749
Views
19
CrossRef citations to date
0
Altmetric
Review

Metabolomics in pharmacology - a delve into the novel field of pharmacometabolomics

, , &
Pages 115-134 | Received 12 Sep 2019, Accepted 07 Jan 2020, Published online: 20 Jan 2020

References

  • Munos B. Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov. 2009;8:959–968.
  • Takebe T, Imai R, Ono S. The current status of drug discovery and development as originated in United States academia: the influence of industrial and academic collaboration on drug discovery and development. Clin Transl Sci. 2018;11:597–606.
  • Hughes B. FDA drug approvals. Nat Rev Drug Discov. 2009;8:93–96.
  • Hughes B. FDA drug approvals. Nat Rev Drug Discov. 2010;9:89–92.
  • Mullard A. FDA drug approvals. Nat Rev Drug Discov. 2019;18:85–89.
  • Amur S, LaVange L, Zineh I, et al. Biomarker qualification: toward a multiple stakeholder framework for biomarker development, regulatory acceptance, and utilization. Clin Pharmacol Ther. 2015;98:34–46.
  • Sams-Dodd F. Is poor research the cause of the declining productivity of the pharmaceutical industry? An industry in need of a paradigm shift. Drug Discov Today. 2013;18:211–217.
  • Kell DB, Goodacre R. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today. 2014;19:171–182.
  • Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13:263–269.
  • Kumar B, Prakash A, Ruhela RK, et al. Potential of metabolomics in preclinical and clinical drug development. Pharmacol Rep. 2014;66:956–963.
  • Tolstikov V. Metabolomics: bridging the gap between pharmaceutical development and population health. Metabolites. 2016;6(3):E20.
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–1189.
  • Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–171.
  • Oliver SG, Winson MK, Kell DB, et al. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–378.
  • Baker M. Metabolomics: from small molecules to big ideas. Nat Methods. 2011;2:219–221.
  • Goodacre R. Metabolomics of a superorganism. J Nutr. 2007;137(1Suppl):259S–266S.
  • Cuperlovic-Culf M, Culf AS. Applied metabolomics in drug discovery. Expert Opin Drug Discov. 2016;11(8):759–770.
  • Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–459.
  • Gertsman I, Barshop BA. Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis. 2018;41:355–366.
  • Ren JL, Zhang AH, Kong L, et al. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv. 2018;8:22335.
  • Kirwan JA, Brennan L, Broadhurst D, et al. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: a white paper, community perspective (for “precision medicine and pharmacometabolomics task group”-the metabolomics society initiative). Clin Chem. 2018;64:1158–1182.
  • Dubbelman AC, Cuyckens F, Dillen L, et al. Mass spectrometric recommendations for quan/qual analysis using liquid-chromatography coupled to quadrupole time-of-flight mass spectrometry. Anal Chim Acta. 2018;1020:62–75.
  • Emwas AH, Roy R, McKay RT, et al. Recommendations and standardization of biomarker quantification using nmr-based metabolomics with particular focus on urinary analysis. J Proteome Res. 2016;15:360–373.
  • Saurina J, Sentellas S. Liquid chromatography coupled to mass spectrometry for metabolite profiling in the field of drug discovery. Expert Opin Drug Discov. 2019;14(5):469–483.
  • Palmas F, Mussap M, Fattuoni C. Urine metabolome analysis by gas chromatography-mass spectrometry (GC-MS): standardization and optimization of protocols for urea removal and short-term sample storage. Clin Chim Acta. 2018;485:236–242.
  • González-Domínguez R, Sayago A, Fernández-Recamales Á. Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Bioanalysis. 2017;9:131–148.
  • Markley JL, Brüschweiler R, Edison AS, et al. The future of NMR-based metabolomics. Curr Opin Biotechnol. 2017;43:34–40.
  • Dona AC, Kyriakides M, Scott F, et al. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J. 2016;14:135–153.
  • Ruiqi J, Jiao Y, Xu F. Chemical derivatization-based LC–MS for metabolomics: advantages and challenges. Bioanalysis. 2016;8(18):1881–1883.
  • Loss P, van de Waterbeemd M, Heck A. The diverse and expanding role of mass spectrometry in structural and molecular biology. Eur Mol Biol Org J. 2016;35:2634–2657.
