1,138
Views
3
CrossRef citations to date
0
Altmetric
Review

Carbamazepine adverse drug reactions

, , &
Pages 705-718 | Received 03 Apr 2017, Accepted 06 Jun 2018, Published online: 19 Jun 2018

References

  • Bialer M. Chemical properties of antiepileptic drugs (AEDs). Adv Drug Deliv Rev. 2012;64(10):887–895.
  • Brodie MJ, Dichter MA. Established antiepileptic drugs. Seizure. 1997;6(3):159–174.
  • American Psychiatric Association. Practice guideline for the treatment of patients with bipolar disorder (revision). Am J Psychiatry. 2002;159(4 Suppl):1–50.
  • Fisher RS, Cross JH, D’Souza C, et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia. 2017;58(4):531–542.
  • Tolou-Ghamari Z, Zare M, Habibabadi JM, et al. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. J Res Med Sci. 2013;18(Suppl 1):S81–S85.
  • Bertilsson L. Clinical pharmacokinetics of carbamazepine. Clin Pharmacokinet. 1978;3(2):128–143.
  • Sims PJ, Burton M, Shaw L, et al. Applied pharmacokinetics & pharmacodynamics principles of therapeutic drug monitoring. Baltimore: Lippincott Williams & Wilkins; 2006.
  • Patsalos PN. Antiepileptic drug interactions. London: Springer London; 2013.
  • Korinthenberg R, Haug C, Hannak D. The metabolization of carbamazepine to CBZ-10,11-epoxide in children from the newborn age to adolescence. Neuropediatrics. 1994;25(04):214–216.
  • Bu H-Z, Kang P, Deese AJ, et al. Human in vitro glutathionyl and protein adducts of carbamazepine-10,11-epoxide, a stable and pharmacologically active metabolite of carbamazepine. Drug Metab Dispos. 2005;33(12):1920–1924.
  • Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. Clin Pharmacokinet. 1986;11(3):177–198.
  • Pearce RE, Vakkalagadda GR, Leeder JS. Pathways of carbamazepine bioactivation in vitroI. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos. 2002;30(11):1170–1179.
  • Pearce RE, Uetrecht JP, Leeder JS. Pathways of carbamazepine bioactivation in vitro II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene. Drug Metab Dispos. 2005;33(12):1819–1826.
  • Pearce RE, Lu W, Wang Y, et al. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos. 2008;36(8):1637–1649.
  • Thorn CF, Leckband SG, Kelsoe J, et al. PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics. 2011;21(12):906–910.
  • Koliqi R, Polidori C, Islami H. Prevalence of side effects treatment with carbamazepine and other antiepileptics in patients with epilepsy. Mater Socio Med. 2015;27(3):167.
  • Kowski AB, Weissinger F, Gaus V, et al. Specific adverse effects of antiepileptic drugs – a true-to-life monotherapy study. Epilepsy Behav. 2016;54:150–157.
  • Perucca P, Carter J, Vahle V, et al. Adverse antiepileptic drug effects: toward a clinically and neurobiologically relevant taxonomy. Neurology. 2009;72(14):1223–1229.
  • Gilliam F, Carter J, Vahle V. Tolerability of antiseizure medications: implications for health outcomes. Neurology. 2004;63(10 Suppl 4):S9–S12.
  • Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012;11(9):792–802.
  • Herranz JL, Armijo JA, Arteaga R. Clinical side effects of phenobarbital, primidone, phenytoin, carbamazepine, and valproate during monotherapy in children. Epilepsia. 1988;29(6):794–804.
  • Gayford JJ, Redpath TH. The side-effects of carbamazepine. Proc R Soc Med. 1969;62(6):615–616.
  • Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet (London, England). 2000;356(9237):1255–1259.
  • Perucca E, Meador KJ. Adverse effects of antiepileptic drugs. Acta Neurol Scand. 2005;112:(s181):30–35.
  • Hartigan-Go KY, Wong JQ. Inclusion of therapeutic failures as adverse drug reactions. Side effects of Drugs Annual. Vol. 23: 1-592. Aronson JK, editor. Amsterdam (The Netherlands): Elsevier B.V; 2000, p. xxvii–xxxiii.
