245
Views
2
CrossRef citations to date
0
Altmetric
Review

Interactions of antiepileptic drugs with drugs approved for the treatment of indications other than epilepsy

, &
Pages 1329-1345 | Received 31 Aug 2020, Accepted 09 Nov 2020, Published online: 24 Jan 2021

References

  • Moshé SL, Perucca E, Ryvlin P, et al. Epilepsy: new advances. Lancet. 2015;385:884–898.
  • Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:470–472.
  • Fisher RS. The new classification of seizures by International League Against Epilepsy 2017. Curr Neurol Neurosci Rep. 2017;17:48.
  • Blumenfeld H, Jackson GD. Should consciousness be included in the classification of focal (partial) seizures? Epilepsia. 2013;54:1125–1130.
  • Cavanna AE, Monaco F. Brain mechanisms of altered conscious state during epileptic seizures. Nat Rev Neurol. 2009;5:267–276.
  • Duncan JS, Sander JW, Sisodiya SM, et al. Adult epilepsy. Lancet. 2006;367:1087–1100.
  • Lason W, Dudra-Jastrzebska M, Rejdak K, et al. Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions. Pharmacol Rep. 2011;63:271–292.
  • Verrotti A, Lattanzi S, Brigo F, et al. Pharmacodynamic interactions of antiepileptic drugs: from bench to clinical practice. Epilepsy Behav. 2020;104:106939.
  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–319.
  • St. Louis EK. Truly rational polytherapy: maximizing efficacy and minimizing drug interactions, drug load, and adverse effects. Curr Neuropharmacol. 2009;7(2):96–105.
  • Gaitatzis A, Carroll K, Majeed A, et al. The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia. 2004;45:1613–1622.
  • Keezer MR, Sisodiya SM, Sander JW. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 2016;15:106–115.
  • Mahemuti G, Zhang H, Li J, et al. Efficacy and side effects of intravenous theophylline in acute asthma: a systematic review and meta-analysis. Drug Des Devel Ther. 2018;12:99–120.
  • Cooney L, Sinha I, Hawcutt D. Aminophylline dosage in asthma exacerbations in children: A systematic review. PLoS One. 2016;11:e0159965.
  • Bierman CW, Williams PV. Therapeutic monitoring of theophylline. Rational and current status. Clin Pharmacokinet. 1989;17:377–381.
  • Yarnell PR, Chu NS. Focal seizures and aminophylline. Neurology. 1975;25:819–822.
  • Zwillich CW, Sutton FD, Neff TA, et al. Theophylline-induced seizures in adults. Correlation with serum concentrations. Ann Intern Med. 1975;82:784–787.
  • Mares P, Kubová H, Czuczwar SJ. Aminophylline exhibits convulsant action in rats during ontogenesis. Brain Dev. 1994;16:296–300.
  • Czuczwar SJ, Janusz W, Wamil A, et al. Inhibition of aminophylline-induced convulsions in mice by antiepileptic drugs and other agents. Eur J Pharmacol. 1987;144:309–315.
  • Czuczwar SJ, Turski WA, Ikonomidou C, et al. Aminophylline and CGS 8216 reverse the protective action of diazepam against electroconvulsions in mice. Epilepsia. 1985;26:693–696.
  • Czuczwar SJ, Ikonomidou C, Kleinrok Z, et al. Effect of aminophylline on the protective action of common antiepileptic drugs against electroconvulsions in mice. Epilepsia. 1986;27:204–208.
  • Wlaź P, Roliński Z, Kleinrok Z, et al. Anticonvulsant activity of carbamazepine and diphenylhydantoin against maximal electroshock in mice chronically treated with aminophylline. J Neural Transm Gen Sect. 1992;89:41–48.
  • Wlaz P, Rolinski Z, Klinrok Z, et al. Influence of chronic aminophylline on the anticonvulsant efficacy of phenobarbital and valproate in mice. Epilepsia. 1993;1993(34):385–389.
  • Luszczki JJ, Jankiewicz K, Jankiewicz M, et al. Pharmacokinetic and pharmacodynamic interactions of aminophylline and topiramate in the mouse maximal electroshock-induced seizure model. Eur J Pharmacol. 2007;562:53–59.
  • Borowicz KK, Swiader M, Zgrajka W, et al. Influence of several convulsants on the protective activity of a noncompetitive AMPA/kainite antagonist, LY 300164, and lamotrigine against maximal electroshock in mice. J Physiol Pharmacol. 2002;53:859–869.