  • Jiang H, Zeng J, Zheng N, et al. A convenient strategy for quantitative determination of drug concentrations in tissue homogenates using a liquid chromatography/tandem mass spectrometry assay for plasma samples. Anal Chem. 2011;83:6237–6244.
  • Pacholski ML, Winograd N. Imaging with mass spectrometry. Chem Rev. 1999;99:2977.
  • Liebl H. Ion microprobe mass analyzer. J Appl Phys. 1967;38:5277.
  • Morrison GH, Slodzian G. Ion microscopy. Anal Chem. 1975;47:932–943.
  • Gamble LJ, Anderton CR. Secondary ion mass spectrometry imaging of tissues, cells, and microbial systems. Micros Today. 2016;24:24–31.
  • Wiseman JM, Ifa DR, Zhu Y, et al. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A. 2008;105:18120–18125.
  • Cornett DS, Reyzer ML, Chaurand P, et al. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4:828–833.
  • Soltwisch J, Kettling H, Vens-Cappell S, et al. Mass spectrometry imaging with laser-induced postionization. Science. 2015;348(6231):211–215.
  • Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 2007;79:8098–8106.
  • Waki M, Sugiyama E, Kondo T, et al. Nanoparticle-assisted laser desorption/ionization for metabolite imaging. Methods Mol Biol. 2015;1203:159–173.
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69:4751–4760.
  • Seeley EH, Schwamborn K, Caprioli RM. Imaging of intact tissue sections: moving beyond the microscope. J Biol Chem. 2011;286:25459–25466.
  • Wiseman JM, Ifa DR, Zhu Y, et al. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A. 2008;105:18120–18125.
  • Swales JG, Hamma G, Clench MR, et al. Mass spectrometry imaging and its application in pharmaceutical research and development: a concise review. Int J Mass Spectrom. 2019;437:99–112.
  • Nishidate M, Hayashi M, Aikawa H, et al. Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metab Pharmacokinet. 2019;34:209–216.
  • Yang B, Tsui T, Caprioli RM, et al. Sample preparation and analysis of single cells using high performance MALDI FTICR mass spectrometry. Methods Mol Biol. 2020;2064:125–134.
  • McDonnell LA, Angel PM, Lou S, et al. Mass spectrometry imaging in cancer research: future perspectives. Adv Cancer Res. 2017;134:283–290.
  • Vaysse P-M, Heeren RMARMA, Porta T, et al. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst. 2017;142:2690–2712.
  • Chen K, Baluya D, Tosun M, et al. Imaging mass spectrometry: a new tool to assess molecular underpinnings of neurodegeneration. Metabolites. 2019;9:E135.
  • Dueñas ME, Larson EA, Lee YJ. Toward mass spectrometry imaging in the metabolomics scale: increasing metabolic coverage through multiple on-tissue chemical modifications. Front Plant Sci. 2019;10:860.
  • Xue J, Liu H, Chen S, et al. Mass spectrometry imaging of the in situ drug release from nanocarriers. Sci Adv. 2018;4:eaat9039.
  • Yin R, Burnum-Johnson KE, Sun X, et al. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat Protoc. 2019 Nov 13;14:3445–3470.
  • Vos DRN, Jansen I, Lucas M, et al. Strategies for managing multi-patient 3D mass spectrometry imaging data. J Proteomics. 2019;193:184–191.
  • Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286:487–491.
  • Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429:464–468.
  • Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet. 2019;394(10197):521–532.
  • Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discovery. 2002;1:153–161.
  • Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006;440:1073–1077.
  • Wilson ID. Drugs, bugs, and personalized medicine: pharmacometabonomics enters the ring. Proc Natl Acad Sci USA. 2009;106:14187–14188.
  • Pang H, Jia W, Hu Z. Emerging applications of metabolomics in clinical pharmacology. Clin Pharmacol Ther. 2019;106:544–556.
  • Burt T, Nandal S. Pharmacometabolomics in early-phase clinical development. Clin Transl Sci. 2016;9:128–138.
  • Kantae V, Krekels EHJ, Esdonk MJV, et al. Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards personalized drug therapy. Metabolomics. 2017;13:9.