  • Olusanya A, Ogunleye O, Godman B, et al. Adverse effects of carbamazepine monotherapy among patients in Nigeria: a pilot study and implications. J Comp Eff Res. 2017;6(1):33–42.
  • Andrew T, Milinis K, Baker G, et al. Self reported adverse effects of mono and polytherapy for epilepsy. Seizure Eur J Epilepsy. 2012;21:610–613.
  • Canevini MP, De Sarro G, Galimberti CA, et al. Relationship between adverse effects of antiepileptic drugs, number of coprescribed drugs, and drug load in a large cohort of consecutive patients with drug-refractory epilepsy. Epilepsia. 2010;51(5):797–804.
  • Bermejo PE, Dorado R, Belarrinaga B. Experience with eslicarbazepine in patients with hiponatremia due to carbamazepine and oxcarbacepine. Rev Neurol. 2015;61(1):47–48.
  • Berghuis B, De Haan G-J, van den Broek MPH, et al. Epidemiology, pathophysiology and putative genetic basis of carbamazepine- and oxcarbazepine-induced hyponatremia. Eur J Neurol. 2016;23(9):1393–1399.
  • Lu X, Wang X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf. 2017;16(1):77–87.
  • Gandelman MS. Review of carbamazepine-induced hyponatremia. Prog Neuropsychopharmacol Biol Psychiatry. 1994;18(2):211–233.
  • Kuz GM, Manssourian A. Carbamazepine-induced hyponatremia: assessment of risk factors. Ann Pharmacother. 2005;39(11):1943–1946.
  • Tanaka M, Kamoi K, Takahashi T. Interferon-alpha is a predisposing risk factor for carbamazepine-induced hyponatremia: a case of syndrome of inappropriate antidiuresis caused by interferon-alpha therapy. Int J Gen Med. 2008;1:21–25.
  • Salawu F, Danburam A. Hyponatraemia during low-dose carbamazepine therapy. Ann Afr Med. 2007;6(4):207–208.
  • Ortinski P, Meador KJ. Cognitive side effects of antiepileptic drugs. Epilepsy Behav. 2004;5(Suppl 1):S60–S65.
  • Witt J-A, Helmstaedter C. Monitoring the cognitive effects of antiepileptic pharmacotherapy – approaching the individual patient. Epilepsy Behav. 2013;26(3):450–456.
  • Taylor J, Kolamunnage-Dona R, Marson AG, et al. Patients with epilepsy: cognitively compromised before the start of antiepileptic drug treatment?. Epilepsia. 2010;51(1):48–56.
  • Witt J-A, Helmstaedter C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. J Neurol. 2012;259(8):1727–1731.
  • Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011;4(6):385–407.
  • Forsythe I, Butler R, Berg I, et al. Cognitive impairment in new cases of epilepsy randomly assigned to carbamazepine, phenytoin and sodium valproate. Dev Med Child Neurol. 1991;33(6):524–534.
  • Kang H-C, Eun B-L, Lee CW, et al. The effects on cognitive function and behavioral problems of topiramate compared to carbamazepine as monotherapy for children with benign rolandic epilepsy. Epilepsia. 2007;48(9):1716–1723.
  • Shehata GA, Bateh AEM, Hamed SA, et al. Neuropsychological effects of antiepileptic drugs (carbamazepine versus valproate) in adult males with epilepsy. Neuropsychiatr Dis Treat. 2009;5:527–533.
  • Wesnes KA, Edgar C, Dean ADP, et al. The cognitive and psychomotor effects of remacemide and carbamazepine in newly diagnosed epilepsy. Epilepsy Behav. 2009;14(3):522–528.
  • Äikiä M, Jutila L, Salmenperä T, et al. Long-term effects of tiagabine monotherapy on cognition and mood in adult patients with chronic partial epilepsy. Epilepsy Behav. 2006;8(4):750–755.
  • Meador KJ, Loring DW, Ray PG, et al. Differential cognitive and behavioral effects of carbamazepine and lamotrigine. Neurology. 2001;56(9):1177–1182.
  • Milovan D, Almeida L, Romach MK, et al. Effect of eslicarbazepine acetate and oxcarbazepine on cognition and psychomotor function in healthy volunteers. Epilepsy Behav. 2010;18(4):366–373.