  • Luszczki JJ, Jankiewicz K, Jankiewicz M, et al. Influence of aminophylline on the anticonvulsive action of gabapentin in the mouse maximal electroshock seizure threshold model. J Neural Transm. 2007;114:1539–1545.
  • Tellez-Zenteno JF, Patten SB, Jette N, et al. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia. 2007;48:2336–2344.
  • Wiegartz P, Seidenberg M, Woodard A, et al. Co-morbid psychiatric disorder in chronic epilepsy: recognition and etiology of depression. Neurology. 1999;53:3–8.
  • Hitris N, Mohanraj R, Norrie J, et al. Predictors of pharmacoresistant epilepsy. Epilepsy Res. 2007;75:192–196.
  • Zienowicz M, Wisłowska A, Lehner M, et al. The effect of fluoxetine in a model of chemically induced seizures – behavioral and immunocytochemical study. Neurosci Lett. 2005;373:226–231.
  • Ceyhan M, Kayir H, Uzbay IT. Investigation of the effects of tianeptine and fluoxetine on pentylenetetrazole-induced seizures in rats. J Psychiatr Res. 2005;39:191–196.
  • Borowicz KK, Piskorska B, Stępniak B, et al. Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann Agric Environ Med. 2012;19:487–490.
  • Magyar J, Rusznák Z, Harasztosi C, et al. Differential effects of fluoxetine enantiomers in mammalian neural and cardiac tissues. Int J Mol Med. 2003;11:535–542.
  • Ferrero AJ, Cereseto M, Reines A, et al. Chronic treatment with fluoxetine decreases seizure threshold in naïve but not in rats exposed to the learned helplessness paradigm: correlation with the hippocampal glutamate release. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:678–686.
  • Borowicz KK, Stępień K, Czuczwar SJ. Fluoxetine enhances the anticonvulsant effects of conventional antiepileptic drugs in maximal electroshock seizures in mice. Pharmacol Rep. 2006;58:83–90.
  • Borowicz KK, Furmanek-Karwowska K, Sawicka K, et al. Chronically administered fluoxetine enhances the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Eur J Pharmacol. 2007;567:77–82.
  • Raju SS, Noor AR, Gurthu S, et al. Effect of fluoxetine on maximal electroshock seizures in mice: acute vs chronic administration. Pharmacol Res. 1999;39:451–454.
  • Freitas RM, Sousa FCF, Viana GSB, et al. Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neurosci Lett. 2006;408:79–83.
  • Hernandez EJ, Williams PA, Dudek FE. Effects of fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine-induced epilepsy. Epilepsia. 2002;43:1337–1345.
  • Cardamone L, Salzberg MR, Koe AS, et al. Chronic antidepressant treatment accelerates kindling epileptogenesis in rats. Neurobiol Dis. 2014;63:194–200.
  • Peričić D, Lazić J, Švob Štrac D. Anticonvulsant effects of acute and repeated fluoxetine treatment in unstressed and stressed mice. Brain Res. 2005;1033:90–95.
  • Statnick M, Dailey J, Jobe P, et al. Neither intranigral fluoxetine nor 5,7-dihydroxytryptamine alter audiogenic seizures in genetically epilepsy-prone rats. Eur J Pharmacol. 1996;299:93–102.
  • Wada Y, Shiraishi J, Nakamura M, et al. Prolonged but not acute fluoxetine administration produces its inhibitory effect on hippocampal seizures in rats. Psychopharmacology (Berl). 1995;118:305–309.
  • Ohno Y, Soufe N, Imaoku T, et al. Serotonergic modulation of absence-like seizures in Groggy rats: a novel rat model of absence epilepsy. J Pharmacol Sci. 2010;114:99–105.
  • Leander JD. Fluoxetine, a selective serotonin-uptake inhibitor, enhances the anticonvulsant effects of phenytoin, carbamazepine, and ameltolide (LY201116). Epilepsia. 1992;33:573–576.
  • Kamal SM. Combination of valproate and paroxetine in mice exposed to picrotoxin. Int J Nanomedicine. 2012;7:2583–2589.
  • Rizwan AN, Ali A, Dua Y, et al. Effects of gabapentin and antidepressant drug combinations on convulsions and memory in mice. Pol J Pharmacol. 2003;55:965–971.