  • Kaddurah-Daouk R, Weinshilboum RM. Pharmacometabolomics research network. pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther. 2014;95:154–167.
  • Balashova EE, Maslov DL, Lokhov PG. A metabolomics approach to pharmacotherapy personalization. J Pers Med. 2018;8(3):E28.
  • Fanos V, Van den Anker J, Noto A, et al. Metabolomics in neonatology: fact or fiction? Semin Fetal Neonatal Med. 2013;18:3–12.
  • Powers R. The current state of drug discovery and a potential role for NMR metabolomics. J Med Chem. 2014;57(14):5860–5870.
  • Baraldi E, Carraro S, Giordano G, et al. Metabolomics: moving towards personalized medicine. Ital J Ped. 2009;35:30. Kroemer HK, Meyer zu Schwabedissen HE. A piece in the puzzle of personalized medicine. Clin Pharmacol Ther. 2010;87:19-20.
  • Clayton TA, Baker D, Lindon JC, et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728–14733.
  • Katsila T, Patrinos GP. Pharmacometabolomics: applications and challenges. Curr Pharmacogenomics Person Med. 2015;13:9–13.
  • Abo R, Hebbring S, Ji Y, et al. Merging pharmacometabolomics with pharmacogenomics using ‘1000 genomes’ single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics. Pharmacogenet Genomics. 2012;22:247–253.
  • Nicholson JK, Everett JR, Lindon JC. Longitudinal pharmacometabonomics for predicting patient responses to therapy: drug metabolism, toxicity and efficacy. Expert Opin Drug Metab Toxicol. 2012;8:135–139.
  • Katsila T, Balasopoulou A, Tsagaraki I, et al. Pharmacomicrobiomics informs clinical pharmacogenomics. Pharmacogenomics. 2019;20:731–739.
  • Wishart DS. Application of metabolomics in drug discovery and development. Drugs R D. 2008;9(5):307–322.
  • Everett JR. From metabonomics to pharmacometabonomics: the role of metabolic profiling in personalized medicine. Front Pharmacol. 2016;7:297.
  • Woodcock J, Woosley R. The FDA critical path initiative and its influence on new drug development. Annu Rev Med. 2008;59:1–12.
  • Sugiura Y, Setou M. Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol. 2010;5:31–43.
  • Végvári Á. Drug localizations in tissue by mass spectrometry imaging. Biomark Med. 2015;9:869–876.
  • Jove M, Spencer J, Clench M, et al. Precision pharmacology: mass spectrometry imaging and pharmacokinetic drug resistance. Crit Rev Oncol Hematol. 2019;141:153–162.
  • Johnson RW Jr, Talaty N. Tissue imaging by mass spectrometry: a practical guide for the medicinal chemist. ACS Med Chem Lett. 2019;10:161–167.
  • Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349:474–485.
  • Kullak-Ublick GA, Andrade RJ, Merz M, et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut. 2017;66:1154–1164.
  • García-Cañaveras JC, Castell JV, Donato MT, et al. A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci Rep. 2016;6:27239.
  • Mazaleuskaya LL, Sangkuhl K, Thorn CF, et al. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25:416–426.
  • Chen C, Krausz KW, Shah MY, et al. Serum metabolomics reveals irreversible inhibition of fatty acid-oxidation through the suppression of pparr activation as a contributing mechanism of acetaminophen-induced hepatotoxicity. Chem Res Toxicol. 2009;22:699–707.
  • Andersson U, Lindberg J, Wang S, et al. A systems biology approach to understanding elevated serum alanine transaminase levels in a clinical trial with ximelagatran. Biomarkers. 2009;14:572–586.
  • Keisu M, Andersson TB. Drug-induced liver injury in humans: the case of ximelagatran. Handb Exp Pharmacol. 2010;196:407–418.
  • Mattes WB. Public consortium efforts in toxicogenomics. Methods Mol Biol. 2008;460:221–238.
  • Ellinger-Ziegelbauer H, Adler M, Amberg A, et al. The enhanced value of combining conventional and “omics” analyses in early assessment of drug-induced hepatobiliary injury. Toxicol Appl Pharmacol. 2011;252:97–111.
  • Chang H, Meng HY, Liu SM, et al. Identification of key metabolic changes during liver fibrosis progression in rats using a urine and serum metabolomics approach. Sci Rep. 2017;7:11433.