  • Shorvon SD, Trinka E, Steinhoff BJ, et al. Eslicarbazepine acetate: its effectiveness as adjunctive therapy in clinical trials and open studies. J Neurol. 2017;264(3):421–431.
  • Pulliainen V, Jokelainen M. Effects of phenytoin and carbamazepine on cognitive functions in newly diagnosed epileptic patients. Acta Neurol Scand. 1994;89(2):81–86.
  • Park S-P, Kwon S-H. Cognitive effects of antiepileptic drugs. J Clin Neurol. 2008;4(3):99–106.
  • Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia. 2007;48(7):1223–1244.
  • Yun J, Cai F, Lee FJ, et al. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy. 2016;6(2):77–89.
  • Błaszczyk B, Lasoń W, Czuczwar SJ. Antiepileptic drugs and adverse skin reactions: an update. Pharmacol. Rep. 2015;67(3):426–434.
  • Roujeau J-C, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens–Johnson syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333(24):1600–1608.
  • Kim JY, Lee J, Ko Y-J, et al. Multi-indication carbamazepine and the risk of severe cutaneous adverse drug reactions in Korean elderly patients: a Korean health insurance data-based study. PLoS One. 2013;8(12):e83849.
  • Mockenhaupt M, Viboud C, Dunant A, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-Study. J Invest Dermatol. 2008;128(1):35–44.
  • Brodie MJ, Overstall PW, Giorgi L. Multicentre, double-blind, randomised comparison between lamotrigine and carbamazepine in elderly patients with newly diagnosed epilepsy. The UK lamotrigine elderly study group. Epilepsy Res. 1999;37(1):81–87.
  • Chung W-H, Wang C-W, Dao R-L. Severe cutaneous adverse drug reactions. J Dermatol. 2016;43(7):758–766.
  • Coulson IH. Drug eruptions. Medicine (Baltimore). 2009;37(5):263–266.
  • Stern RS. Exanthematous drug eruptions. N Engl J Med. 2012;366:2492–2501.
  • Roujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N Engl J Med. 1994;331(19):1272–1285.
  • Choudhary S, McLeod M, Torchia D, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. J Clin Aesthet Dermatol. 2013;6(6):31–37.
  • Chen Y-C, Chiu H-C, Chu C-Y. Drug reaction with eosinophilia and systemic symptoms. Arch Dermatol. 2010;146(12):1373.
  • Chiou -C-C, Yang L-C, Hung S-I, et al. Clinicopathlogical features and prognosis of drug rash with eosinophilia and systemic symptoms: a study of 30 cases in Taiwan. J Eur Acad Dermatology Venereol. 2008;22(9):1044–1049.
  • Bommersbach TJ, Lapid MI, Leung JG, et al. Management of psychotropic drug-induced DRESS syndrome: a systematic review. Mayo Clin Proc. 2016;91(6):787–801.
  • Ferrell PB, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008;9(10):1543–1546.
  • Chung W-H, Hung S-I, Hong H-S, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.
  • Loscher W, Schmidt D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia. 2006;47(8):1253–1284.
  • Hermle L, Spitzer M. Successful hyposensitization treatment of a patient with schizoaffective psychosis and carbamazepine allergy. Nervenarzt. 1993;64(3):208–210.
  • Biswas A, Mitra R, Sen S, et al. Oxcarbazepine induced maculopapular rash – a case report. J Clin Diagn Res. 2015;9(1):FD01–FD02.
  • Saha M, Gorai S, Madhab V. Oxcarbazepine-induced drug rash with eosinophilia and systemic symptoms syndrome presenting as exfoliative dermatitis. J Pharmacol Pharmacother. 2016;7(3):142–145.
  • Letko E, Papaliodis DN, Papaliodis GN, et al. Stevens-Johnson syndrome and toxic epidermal necrolysis: a review of the literature. Ann Allergy Asthma Immunol. 2005;94(4):419–436.
  • Bénichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol. 1990;11(2):272–276.
  • Haque T, Sasatomi E, Hayashi PH. Drug-induced liver injury: pattern recognition and future directions. Gut Liver. 2016;10(1):27.