  • Sitges M, Aldana BI, Gomez CD, et al. The antidepressant sertraline prevents the behavioural and EEG changes induced in two animal models of seizures. Epilepsy Behav. 2012;25:511–516.
  • Ahern TH, Javors MA, Eagles DA, et al. The effects of chronic norepinephrine transporter inactivation on seizure susceptibility in mice. Neuropsychopharmacology. 2006;31:730–738.
  • Uzbay IT. Serotonergic anti-depressants and ethanol withdrawal syndrome: a review. Alcohol Alcohol. 2008;43:15–24.
  • Sağlam E, Uzbay IT, Kayir H, et al. Effects of venlafaxine on ethanol withdrawal syndrome in rats. Fundam Clin Pharmacol. 2004;18:693–698.
  • Borowicz KK, Gołyska D, Łuszczki JJ, et al. Effect of acutely and chronically administered venlafaxine on the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model. Eur J Pharmacol. 2011;670:114–210.
  • Santos Junior JG, Do Monte FHM, Russi M, et al. Proconvulsant effects of high doses of venlafaxine in pentylenetetrazole convulsive rats. Braz J Med Biol Res. 2002;35:469–472.
  • Borowicz KK, Furmanek-Karwowska K, Morawska M, et al. Effect of acute and chronic treatment with milnacipran potentiates the anticonvulsant activity of conventional antiepileptic drugs in the maximal electroshock-induced seizures in mice. Psychopharmacology (Berl). 2010;207:661–669.
  • Vermoesen K, Massie A, Smolders I, et al. The antidepressants citalopram and reboxetine reduce seizure frequency in rats with chronic epilepsy. Epilepsia. 2012;53:870–878.
  • Vermoesen K, Serruys ASK, Loyens E, et al. Assessment of the convulsant liability of antidepressants using zebrafish and mouse seizure models. Epilepsy Behav. 2011;22:450–460.
  • Borowicz KK, Zarczuk R, Latalski M, et al. Reboxetine and its influence on the action of classical drugs in the mouse maximal electroshock model. Pharmacol Rep. 2014;66:430–435.
  • Popławska M, Wróblewska D, Borowicz KK. Interactions between an antidepressant reboxetine and four classic antiepileptic drugs in the mouse model of myoclonic seizures. Pharmacol Rep. 2015;67:1141–1146.
  • Tutka P, Barczyński B, Wielosz M. Convulsant and anticonvulsant effects of bupropion in mice. Eur J Pharmacol. 2004;499:117–120.
  • Tutka P, Mróz T, Klucha K, et al. Bupropion-induced convulsions: preclinical evaluation of antiepileptic drugs. Epilepsy Res. 2005;64:13–22.
  • Barczyński B, Buszewicz G, Łuszczki JJ, et al. Low dose of bupropion significantly enhances the anticonvulsant activity of felbamate, lamotrigine and topiramate in mice. Eur J Pharmacol. 2011;650:550–555.
  • Banach M, Popławska M, Błaszczyk B, et al. Pharmacokinetic/pharmacodynamic considerations for epilepsy - depression comorbidities. Expert Opin Drug Metab Toxicol. 2016;12:1067–1080.
  • Knobloch LC, Goldstein JM, Malick JB. Effects of acute and subacute antidepressant treatment on kindled seizures in rats. Pharmacol Biochem Behav. 1982;17:461–465.
  • Clifford DB, Rutherford JL, Hicks FG, et al. Acute effects of antidepressants on hippocampal seizures. Ann Neurol. 1985;18:692–697.
  • Borowicz KK, Banach M, Zarczuk R, et al. Acute and chronic treatment with mianserin differentially affects the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Psychopharmacology (Berl). 2007;195:167–174.
  • Stach R, Lazarova MB, Kacz D. The effects of antidepressant drugs on the seizures kindled from the rabbit amygdala. Pol J Pharmacol Pharm. 1980;32:505–512.
  • Amabeoku GJ. The involvement of noradrenaline, 5-hydroksytryptamine and acetylocholine in imipramine-induced seizures in mice. Experientia. 1993;49:859–864.
  • Borowicz KK, Gurdziel E, Czuczwar SJ. Trazodone reduces the anticonvulsant action of certain classical antiepileptics in the mouse maximal electroshock model. Pharmacol Rep. 2012;64:1135–1145.
  • Uzbay TI, Kayir H, Ceyhan M. Effects of tianeptine on onset time of pentylenetetrazole-induced seizures in mice: possible role of adenosine A1 receptors. Neuropsychopharmacology. 2007;32:412–416.