  • O’Connell TM, Watkins PB. The application of Metabolomics to predict drug-induced liver injury. Clin Pharmacol Ther. 2010;88:394–399.
  • Fanos V, Barberini L, Antonucci R, et al. Pharma-metabolomics in neonatology: is it a dream or a fact? Curr Pharm Des. 2012;18:2996–3006.
  • Ghosh SP, Singh R, Chakraborty K, et al. Metabolomic changes in gastrointestinal tissues after whole body radiation in a murine model. Mol Biosyst. 2013;9:723–731.
  • Um SY, Chung MW, Kim KB, et al. Pattern recognition analysis for the prediction of adverse effects by nonsteroidal anti-inflammatory drugs using 1H NMR-based metabolomics in rats. Anal Chem. 2009;81:4734–4741.
  • Forsgård RA, Marrachelli VG, Korpela K, et al. Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male sprague-dawley rats. Cancer Chemother Pharmacol. 2017;80:317–332.
  • IPCS CEC (International Programme on Chemical Safety, Commission of the European Communities). Principle and methods for the assessment of nephrotoxicity associated with exposure to chemicals. Environmental Health Criteria 119. Geneva: WHO, 1991
  • Mussap M, Noto A, Fanos V, et al. Emerging biomarkers and metabolomics for assessing toxic nephropathy and acute kidney injury (AKI) in neonatology. Biomed Res Int. 2014;2014:602526.
  • Williams RE, Major H, Lock EA, et al. D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics ap- proach. Toxicology. 2005;207:179–190.
  • Lenz EM, Bright J, Knight R, et al. Metabonomics with 1H- NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers. 2005;10:173–187.
  • Lenz EM, Bright J, Knight R, et al. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst. 2004;129:535–541.
  • Lindon JC, Holmes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers. 2004;9:1–3.
  • Boudonck KJ, Matthew W, Mitchell MW, et al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol. 2009;37:280–292.
  • Lv H, Liu L, Zhang Y, et al. Ingenuity pathways analysis of urine metabonomics phenotypes toxicity of gentamicin in multiple organs. Mol Biosyst. 2010;6:2056–2067.
  • Espandiari P, Zhang J, Rosenzweig BA, et al. The utility of a rodent model in detecting pediatric drug-induced nephrotoxicity. Toxicol Sci. 2007;99:637–648.
  • Klawitter J, Haschke M, Kahle C, et al. Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. Br J Clin Pharmacol. 2010;70:241–251.
  • Klawitter J, Klawitter J, Kushner E, et al. Association of immunosuppressant-induced protein changes in the rat kidney with changes in urine metabolite patterns: a proteo-metabonomic study. J Proteome Res. 2010;9:865–875.
  • Zhang P, Li W, Chen J, et al. Branched-chain amino acids as predictors for individual differences of cisplatin nephrotoxicity in rats: a pharmacometabonomics study. J Proteome Res. 2017;16:1753–1762.
  • Ryu SH, Lee JD, Kim JW, et al. 1H NMR toxicometabolomics following cisplatin-induced nephrotoxicity in male rats. J Toxicol Sci. 2019;44:57–71.
  • Sethi S, Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2016;19:1–13.
  • Lanznaster D, de Assis DR, Corcia P, et al. Metabolomics biomarkers: a strategy toward therapeutics improvement in ALS. Front Neurol. 2018;9:1126.
  • Walker DI, Perry-Walker K, Finnell RH, et al. Metabolome-wide association study of anti-epileptic drug treatment during pregnancy. Toxicol Appl Pharmacol. 2019;363:122–130.
  • Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia. 2015;56:1047–1055.
  • Kaddurah-Daouk R, Hankemeier T, Scholl, et al. Pharmacometabolomics informs about pharmacokinetic profile of methylphenidate. CPT Pharmacometrics Syst Pharmacol. 2018;7:525–533.
  • Gupta M, Neavin D, Liu D, et al. TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics. Mol Psychiatry. 2016;21(12):1717–1725.
  • Rotroff DM, Corum DG, Motsinger-Reif A, et al. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl Psychiatry. 2016;6:e894.
  • Lan MJ, McLoughlin GA, Griffin JL, et al. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psichiatry. 2009;14:269–279.