  • Leise MD, Poterucha JJ, Talwalkar JA. Drug-induced liver injury. Mayo Clin Proc. 2014;89(1):95–106.
  • Danan G, Benichou C. Causality assessment of adverse reactions to drugs–I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol. 1993;46(11):1323–1330.
  • Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci. 2011;02(2012):233–243.
  • Forbes GM, Jeffrey GP, Shilkin KB, et al. Carbamazepine hepatotoxicity: another cause of the vanishing bile duct syndrome. Gastroenterology. 1992;102(4):1385–1388.
  • Hussein RRS, Soliman RH, Ali AMA, et al. Effect of antiepileptic drugs on liver enzymes science direct. Beni-Suef Univ J Basic Appl Sci. 2013;2(2):14–19.
  • Chalasani NP, Hayashi PH, Bonkovsky HL, et al. ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol. 2014;109(7):950–966.
  • Björnsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand. 2008;118(5):281–290.
  • Pirmohamed M, Kitteringham N, Breckenridge A, et al. Detection of an autoantibody directed against human liver microsomal protein in a patient with carbamazepine hypersensitivity. Br J Clin Pharmacol. 1992;33(2):183–186.
  • Sabariah NH, Siti MSG, Nor ACH, et al. Cholestatic hepatitis secondary to carbamazepine treatment with ursodeoxycholic acid – a case report. Trop J Pharm Res. 2014;13(10):1745–1747.
  • Vidaurre MJ, Gedela S, Yarosz S. Antiepileptic drugs and liver disease. Pediatr Neurol. 2017;77:23–36.
  • Asadi-Pooya A, Sperling M. Antiepileptic drugs in patients with hematological disorders. In: Antiepileptic drugs a Clinician´s Manual. New York (NY): Oxford University Press; 2009. p. 165–170.
  • Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol. 2008;15(3):162–168.
  • Handoko KB, Souverein PC, Van Staa TP, et al. Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia. 2006;47(7):1232–1236.
  • Franceschi M, Ciboddo G, Truci G, et al. Fatal aplastic anemia in a patient treated with carbamazepine. Epilepsia. 1988;29(5):582–583.
  • Chandra Sekhar C, Ramana Reddi V, Srinivas B, et al. Pure red cell aplasia associated with carbamazepine. J Assoc Physicians India. 1998;46(7):655–656.
  • Yáñez-Rubal JC, Estévez-Rodríguez J, Crespo-López MC, et al. Carbamazepine-induced aplastic anaemia: a case report. Rev Neurol. 2002;35(7):647–649.
  • Miano M, Dufour C. The diagnosis and treatment of aplastic anemia: a review. Int J Hematol. 2015;101(6):527–535.
  • Koutsavlis I, Lasebai M. Dose-dependent carbamazepine-induced agranulocytosis following bariatric surgery (sleeve gastrectomy): a possible mechanism. Bariatr Surg Pract Patient Care. 2015;10(3):130–134.
  • Andrès E, Kurtz J-E, Maloisel F. Nonchemotherapy drug-induced agranulocytosis: experience of the Strasbourg teaching hospital (1985–2000) and review of the literature. Clin Lab Haematol. 2002;24(2):99–106.
  • Tagawa T, Sumi K, Uno R, et al. Pure red cell aplasia during carbamazepine monotherapy. Brain Dev. 1997;19(4):300–302.
  • Verrotti A, Scaparrotta A, Grosso S, et al. Anticonvulsant drugs and hematological disease. Neurol Sci. 2014;35(7):983–993.
  • Horga de la Parte JF, Horga A. Oxcarbazepine in the treatment of epilepsy. A review and update. Rev Neurol. 2006;42(2):95–113.
  • Gama H, Vieira M, Costa R, et al. Safety profile of eslicarbazepine acetate as add-on therapy in adults with refractory focal-onset seizures: from clinical studies to 6 years of post-marketing experience. Drug Saf. 2017;40(12):1231–1240.
  • Arora E, Singh H, Gupta Y. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Fam Med Prim Care. 2016;5(2):248.
  • Nicholas JM, Ridsdale L, Richardson MP, et al. Fracture risk with use of liver enzyme inducing antiepileptic drugs in people with active epilepsy: cohort study using the general practice research database. Seizure. 2013;22(1):37–42.
