–666.
  • Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie. 2014;96:48–55.
  • The ZR. ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol. 2016;6(4):150272.
  • Angiopoietin-Like KS. 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13(12):731–739.
  • Mendivil CO, Zheng C, Furtado J, et al. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30(2):239–245.
  • Vors C, Pineau G, Drai J, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab. 2015;100(9):3427–3435.
  • Viljoen A, Wierzbicki AS. Diagnosis and treatment of severe hypertriglyceridemia. Expert Rev Cardiovasc Ther. 2012;10(4):505–514.
  • Hayne CK, Yumerefendi H, Cao L, et al. We FRET so you don’t have to: new models of the lipoprotein lipase dimer. Biochemistry. 2018;57(2):241–254.
  • Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, apoC-II deficiency, and hepatic lipase deficiency. In: Scriver CR, Beaudet AL, Sly WS, editors. The metabolic & molecular bases of inherited disease. New York (NY): McGraw-Hill; 2001. p. 2789–2816.
  • Lee JH, Giannikopoulos P, Duncan SA, et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 2011;17(7):812–815.
  • Fong LG, Young SG, Beigneux AP, et al. GPIHBP1 and plasma triglyceride metabolism. Trends Endocrinol Metab. 2016;27(7):455–469.
  • Beigneux AP, Miyashita K, Ploug M, et al. Autoantibodies against GPIHBP1 as a cause of hypertriglyceridemia. N Engl J Med. 2017;376(17):1647–1658.
  • Brunzell JD. Clinical practice. hypertriglyceridemia. N Engl J Med. 2007;357(10):1009–1017.
  • Ooi EM, Russell BS, Olson E, et al. Apolipoprotein B-100-containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations. Arterioscler Thromb Vasc Biol. 2012;32(2):459–466.
  • Burnett JR, Hooper AJ, Hegele RA. Familial lipoprotein lipase deficiency. In: Pagon RA, Bird TC, Dolan CR, et al., editors. Gene reviews. Seattle, WA, USA: University of Washington; 2009.
  • Davidson M, Stevenson M, Hsieh A, et al. The burden of familial chylomicronemia syndrome: interim results from the IN-FOCUS study. Expert Rev Cardiovasc Ther. 2017;15(5):415–423.
  • Khera AV, Won HH, Peloso GM, et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317(9):937–946.
  • Johansen CT, Wang J, Lanktree MB, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. 2010;42(8):684–687.
  • Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–106.
  • Gaudet D, de Wal J, Tremblay K, et al. Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler Suppl. 2010;11(1):55–60.
  • Lloret-Linares C, Pelletier AL, Czernichow S, et al. Acute pancreatitis in a cohort of 129 patients referred for severe hypertriglyceridemia. Pancreas. 2008;37(1):12–13.
  • Rabar S, Harker M, O’Flynn N, et al. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. BMJ. 2014;349:g4356.
  • Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345–1361.
  • Lennertz A, Parhofer KG, Samtleben W, et al. Therapeutic plasma exchange in patients with chylomicronemia syndrome complicated by acute pancreatitis. Ther Apher. 1999;3(3):227–233.
  • Heaney AP, Sharer N, Rameh B, et al. Prevention of recurrent pancreatitis in familial lipoprotein lipase deficiency with high-dose antioxidant therapy. J Clin Endocrinol Metab. 1999;84(4):1203–1205.
  • Viljoen A, Wierzbicki AS. Potential options to treat hypertriglyceridaemia. Curr Drug Targets. 2009;10(4):356–362.
  • Williams CM. Dietary interventions affecting chylomicron and chylomicron remnant clearance. Atherosclerosis. 1998;141(Suppl 1):S87–S92.
  • Ahmad Z, Wilson DP. Familial chylomicronemia syndrome and response to medium-chain triglyceride therapy in an infant with novel mutations in GPIHBP1. J Clin Lipidol. 2014;8(6):635–639.
  • Rouis M, Dugi KA, Previato L, et al. Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol. 1997;17(7):1400–1406.
  • Santamarina-Fojo S, Brewer HB Jr. The familial hyperchylomicronemia syndrome. New insights into underlying genetic defects. JAMA. 1991;265(7):904–908.
  • Harris WS, Connor WE, Alam N, et al. Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J Lipid Res. 1988;29(11):1451–1460.
  • Chang CL, Seo T, Matsuzaki M, et al. n-3 fatty acids reduce arterial LDL-cholesterol delivery and arterial lipoprotein lipase levels and lipase distribution. Arterioscler Thromb Vasc Biol. 2009;29(4):555–561.