  • Uzbay T, Kayir H, Çelik T, et al. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:478–485.
  • Borowicz KK, Banach M, Piskorska B, et al. Effect of acute and chronic tianeptine on the action of classical antiepileptics in the mouse maximal electroshock model. Pharmacol Rep. 2013;65:379–388.
  • Steinert T, Baier H, Fröscher W, et al. Epileptic seizures during treatment with antidepressants and neuroleptics. Fortschr Neurol Psychiatr. 2011;79:138–143. (in German)
  • Landmark CJ, Henning O, Johannessen SI. Proconvulsant effects of antidepressants - What is the current evidence? Epilepsy Behav. 2016;61:287–291.
  • Kühn KU, Quednow BB, Markus Thiel M, et al. Antidepressive treatment in patients with temporal lobe epilepsy and major depression: a prospective study with three different antidepressants. Epilepsy Behav. 2003;4:674–679.
  • De Riu PL, Petruzzi V, Testa C, et al. Propofol anticonvulsant activity in experimental epileptic status. Br J Anaesth. 1992;69:177–181.
  • DeGiorgio CM, Tomiyasu U, Gott PS, et al. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia. 1992;3:23–27.
  • Orser BA, Pennefather PS, MacDonald F. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology. 1997;86:903–917.
  • Yamakura T, Sakimura K, Shimoji K, et al. Effects of propofol on various AMPA-, kainate-and NMDA-selective glutamate receptor channels expressed in Xenopus oocytes. Neurosci Lett. 1995;188:187–190.
  • Black JA, Golden GT, Fariello RG. Ketamine activation of experimental corticoreticular epilepsy. Neurology. 1980;30:315–318.
  • Kounenis G, Koutsoviti-Papadopoulou M, Elezoglou V. Ketamine may modify intestinal motility by acting at GABA(A) receptor complex; an in vitro study on the guinea pig intestine. Pharmacol Res. 1995;31:337–340.
  • Sanna E, Motzo C, Usala M. Characterization of the electrophysiological and pharmacological effects of 4-iodo-2,6-diisopropylphenol, a propofol analogue devoid of sedative-anaesthetic properties. Br J Pharmacol. 1999;126:1444–1454.
  • Hill-Venning C, Belelli D, Peters JA, et al. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br J Pharmacol. 1997;120:749–756.
  • Krasowski MD, Jenkins A, Flood P, et al. General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of gamma-amino-butyric acid (GABA) current at the GABA(A) receptor but not with lipid solubility. J Pharmacol Exp Ther. 2001;297:338–351.
  • Rehberg B, Duch DS. Suppression of central nervous system sodium channels by propofol. Anesthesiology. 1999;91:512–520.
  • Inoue Y, Shibuya I, Kabashima N, et al. The mechanism of inhibitory actions of propofol on rat supraoptic neurons. Anesthesiology. 1999;91:167–178.
  • Albertson TE, Walby WF, Stark LG, et al. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal. Life Sci. 1996;58:2396–2407.
  • Funahashi M, Higuchi H, Miyawaki T, et al. Propofol suppresses a hyperpolarization-activated inward current in rat hippocampal CA1 neurons. Neurosci Lett. 2001;311:177–180.
  • Batjer HH, Frankfurt AI, Michenfelder JD. Use of etomidate, temporary arterial occlusion, and intraoperative angiography in surgical treatment of large and giant cerebral aneurysms. J Neurosurg. 1988;68:234–240.
  • Borowicz KK, Zadrożniak M, Świąder M, et al. Interaction of the neurosteroid alphaxalone with conventional antiepileptic drugs in different types of experimental seizures. Eur J Pharmacol. 2002;449:85–90.
  • Bowyer JF, Albertson TE, Winters WD. Cortical kindled seizures: modification by excitant and depressant drugs. Epilepsia. 1983;24:356–367.
  • Trommer BL, Pasternak JF. NMDA receptor antagonists inhibit kindling epileptogenesis and seizure expression in developing rats. Brain Res Dev Brain Res. 1990;53:248–252.
  • Reder BS, Trapp LD, Troutman KC. Ketamine suppression of chemically-induced convulsions in the two-day-old white leghorn cockerel. Anesth Analg. 1980;59:406–409.
  • Ashton D. Diazepam, pentobarbital and D-etomidate produced increases in bicuculline seizure threshold; selective antagonism by RO15-1788, picrotoxin and (F)-DMBB. Eur J Pharmacol. 1983;28:319–325.