  • Pack AM, Gidal B, Vazquez B. Bone disease associated with antiepileptic drugs. Cleve Clin J Med. 2004;71(Suppl 2):S42–S48.
  • Andress DL, Ozuna J, Tirschwell D, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–786.
  • Välimäki MJ, Tiihonen M, Laitinen K, et al. Bone mineral density measured by dual-energy X-ray absorptiometry and novel markers of bone formation and resorption in patients on antiepileptic drugs. J Bone Miner Res. 1994;9(5):631–637.
  • Verrotti A, Greco R, Latini G, et al. Increased bone turnover in prepubertal, pubertal, and postpubertal patients receiving carbamazepine. Epilepsia. 2002;43(12):1488–1492.
  • Fitzpatrick LA. Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav. 2004;5:3–15.
  • Lee RH, Lyles KW, Colón-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46.
  • Beerhorst K, Tan IY, De Krom M, et al. Antiepileptic drugs and high prevalence of low bone mineral density in a group of inpatients with chronic epilepsy. Acta Neurol Scand. 2013;128(4):273–280.
  • Jetté N, Lix LM, Metge CJ, et al. Association of antiepileptic drugs with nontraumatic fractures. Arch Neurol. 2011;68(1):107–112.
  • Brown ME, El-Mallakh RS. Role of eslicarbazepine in the treatment of epilepsy in adult patients with partial-onset seizures. Ther Clin Risk Manag. 2010;6:103–109.
  • Koo DL, Hwang KJ, Han SW, et al. Effect of oxcarbazepine on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res. 2014;108(3):442–447.
  • Farhat G, Yamout B, Mikati MA, et al. Effect of antiepileptic drugs on bone density in ambulatory patients. Neurology. 2002;58(9):1348–1353.
  • Verrotti A, Coppola G, Parisi P, et al. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010;112(1):1–10.
  • Meier C, Seibel MJ, Kraenzlin ME. Use of bone turnover markers in the real world: are we there yet?. J Bone Miner Res. 2009;24(3):386–388.
  • Drezner MK. Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav. 2004;5:41–47.
  • Lazzari AA, Dussault PM, Thakore-James M, et al. Prevention of bone loss and vertebral fractures in patients with chronic epilepsy – antiepileptic drug and osteoporosis prevention trial. Epilepsia. 2013;54(11):1997–2004.
  • de la Cruz M, Bance M. Carbamazepine-induced sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 1999;125(2):225–227.
  • Hamed SA. The auditory and vestibular toxicities induced by antiepileptic drugs. Expert Opin Drug Saf. 2017;16(11):1281–1294.
  • Hori A, Kataoka S, Sakai K, et al. Valproic acid-induced hearing loss and tinnitus. Intern Med. 2003;42(11):1153–1154.
  • Kashihara K, Imai K, Shiro Y, et al. Reversible pitch perception deficit due to carbamazepine. Intern Med. 1998;37(9):774–775.
  • Boatman DF, Lesser RP, Crone NE, et al. Speech recognition impairments in patients with intractable right temporal lobe epilepsy. Epilepsia. 2006;47(8):1397–1401.
  • Liu Z, Wang Q, You Y, et al. The role of the temporal pole in modulating primitive auditory memory. Neurosci Lett. 2016;619:196–202.
  • Nekrassov V, Sitges M. Additive effects of antiepileptic drugs and pentylenetetrazole on hearing. Neurosci Lett. 2006;406(3):276–280.
  • Palomar García V, Abdulghani Martínez F, Bodet Agustí E, et al. Drug-induced otoxicity: current status. Acta Otolaryngol. 2001;121(5):569–572.
  • Bisht M, Bist SS. Ototoxicity: the hidden menace. Indian J Otolaryngol Head Neck Surg. 2011;63(3):255–259.
  • Hill DS, Wlodarczyk BJ, Palacios AM, et al. Teratogenic effects of antiepileptic drugs. Expert Rev Neurother. 2010;10(6):943–959.
  • Meador KJ, Pennell PB, Harden CL, et al. Pregnancy registries in epilepsy: a consensus statement on health outcomes. Neurology. 2008;71(14):1109–1117.