  • Kaddurah-Daouk R, McEvoy J, Baillie RA, et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry. 2007;12:934–945.
  • van den Brink WJ, Elassaiss-Schaap J, Gonzalez-Amoros B, et al. Multivariate pharmacokinetic/pharmacodynamic (PKPD) analysis with metabolomics shows multiple effects of remoxipride in rats. Eur J Pharm Sci. 2017;109:431–440.
  • Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–914.
  • Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.
  • Tiziani S, Lodi A, Khanim FL, et al. Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. Plos One. 2009;4:e4251.
  • Bayet-Robert M, Morvan D, Chollet P, et al. Pharmacometabolomics of docetaxel-treated human MCF7 breast cancer cells provides evidence of varying cellular responses at high and low doses. Breast Cancer Res Treat. 2010;120:613–626.
  • de Man FM, Goey AK, van Schaik RH, et al. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57(10):1229-1254.
  • Gao Y, Li W, Chen J, et al. Pharmacometabolomic prediction of individual differences of gastrointestinal toxicity complicating myelosuppression in rats. Acta Pharm Sin B. 2019;9:157–166.
  • Bao X, Wu J, Kim S, et al. Pharmacometabolomics reveals irinotecan mechanism of action in cancer patients. J Clin Pharmacol. 2019;59:20–34.
  • Miolo G, Muraro E, Caruso D, et al. Pharmacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer. Oncotarget. 2016;7:39809–39822.
  • Speck RM, Sammel MD, Farrar JT, et al. Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer. J Oncol Pract. 2013;9:e234–e240.
  • Sun Y, Kim JH, Vangipuram K, et al. Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. 2018;171:657–666.
  • Min KW, Bang JY, Kim KP, et al. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins. J Korean Med Sci. 2014;29:934–940.
  • Gardner-Thorpe J, Ito H, Ashley SW, et al. Ribosomal protein P2: a potential molecular target for antisense therapy of human malignancies. Anticancer Res. 2003;23:4549–4560.
  • Paine MRL, Liu J, Huang D, et al. Three-dimensional mass spectrometry imaging identifies lipid markers of medulloblastoma metastasis. Sci Rep. 2019;9:2205.
  • Morse N, Jamaspishvili T, Simon D, et al. Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies. Lab Invest. 2019;99:1561–1571.
  • N B, K R C. Tetrandrine and cancer – an overview on the molecular approach. Biomed Pharmacother. 2018;97:624–632.
  • Tang W, Chen J, Zhou J, et al. Quantitative MALDI imaging of spatial distributions and dynamic changes of tetrandrine in multiple organs of rats. Theranostics. 2019;9:932–944.
  • Ghanbari R, Sumner S. Using metabolomics to investigate biomarkers of drug addiction. Trends Mol Med. 2018;24:197–205.
  • Deng Y, Bu Q, Hu Z, et al. (1)H-nuclear magnetic resonance- based metabonomic analysis of brain in rhesus monkeys with morphine treatment and withdrawal intervention. J Neurosci Res. 2012;90:2154–2162.
  • Li H, Chen B, Shao X, et al. 1H-Nuclear magnetic resonance-based metabolomic analysis of brain in mice with nicotine treatment. BMC Neurosci. 2014;15:32.
  • Zheng T, Liu L, Aa J, et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend. 2013;127:177–186.
  • Zheng T, Liu L, Shi J, et al. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse. Mol Biosyst. 2014;10:1968–1977.
  • Ning T, Leng C, Chen L, et al. Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on 1 H-nuclear magnetic resonance spectra. BMC Neurosci. 2018;19:4.
  • Meinhardt MW, Sévin DC, Klee ML, et al. The neurometabolic fingerprint of excessive alcohol drinking. Neuropsychopharmacol. 2015;40:1259–1268.
  • Würtz P, Cook S, Wang Q, et al. Metabolic profiling of alcohol consumption in 9778 young adults. Int J Epidemiol. 2016;45:1493–1506.
  • Yang Z, Kusumanchi P, Ross RA, et al. Serum metabolomic profiling identifies key metabolic signatures associated with pathogenesis of alcoholic liver disease in humans. Hepatol Commun. 2019;3:542–557.