  • Lee VC, Moscicki JC, DiFazio CA. Propofol sedation produces dose-dependent suppression of lidocaine-induced seizures in rats. Anesth Analg. 1998;86:652–657.
  • Borowicz KK, Czuczwar SJ. Effects of etomidate, ketamine or propofol, and their combinations with conventional antiepileptic drugs on amygdala-kindled convulsions in rats. Neuropharmacology. 2003;45:315–324.
  • Borowicz KK, Luszczki J, Czuczwar SJ. Interactions between non-barbiturate injectable anesthetics and conventional antiepileptic drugs in the maximal electroshock test in mice - an isobolographic analysis. Eur Neuropsychopharmacol. 2004;14:163–172.
  • Lee JH, Kim D, Hong HN, et al. Protective effect of etomidate on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci Lett. 2000;286:179–182.
  • Fang Y, Wang X. Ketamine for the treatment of refractory status epilepticus. Seizure. 2015;30:14–20.
  • Mewasingh LD, Sékhara T, Aeby A, et al. Oral ketamine in paediatric non-convulsive status epilepticus. Seizure. 2003;12:483–489.
  • Prasad A, Worrall BB, Bertram EH, et al. Propofol and midazolam in the treatment of refractory status epilepticus. Epilepsia. 2001;42: 380–366.
  • Benarroch EE. HCN channels: function and clinical implications. Neurology. 2013;80(3):304–310.
  • Roubille F, Tardif JC. New therapeutic targets in cardiology, heart failure and arrhythmia: HCN channels. Circulation. 2013;127(19):1620–1629.
  • Campbell TJ, Williams KM. Therapeutic drug monitoring: antiarrhythmic drugs. Br J Clin Pharmacol. 1998;46:307–319.
  • Alexander GJ, Kopeloff LM, Alexander RB, et al. Mexiletine: biphasic action on convulsive seizures in rodents. Neurobehav Toxicol Teratol. 1986;8:231–235.
  • Borowicz-Reutt KK, Banach M, Piskorska B. Mexiletine and its interactions with classical antiepileptic drugs: an isobolographic analysis. Neurochemical Res. 2016;41:1185–1191.
  • von Philipsborn G, Gries J, Hofmann HP, et al. Pharmacological studies on propafenone and its main metabolite 5-hydroxypropafenone. Arzneimittelforschung. 1984;34:1489–1497.
  • Banach M, Piskorska B, Borowicz-Reutt KK. Propafenone enhances the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep. 2016;68:555–560.
  • Borowicz-Reutt KK, Popławska M, Banach M, et al. Influence of propafenone on the anticonvulsant activity of various novel antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep. 2018;70:481–487.
  • Akkan AG, Yillar DO, Eskazan E, et al. The neuropharmacology of beta adrenolytics. The effect of propranolol on maximal electroshock seizures in mice. Psychiatr Neurol Med Psychol. 1985;37:385–399.
  • De Sarro G, Di Paola ED, Ferreri G, et al. Influence of some beta-adrenoceptor antagonists on the anticonvulsant potency of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur J Pharmacol. 2002;442:205–213.
  • Fischer W. Anticonvulsant profile and mechanism of action of propranolol and its two enantiomers. Seizure. 2002;2002(11):285–302.
  • Khanna N, Ray A, Alkondon M, et al. Effect of beta-adrenoceptor antagonist and some related drugs on maximal electroshock seizures in mice. Indian J Exp Biol. 1989;27:128–130.
  • Nakamura T, Oda Y, Takahashi R, et al. Propranolol increases the threshold for lidocaine-induced convulsions in awake rats: a direct effect on the brain. Anesth Analg. 2008;106:1450–1455.
  • de Oliveira GG, Borges MA. Propranolol action in chronically unstable generalized epilepsy. Am J Ther. 1994;1:38–41.
  • Amabeoku GJ, Syce JA. Propranolol-induced seizures in mice: the role of noradrenaline. Cell Mol Life Sci. 1997;53:646–651.
  • Goel R, Goel A, Kumar Y. Anticonvulsant activity with neuropharmacological benefits of nevibolol in mice. Pharmacology. 2011;1:406–413.
  • Lathers CM, Stauffer AZ, Tumer N, et al. Anticonvulsant and antiarrhythmic actions of the beta blocking agent timolol. Epilepsy Res. 1989;4:42–54.