  • Ooi EM, Lichtenstein AH, Millar JS, et al. Effects of therapeutic lifestyle change diets high and low in dietary fish-derived FAs on lipoprotein metabolism in middle-aged and elderly subjects. J Lipid Res. 2012;53(9):1958–1967.
  • Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687–698.
  • Park KS, Lim JW, Kim H. Inhibitory mechanism of omega-3 fatty acids in pancreatic inflammation and apoptosis. Ann N Y Acad Sci. 2009;1171:421–427.
  • Richter WO, Jacob BG, Ritter MM, et al. Treatment of primary chylomicronemia due to familial hypertriglyceridemia by omega-3 fatty acids. Metabolism. 1992;41(10):1100–1105.
  • Grogan K. Amarin excited as omega-3 drug impresses in Phase III. Leatherhead, Surrey, UK: PharmaTimes; 2010.
  • Goldberg AP, Applebaum-Bowden DM, Bierman EL, et al. Increase in lipoprotein lipase during clofibrate treatment of hypertriglyceridemia in patients on hemodialysis. N Engl J Med. 1979;301(20):1073–1076.
  • Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie. 2017;136:75–84.
  • Al-Shali K, Wang J, Fellows F, et al. Successful pregnancy outcome in a patient with severe chylomicronemia due to compound heterozygosity for mutant lipoprotein lipase. Clin Biochem. 2002;35(2):125–130.
  • Wierzbicki AS. FIELDS of dreams, fields of tears: a perspective on the fibrate trials. Int J Clin Pract. 2006;60(4):442–449.
  • Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101(8A):20B–26B.
  • Hernandez C, Molusky M, Li Y, et al. Regulation of hepatic ApoC3 expression by PGC-1beta mediates hypolipidemic effect of nicotinic acid. Cell Metab. 2010;12(4):411–419.
  • Blasiole DA, Davis RA, Attie AD. The physiological and molecular regulation of lipoprotein assembly and secretion. Mol Biosyst. 2007;3(9):608–619.
  • Hanson J, Gille A, Zwykiel S, et al. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J Clin Invest. 2010;120(8):2910–2919.
  • Lai E, Waters MG, Tata JR, et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humans. J Clin Lipidol. 2008;2(5):375–383.
  • Vogt A, Kassner U, Hostalek U, et al. Evaluation of the safety and tolerability of prolonged-release nicotinic acid in a usual care setting: the NAUTILUS study. Curr Med Res Opin. 2006;22(2):417–425.
  • Carlson LA, Froberg S, Oro L. A case of massive hypertriglyceridemia corrected by nicotinic acid or nicotinamide therapy. Atherosclerosis. 1972;16(3):359–368.
  • Pang J, Chan DC, Hamilton SJ, et al. Effect of niacin on triglyceride-rich lipoprotein apolipoprotein B-48 kinetics in statin-treated patients with type 2 diabetes. Diabetes Obes Metab. 2016;18(4):384–391.
  • Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol. 1998;81(4A):66B–69B.
  • Bakker-Arkema RG, Davidson MH, Goldstein RJ, et al. Efficacy and safety of a new HMG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA. 1996;275(2):128–133.
  • Watts GF, Barrett PH, Ji J, et al. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes. 2003;52(3):803–811.
  • Wierzbicki AS, Reynolds TM. Familial hyperchylomicronaemia. Lancet. 1996;348(9040):1524–1525.
  • Wierzbicki AS, Morrell J, Hemsley D, et al. The effect of fibrate-statin combination therapy on cardiovascular events: a retrospective cohort analysis. Curr Med Res Opin. 2010;26(9):2141–2146.
  • Hogue JC, Lamarche B, Deshaies Y, et al. Differential effect of fenofibrate and atorvastatin on in vivo kinetics of apolipoproteins B-100 and B-48 in subjects with type 2 diabetes mellitus with marked hypertriglyceridemia. Metabolism. 2008;57(2):246–254.
  • Preiss D, MJ T, Welsh P, et al. Lipid-modifying therapies and risk of pancreatitis: a meta-analysis. JAMA. 2012;308(8):804–811.
  • Wierzbicki AS, Reynolds TM, Crook MA. Usefulness of Orlistat in the treatment of severe hypertriglyceridemia. Am J Cardiol. 2002;89(2):229–231.
  • Blackett P, Tryggestad J, Krishnan S, et al. Lipoprotein abnormalities in compound heterozygous lipoprotein lipase deficiency after treatment with a low-fat diet and orlistat. J Clin Lipidol. 2013;7(2):132–139.