  • Ghanbari R, Sumner S. Using metabolomics to investigate biomarkers of drug addiction. Trends Mol Med. 2018;24:197–205.
  • Genschow E, Spielmann H, Scholz G, et al. The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European centre for the validation of alternative methods. Altern Lab Anim. 2002;30:151–176.
  • Cezar GG, Quam JA, Smith AM, et al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 2007;16:869–882.
  • West PR, Weir AM, Smith AM, et al. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol. 2010;247:18–27.
  • Kleinstreuer NC, Smith AM, West PR, et al. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol. 2011;257:111–121.
  • Götherström C. Human foetal mesenchymal stem cells. Best Pract Res Clin Obstet Gynaecol. 2016;31:82–87.
  • Moroni L, Fornasari PM. Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. Cell Physiol. 2013;228:680–687.
  • Klontzas ME, Vernardis SI, Heliotis M, et al. Metabolomics analysis of the osteogenic differentiation of umbilical cord blood mesenchymal stem cells reveals differential sensitivity to osteogenic agents. Stem Cells Dev. 2017;26:723–733.
  • Fanos V, Antonucci R, Barberini L, et al. Clinical application of metabolomics in neonatology. J Matern Fetal Neonatal Med. 2012;25(S1):104–109.
  • Mussap M, Antonucci R, Noto A, et al. The role of metabolomics in neonatal and pediatric laboratory medicine. Clin Chim Acta. 2013;426:127–138.
  • van den Anker J, Reed MD, Allegaert K, et al. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018;58(Suppl 10):S10–S25.
  • Gow PJ, Ghabrial H, Smallwood RA, et al. Neonatal hepatic drug elimination. Toxicol Pharmacol. 2001;88:3–15.
  • Anderson GD. Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia. 2002;43(Suppl 3):53–59.
  • Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology - drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–1167.
  • Cook SF, Stockmann C, Samiee-Zafarghandy S, et al. Neonatal maturation of paracetamol (acetaminophen) glucuronidation, sulfation, and oxidation based on a parent-metabolite population pharmacokinetic model. Clin Pharmacokinet. 2016;55:1395–1411.
  • Pacifici GM. Metabolism and pharmacokinetics of morphine in neonates: A review. Clinics (Sao Paulo). 2016;71:474–480.
  • Lewis T, Chalise P, Gauldin C, et al. Pharmacometabolomics of respiratory phenotypic response to dexamethasone in preterm infants at risk for bronchopulmonary dysplasia. Clin Transl Sci. 2019;12:591–599.
  • Fabiano A, Gazzolo D, Zimmermann LJ, et al. Metabolomic analysis of bronchoalveolar lavage fluid in preterm infants complicated by respiratory distress syndrome: preliminary results. J Matern Fetal Neonatal Med. 2011;24(Suppl 2):55–58.
  • Dedja A, Gucciardi A, Giordano G, et al. Lipopolysaccharide-induced chorioamnionitis and postnatal lung injury: the beneficial effects of L-citrulline in newborn rats. Exp Lung Res. 2018;44:226–240.
  • Atzori L, Barberini L, Lussu M, et al. Metabolomics & patent ductus arteriosus diagnosis: is 1H-NMR (nuclear magnetic resonace) spectroscopy of urine at birth predictive as ultrasound? J Matern Fetal Neonatal Med. 2012;25:Issue sup5.
  • Liu Z, Liu R, Chou J, et al. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1090:101–109.
  • Cesare Marincola F, Dessì A, Corbu S, et al. Clinical impact of human breast milk metabolomics. Clin Chim Acta. 2015;451(Pt A):103–106.
  • Escherich T. Die Darmbakterien des Säuglings. Stuttgart, Germany: ArbA D Path InstzuMünchen; 1886; p. 1–180.
  • Dogra S, Sakwinska O, Soh SE, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio. 2015;6:e02419.
  • Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050.
  • Nagpal R, Tsuji H, Takahashi T, et al. Gut dysbiosis following C-section instigates higher colonisation of toxigenic clostridium perfringens in infants. Benef Microbes. 2017;8(3):353–365.
  • Koleva PT, Kim JS, Scott JA, et al. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015;105:265–277.
  • Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol. 2016;7:1031.
  • Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48.
  • D’Argenio V. The prenatal microbiome: a new player for human health. Hig-Troughput. 2018;7(4):E38.
  • Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–326.
  • Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–11975.
  • Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: metaanalyses. Clin Exp Allergy. 2008;38:634–642.
  • Kuitunen M, Kukkonen K, Juntunen-Backman K, et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol. 2009;123:335–341.
  • Korpela K, Salonen A, Vepsäläinen O, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6:182.
  • Poretsky R, Rodriguez-R LM, Luo C, et al. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9:e93827.
  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836.
  • Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
  • Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180.
  • Koren O, Knights D, Gonzalez A, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol. 2013;9:e1002863.
  • Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3:8–16.
  • Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3:431–438.
  • ElRakaiby M, Dutilh BE, Rizkallah MR, et al. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS. 2014;18:402–414.
  • Kuntz TM, Gilbert JA. Introducing the Microbiome into Precision Medicine. Trends Pharmacol Sci. 2017;38:81–91.
  • Sharma A, Buschmann MM, Gilbert JA. Pharmacomicrobiomics: the holy grail to variability in drug response?. Clin Pharmacol Ther. 2019;106:317–328.
  • Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium eggerthella lenta. Science. 2013;341:295–298.
  • Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–976.
  • Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–3703.
  • Sun J, Schnackenberg LK, Mendricka DL, et al. Evaluating effects of penicillin treatment on the metabolome of rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;932:134–143.
  • Swann JR, Tuohy KM, Lindfors P, et al. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res. 2011;10:3590–3603.
  • Ufer M, Juif PE, Boof ML, et al. Metabolite profiling in early clinical drug development: current status and future prospects. Expert Opin Drug Metab Toxicol. 2017;13:803–806.
  • Doestzada M, Vila AV, Zhernakova A, et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell. 2018;9:432–445.
  • Robertson DG, Watkins P, Reily MD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci. 2011;120(S1):S146–S170.
  • Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243:154–156.
  • Antonucci R, Pilloni MD, Atzori L, et al. Pharmaceutical research and metabolomics in the newborn. J Mat Fetal Neonat Med. 2012;25(S5):22–26.
  • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–795.
  • Nimmesgern E, Benediktsson I, Norstedt I. Personalized medicine in Europe. Clin Transl Sci. 2017;10(2):61–63.
  • Caudle KE, Gammal RS, Karnes JH, et al. PRN OPINION PAPER: application of precision medicine across pharmacy specialty areas. J Am Coll Clin Pharm. 2019;2:288–302.
  • Beger RD, Dunn W, Schmidt MA, et al. Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics. 2016;12(10):149.
  • Karlsson O, Hanrieder J. Imaging mass spectrometry in drug development and toxicology. Arch Toxicol. 2017;91:2283–2294.
  • Balluff B, McDonnell LA. Mass spectrometry imaging of metabolites. In: Giera M, editor. Clinical metabolomics. methods in molecular biology. Vol. 1730. New York, NY: Humana Press; 2018. p. 345–357.
  • Mohs RC, Greig NH. Drug discovery and development: role of basic biological research. Alzheimers Dement (N Y). 2017;3(4):651–657.
  • Ramamoorthy A, Karnes JH, Finkel R, et al. Evolution of next generation therapeutics: past, present, and future of precision medicines. Clin Transl Sci. 2019;12:560-563.
  • Dugger SA, Platt A, Goldstein DB. Drug development in the era of precision medicine. Nat Rev Drug Discov. 2018;17(3):183–196.
  • Karnes JH, Miller MA, White KD, et al. Applications of immunopharmacogenomics: predicting, preventing, and understanding immune-mediated adverse drug reactions. Annu Rev Pharmacol Toxicol. 2019;59:463–486.
  • Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–214.
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.
  • Greene JA, Lea AS. Digital futures past - the long arc of big data in medicine. N Engl J Med. 2019;381(5):480–485.
  • Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, et al. A longitudinal big data approach for precision health. Nat Med. 2019;25(5):792–804.
  • Tolstikov V, Akmaev VR, Sarangarajan R, et al. Clinical metabolomics: a pivotal tool for companion diagnostic development and precision medicine. Expert Rev Mol Diagn. 2017;17(5):411–413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.