  • Luchowska E, Luchowski P, Wielosz M, et al. Propranolol and metoprolol enhance the anticonvulsant action of valproate and diazepam against maximal electroshock. Pharmacol Biochem Behav. 2002;71:223–231.
  • Goel R, Goel A, Manocha A, et al. Influence of nevibolol on anticonvulsant effect of lamotrigine. Indian J Pharmacol. 2009;41:41–46.
  • Borowicz-Reutt KK, Banach M, Rudkowska M. Nebivolol attenuates the anticonvulsant action of carbamazepine and phenobarbital against the maximal electroshock-induced seizures in mice. Pharmacol Rep. 2020;72:80–86.
  • Ozbakis-Dengiz G, Bakirci A. Anticonvulsant and hypnotic effects of amiodarone. J Zhejiang Univ Sci B. 2009;10:317–322.
  • Banach M, Popławska M, Borowicz-Reutt KK. Sotalol enhances the anticonvulsant action of valproate and diphenylhydantoin in the mouse maximal electroshock model. Pharmacol Rep. 2017;69(6):1173–1177.
  • Banach M, Popławska M, Borowicz-Reutt KK. Amiodarone, a multi-channel blocker, enhances anticonvulsive effect of carbamazepine in the mouse maximal electroshock model. Epilepsy Res. 2018;140:105–110.
  • Sawicka KM, Florek-Luszczki M, Waryniuk A, et al. Dronedarone (a multichannel blocker) enhances the anticonvulsant potency of lamotrigine, but not that of lacosamide, pregabalin and topiramate in the tonic-clonic seizure model in mice. Epilepsy Res. 2019;154:62–68.
  • De Sarro G, De Sarro A, Federico F, et al. Anticonvulsant properties of some calcium antagonists on sound-induced seizures in genetically epilepsy prone rats. Gen Pharmacol. 1990;21:769–778.
  • Kułak W, Sobaniec W, Wojtal K, et al. Calcium modulation in epilepsy. Pol J Pharmacol. 2004;56:29–41.
  • Vezzani A, Wu HQ, Stasi MA, et al. Effect of various calcium channel blockers on three different models of limbic seizures in rats. Neuropharmacology. 1998;27:451–458.
  • Wurpel JN, Iyer SN. Calcium channel blockers verapamil and nimodipine inhibit kindling in adult and immature rats. Epilepsia. 1994;35:443–449.
  • Jagiełło-Wójtowicz E, Czuczwar SJ, Chodkowska A, et al. Influence of calcium channel blockers on pentylenetetrazol and electroshock-induced convulsions in mice. Pol J Pharmacol. 1990;43:95–101.
  • El-Azab MF, Moustafa YM. Influence of calcium channel blockers on anticonvulsant and antinociceptive activities of valproic acid in pentylenetetrazole-kindled mice. Pharmacol Rep. 2012;64:305–314.
  • Czuczwar SJ, Chodkowska A, Kleinrok Z, et al. Effects of calcium channel inhibitors upon the efficacy of common antiepileptic drugs. Eur J Pharmacol. 1990;176:75–83.
  • Łuszczki JJ, Trojnar MK, Trojnar MP, et al. Effects of three calcium channel antagonists (amlodipine, diltiazem and verapamil) on the protective action of lamotrigine in the mouse maximal electroshock-induced seizure model. Pharmacol Rep. 2007;59:672–682.
  • Łuszczki JJ, Trojnar MK, Trojnar MP, et al. Effects of amlodipine, diltiazem, and verapamil on the anticonvulsant action of topiramate against maximal electroshock-induced seizures in mice. Can J Physiol Pharmacol. 2008;86:113–121.
  • De Sarro GB, De Sarro A, Trimarchi GR, et al. Effects of some calcium antagonists upon the activity of common antiepileptic compounds on sound-induced seizures in DBA/2 mice. Gen Pharmacol. 1992;23:75–82.
  • Czuczwar SJ, Małek U, Kleinrok Z. Influence of calcium channel inhibitors upon the anticonvulsant efficacy of common antiepileptics against pentylenetetrazol-induced convulsions in mice. Neuropharmacology. 1990;29:943–948.
  • Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia. 2005;46:967–969.
  • Schmitt FC, Dehnicke C, Merschhemke M, et al. Verapamil attenuates the malignant treatment course in recurrent status epilepticus. Epilepsy Behav. 2010;17:565–568.