  • Jentink J, Dolk H, Loane MA, et al. Intrauterine exposure to carbamazepine and specific congenital malformations: systematic review and case-control study. BMJ. 2010;341:c6581–c6581.
  • Delgado-Escueta AV, Janz D. Consensus guidelines: preconception counseling, management, and care of the pregnant woman with epilepsy. Neurology. 1992;42(4 Suppl 5):149–160.
  • Matlow J, Koren G. Is carbamazepine safe to take during pregnancy? Can Fam Physician. 2012;58(2):163–164.
  • Petersen I, Collings S, McCrea R, et al. Antiepileptic drugs prescribed in pregnancy and prevalence of major congenital malformations : comparative prevalence studies. Clin Epidemiol. 2017;9:95–103.
  • Matalon S, Schechtman S, Goldzweig G, et al. The teratogenic effect of carbamazepine: a meta-analysis of 1255 exposures. Reprod Toxicol. 2002;16(1):9–17.
  • Tomson T, Battino D. Teratogenic effects of antiepileptic drugs. Seizure. 2008;17(2):166–171.
  • Bennett GD, Amore BM, Finnell RH, et al. Teratogenicity of carbamazepine-10, 11-epoxide and oxcarbazepine in the SWV mouse. J Pharmacol Exp Ther. 1996;279(3):1237–1242.
  • Costa R, Magalhães LM, Graça J, et al. Eslicarbazepine acetate exposure in pregnant women with epilepsy. Seizure. 2018;58:72–74.
  • Pennell PB. The importance of monotherapy in pregnancy. Neurology. 2003;60(11 Suppl 4):S31–S38.
  • Battino D, Tomson T. Management of epilepsy during pregnancy. Drugs. 2007;67(18):2727–2746.
  • Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61(3):246–255.
  • Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2(8):473–481.
  • Stockis A, Chanteux H, Rosa M, et al. Brivaracetam and carbamazepine interaction in healthy subjects and in vitro. Epilepsy Res. 2015;113:19–27.
  • Patsalos PN, Fröscher W, Pisani F, et al. The importance of drug interactions in epilepsy therapy. Epilepsia. 2002;43(4):365–385.
  • Pisani F, Fazio A, Oteri G, et al. Effect of valpromide on the pharmacokinetics of carbamazepine-10, 11- epoxide. Br J Clin Pharmacol. 1988;25(5):611–613.
  • Ji P, Damle B, Xie J, et al. Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol. 2008;48(8):948–956.
  • Hanrath MA, Swart EL. Convulsions due to an interaction between anti-epileptic drugs and rifampicin. Ned Tijdschr Geneeskd. 2014;158:A7707.
  • Warner T, Patsalos PN, Prevett M, et al. Lamotrigine-induced carbamazepine toxicity: an interaction with carbamazepine-10,11 -epoxide. Epilepsy Res. 1992;11(2):147–150.
  • Crews KR, Hicks JK, Pui C-H, et al. Pharmacogenomics and individualized medicine: translating science into practice. Clin Pharmacol Ther. 2012;92(4):467–475.
  • Evans WE, McLeod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–549.
  • Saini R, Saini S, Sugandha RS. Pharmacogenetics: the future medicine. J Adv Pharm Technol Res. 2010;1(4):423–424.
  • Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–350.
  • Daly AK. Pharmacogenomics of adverse drug reactions. Genome Med. 2013;5(1):5.
  • Pavlos R, Mallal S, Phillips E. HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics. 2012;13(11):1285–1306.
  • Yip VLM, Pirmohamed M. The HLA-A*31:01 allele: influence on carbamazepine treatment. Pharmgenomics Pers Med. 2017;10:29–38.
  • Hung S-I, Chung W-H, Jee S-H, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006;16(4):297–306.
  • McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–1143.
  • Niihara H, Kakamu T, Fujita Y, et al. HLA-A31 strongly associates with carbamazepine-induced adverse drug reactions but not with carbamazepine-induced lymphocyte proliferation in a Japanese population. J Dermatol. 2012;39(7):594–601.
  • Amstutz U, Ross CJD, Castro-Pastrana LI, et al. HLA-A 31:01 and HLA-B 15:02 as genetic markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther. 2013;94(1):142–149.