  • Napier S, Thomas M. 36 year old man presenting with pancreatitis and a history of recent commencement of Orlistat case report. Nutr J. 2006;5:19.
  • Eleftheriadou I, Grigoropoulou P, Katsilambros N, et al. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr Diabetes Rev. 2008;4(4):340–356.
  • Chappuis B, Braun M, Stettler C, et al. Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes Metab Res Rev. 2007;23(5):392–399.
  • Al Majali K, Cooper MB, Staels B, et al. The effect of sensitisation to insulin with pioglitazone on fasting and postprandial lipid metabolism, lipoprotein modification by lipases, and lipid transfer activities in type 2 diabetic patients. Diabetologia. 2006;49(3):527–537.
  • Xiao C, Dash S, Morgantini C, et al. Sitagliptin, a DPP-4 inhibitor, acutely inhibits intestinal lipoprotein particle secretion in healthy humans. Diabetes. 2014;63(7):2394–2401.
  • Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–46.
  • Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174(3):443–447.
  • Costet P. Molecular pathways and agents for lowering LDL-cholesterol in addition to statins. Pharmacol Ther. 2010;126(3):263–278.
  • Ganji SH, Tavintharan S, Zhu D, et al. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J Lipid Res. 2004;45(10):1835–1845.
  • Meyers CD, Tremblay K, Amer A, et al. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis. 2015;14:8.
  • Alexander IE, Cunningham SC, Logan GJ, et al. Potential of AAV vectors in the treatment of metabolic disease. Gene Ther. 2008;15(11):831–839.
  • Rader DJ. Gain-of-function mutations and therapeutic implications: lipoprotein lipase S447X to the rescue. Arterioscler Thromb Vasc Biol. 2005;25(10):2018–2019.
  • Wierzbicki AS, Viljoen A. Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency. Expert Opin Biol Ther. 2013;13(1):7–10.
  • Gaudet D, Methot J, Dery S, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Therapy. 2013;20(4):361–369.
  • Mingozzi F, Meulenberg JJ, Hui DJ, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood. 2009;114(10):2077–2086.
  • Carpentier AC, Frisch F, Labbe SM, et al. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab. 2012;97(5):1635–1644.
  • Gaudet D, Stroes ES, Methot J, et al. Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis. Hum Gene Ther. 2016;27(11):916–925.
  • Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, et al. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41.
  • Koska J, Yassine H, Trenchevska O, et al. Disialylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes. J Lipid Res. 2016;57(5):894–905.
  • Graham MJ, Lee RG, Bell TA, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112(11):1479–1490.
  • Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–447.
  • Yang X, Lee SR, Choi YS, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57(4):706–713.
  • Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371(23):2200–2206.
  • Gaudet D, Digenio A, Alexander V, et al. The APPROACH study: a randomized, double-blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (FCS). Atherosclerosis. 2017;263:e10.
  • Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22(5):823–833.
  • O’Connell C, Horwood K, Nadamuni M. Correction of refractory thrombocytopenia and anemia following withdrawal of extended release niacin. Am J Hematol. 2016;91(7):E318.
  • Tarrant JM, Dhawan P, Singh J, et al. Preclinical models of nicotinamide phosphoribosyltransferase inhibitor-mediated hematotoxicity and mitigation by co-treatment with nicotinic acid. Toxicol Mech Methods. 2015;25(3):201–211.
  • Cvetkovic Z, Suvajdzic-Vukovic N, Todorovic Z, et al. Simvastatin and amlodipine induced thrombocytopenia in the same patient: double trouble and a literature review. J Clin Pharm Ther. 2013;38(3):246–248.
  • Simpson-Haidaris PJ, Seweryniak KE, Spinelli SL, et al. A putative role for platelet-derived PPARgamma in vascular homeostasis demonstrated by anti-PPARgamma induction of bleeding, thrombocytopenia and compensatory megakaryocytopoiesis. J Biotechnol. 2010;150(3):417–427.
  • Preclinical HY. Clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids. 2017;6:116–132.
  • Gaudet D, Gipe D, Hovingh K, et al. Safety and efficacy of evinacumab, a monoclonal antibody to ANGPTL3, in patients with homozygous familial hypercholesterolemia: a single-arm, open-label, proof-of-concept study. Atherosclerosis. 2017;263:e9.
  • Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377(3):222–232.
  • Dewey FE, Gusarova V, O’Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374(12):1123–1133.
  • Furtado JD, Wedel MK, Sacks FM. Antisense inhibition of apoB synthesis with mipomersen reduces plasma apoC-III and apoC-III-containing lipoproteins. J Lipid Res. 2012;53(4):784–791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.