  • Summers MA, Moore JL, McAuley JW. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother. 2004;38:1631–1634.
  • Westhout FD, Nwagwu CI Intra-arterial verapamil-induced seizures: case report and review of the literature. Surg Neurol. 2007;67:483–486.
  • Nakazawa M, Okumura A, Niijima S, et al. Oral mexiletine for lidocaine-responsive neonatal epilepsy. Brain Dev. 2013;35:667–669.
  • Mori K, Ito H, Toda Y, et al. Successful management of intractable epilepsy with lidocaine tapes and continuous subcutaneous lidocaine infusion. Epilepsia. 2004;45:1287–1290.
  • de Oliveira GG, Borges MA. Propranolol action in chronically unstable generalized epilepsy. Am J Ther. 1994;1:38–41.
  • Mayer T, Specht U. Propranolol in startle induced epileptic seizures. J Neurol Neurosurg Psychiatry. 1995;58:382–383.
  • Nicita F, Spalice A, Raucci U, et al. The possible use of the L-type calcium channel antagonist verapamil in drug-resistant epilepsy. Expert Rev Neurother. 2016;16:9–15.
  • Nicita F, Spalice A, Papetti L, et al. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure. 2014;23:36–40.
  • Lakshmikanthcharan S, Hisham M, Chaitanya Juluri SK, et al. Verapamil as an adjuvant treatment for drug-resistant epilepsy. Indian J Crit Care Med. 2018;22:680–682.
  • Jackson RE, Bellamy MC. Antihypertensive drugs. BJA Educ. 2015;15:280–285.
  • Tchekalarova JD, Ivanova N, Atanasova D, et al. Long-term treatment with losartan attenuates seizure activity and neuronal damage without affecting behavioral changes in a model of co-morbid hypertension and epilepsy. Cell Mol Neurobiol. 2016;36:927–941.
  • Carey RM, Padia SH. Physiology and Regulation of the Renin–Angiotensin–Aldosterone System. In: Singh AK, Williams GH, editors. Nephro-Endocrinology. Second ed. Academic Press; 2018. p. 1–25.
  • de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep. 2018;20:10.
  • Bar-Klein G, Cacheaux LP, Kamintsky L, et al. Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol. 2014;75:864–875.
  • Pereira MGAG, Becari C, Oliveira JAC, et al. Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci. 2010;119:477–482. (Lond)
  • Łukawski K, Raszewski G, Czuczwar SJ. Interactions of aliskiren, a direct renin inhibitor, with antiepileptic drugs in the test of maximal electroshock in mice.. Eur J Pharmacol. 2018;819:108–113.
  • Clynen E, Swijsen A, Raijmakers M, et al. Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol. 2014;50:626–646.
  • Ramser J, Abidi FE, Burckle CA, et al. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet. 2005;14:1019–1027.
  • Ramirez-Sanchez M, Prieto I, Wangensteen R, et al. The renin-angiotensin system: new insight into old therapies. Curr Med Chem. 2013;20:1313–1322.
  • Krasniqi S, Daci A. Role of the angiotensin pathway and its target therapy in epilepsy management. Int J Mol Sci. 2019;20.
  • De Bundel D, Smolders I, Vanderheyden P, et al. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther. 2008;14:315–339.
  • Kalantaripour TP, Esmaeili-Mahani S, Sheibani V, et al. Anticonvulsant and neuroprotective effects of apelin-13 on pentylenetetrazole-induced seizures in male rats. Biomed Pharmacother. 2016;84:258–263.
  • Intengan HD, Thibault G, Li JS, et al. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation. 1999;100:2267–2275.
  • Kirk JK. Angiotensin-II receptor antagonists: their place in therapy. Am Fam Physician. 1999;59:3140–3148.
  • Hong S, Jian-Cheng H, Jia-Wen W, et al. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood-brain barrier permeability following pilocarpine-induced status epilepticus. Brain Res Bull. 2019;149:251–259.
  • Tchekalarova JD, Ivanova NM, Pechlivanova DM, et al. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol Biochem Behav. 2014;127:27–36.
  • Łukawski K, Janowska A, Jakubus T, et al. Angiotensin AT1 receptor antagonists enhance the anticonvulsant action of valproate in the mouse model of maximal electroshock. Eur J Pharmacol. 2010;640:172–177.
  • Łukawski K, Janowska A, Jakubus T, et al. Interactions between angiotensin AT1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock. Fundam Clin Pharmacol. 2014;28:277–283.