  • Fricke-Galindo I, Martínez-Juárez IE, Monroy-Jaramillo N, et al. HLA-A*02:01:01/-B*35:01:01/-C*04:01:01 haplotype associated with lamotrigine-induced maculopapular exanthema in Mexican Mestizo patients. Pharmacogenomics. 2014;15(15):1881–1891.
  • Fricke-Galindo I, LLerena A, López-López M. An update on HLA alleles associated with adverse drug reactions. Drug Metab Pers Ther. 2017;32(2):73–87.
  • Leckband SG, Kelsoe JR, Dunnenberger HM, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther. 2013;94(3):324–328.
  • Dong D, Sung C, Finkelstein EA. Cost-effectiveness of HLA-B*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology. 2012;79(12):1259–1267.
  • Tiamkao S, Jitpimolmard J, Sawanyawisuth K, et al. Cost minimization of HLA-B*1502 screening before prescribing carbamazepine in Thailand. Int J Clin Pharm. 2013;35(4):608–612.
  • Plumpton CO, Yip VLM, Alfirevic A, et al. Cost-effectiveness of screening for HLA-A*31:01 prior to initiation of carbamazepine in epilepsy. Epilepsia. 2015;56(4):556–563.
  • Hayes JD, Flanagan JU, Jowsey IR. Glutathione Transferases. Annu Rev Pharmacol Toxicol. 2005;45(1):51–88.
  • Kalapos MP. Carbamazepine-provoked hepatotoxicity and possible aetiopathological role of glutathione in the events. Retrospective review of old data and call for new investigation. Adverse Drug React Toxicol Rev. 2002;21(3):123–141.
  • Zhao Y, Deng X, Song G, et al. The GSTM1 null genotype increased risk of gastric cancer: a meta-analysis based on 46 studies. PLoS One. 2013;8(11):e81403.
  • Garte S, Gaspari L, Alexandrie AK, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 2001;10(12):1239–1248.
  • Ueda K, Ishitsu T, Seo T, et al. Glutathione S -transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics. 2007;8(5):435–442.
  • Fricke-Galindo I, Jung-Cook H, LLerena A, et al. Farmacogenética de reacciones adversas a fármacos antiepilépticos. Neurología. 2018;33(3):165–176.
  • He X-J, Jian L-Y, He X-L, et al. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia. 2014;55(8):1301–1306.
  • Gaedigk A, Spielberg SP, Grant DM. Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics. 1994;4(3):142–153.
  • Green VJ, Pirmohamed M, Kitteringham NR, et al. Genetic analysis of microsomal epoxide hydrolase in patients with carbamazepine hypersensitivity. Biochem Pharmacol. 1995;50(9):1353–1359.
  • Hung -C-C, Chang W-L, Ho J-L, et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics. 2012;13(2):159–169.
  • Nakajima Y, Saito Y, Shiseki K, et al. Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. Eur J Clin Pharmacol. 2005;61(1):25–34.
  • Puranik YG, Birnbaum AK, Marino SE, et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013;14(1):35–45.
  • Monroy-Jaramillo N, Fricke-Galindo I, Ortega-Vázquez A, et al. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. Drug Metabol Drug Interact. 2014;29(2):67–79.
  • Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58(2):140–161.
  • Ma C-L, Wu X-Y, Zheng J, et al. Association of SCN1A, SCN2A and ABCC2 gene polymorphisms with the response to antiepileptic drugs in Chinese Han patients with epilepsy. Pharmacogenomics. 2014;15(10):1323–1336.
  • Kim W-J, Lee JH, Yi J, et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics. 2010;20(4):249–256.
  • PhVWP monthly report on safety concerns, guidelines and general matters. [cited 2017 Mar 1]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2012/04/WC500124972.pdf
  • Dean L. Carbamazepine therapy and HLA genotypes. In: Pratt V, McLeod H, Dean L, editors. Medica Genet. Summ. [Internet]. Bathesda (MD): National Center for Biotechnology Information (US), 2015. p. 2012.
  • Safety information – tegretol (carbamazepine) tablets, chewable tablets, oral suspension, and tegretol-XR (carbamazepine extended-release) tablets. [cited 2018 June 14]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/016608s101,018281s048lbl.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.