  • Łukawski K, Raszewski G, Czuczwar SJ. Interactions between levetiracetam and cardiovascular drugs against electroconvulsions in mice. Pharmacol Rep. 2014;66:1100–1105.
  • Łukawski K, Janowska A, Czuczwar SJ. Effect of combined treatment with AT1 receptor antagonists and tiagabine on seizures, memory and motor coordination in mice. Adv Clin Exp Med. 2015;24:565–570.
  • Łukawski K, Janowska A, Jakubus T, et al. Combined treatment with gabapentin and drugs affecting the renin–angiotensin system against electroconvulsions in mice. Eur J Pharmacol. 2013;706:92–97.
  • Joshi D, Katyal J, Arava S, et al. Effects of enalapril and losartan alone and in combination with sodium valproate on seizures, memory, and cardiac changes in rats. Epilepsy Behav. 2019;92:345–352.
  • Reyes-Garcia SZ, Scorza CA, Ortiz-Villatoro NN, et al. Losartan fails to suppress epileptiform activity in brain slices from resected tissues of patients with drug resistant epilepsy. J Neurol Sci. 2019;397:169–171.
  • Minano SJ, Serrano SJ, Sancibrian M, et al. Effect of peptidyl-dipeptidase inhibitors in experimental convulsions in mice. Fundam Clin Pharmacol. 1987;1:77–83.
  • Łukawski K, Jakubus T, Raszewski G, et al. Captopril potentiates the anticonvulsant activity of carbamazepine and lamotrigine in the mouse maximal electroshock seizure model. J Neural Transm. 2010;117:1161–1166.
  • Łukawski K, Jakubus T, Janowska A, et al. Enalapril enhances the anticonvulsant activity of lamotrigine in the test of maximal electroshock. Pharmacol Rep. 2013;65:1012–1017.
  • Łukawski K, Jakubus T, Janowska A, et al. Interactions between ACE inhibitors and classical antiepileptic drugs in the mouse maximal electroshock seizures. Pharmacol Biochem Behav. 2011;100:152–156.
  • Łukawski K, Raszewski G, Czuczwar SJ. Effect of aliskiren, a direct renin inhibitor, on the protective action of antiepileptic drugs against pentylenetetrazole-induced clonic seizures in mice. Fundam Clin Pharmacol. 2019;33:191–198.
  • Łukawski K, Świderska G, Czuczwar SJ. Effect of hydrochlorothiazide on the anticonvulsant action of antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacol Rep. 2012;64:315–320.
  • Łukawski K, Raszewski G, Czuczwar SJ. Interactions between levetiracetam and cardiovascular drugs against electroconvulsions in mice. Pharmacol Rep. 2014;66:1100–1105.
  • Kozinska J, Sawicka KM, Zadrozniak A, et al. Indapamide enhances the protective action of carbamazepine, phenobarbital, and valproate against maximal electroshock-induced seizures in mice. Adv Med Sci. 2009;54:66–74.
  • Yamada J, Zhu G, Okada M, et al. A novel prophylactic effect of furosemide treatment on autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Epilepsy Res. 2013;107:127–137.
  • Chroscinska-Krawczyk M, Radzik I, Miziak B, et al. Safety considerations for patients with epilepsy taking antiepileptic drugs alongside caffeine or other methylxanthine derivatives. Expert Opin Drug Metab Toxicol. 2014;10:981–989.
  • Italiano D, Spina E, De Leon J. Pharmacokinetic and pharmacodynamic interactions between antiepileptics and antidepressants (Review). Exp Opin Drug Metabol Toxicol. 2014;10:1457–1489.
  • Spina E, Trifiro G, Caraci F. Clinically significant drug interactions with newer antidepressants. CNS Drugs. 2012;26:39–67.
  • Macphee GJ, McInnes GT, Thompson GG, et al. Verapamil potentiates carbamazepine neurotoxicity: a clinically important inhibitory interaction. Lancet. 1986;1:700–703.
  • Verapamil-induced carbamazepine neurotoxicity. A report of two cases. Eur Neurol. 1988;28:104–105.
  • Levy RH, Collins C. Risk and predictability of drug interactions in the elderly. Int Rev Neurobiol. 2007;81:235–251.
  • Zaccara G, Lattanzi S, Cincotta M, et al. Drug treatments in patients with cardiac diseases and epilepsy. Acta Naurol Scand. 2020;142:37–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.