62
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel insights into molecular and cellular aspects of delayed drug hypersensitivity reactions

ORCID Icon &
Pages 1187-1199 | Received 18 Sep 2023, Accepted 27 Nov 2023, Published online: 04 Dec 2023

References

  • Batel Marques F, Penedones A, Mendes D, et al. A systematic review of observational studies evaluating costs of adverse drug reactions. Clinicoecon Outcomes Res. 2016;8:413–426. doi: 10.2147/CEOR.S115689
  • Bates DW, Levine DM, Salmasian H, et al. The safety of inpatient health care. N Engl J Med. 2023 Jan 12;388(2):142–153. doi: 10.1056/NEJMsa2206117
  • Bordet R, Gautier S, Le Louet H, et al. Analysis of the direct cost of adverse drug reactions in hospitalised patients. Eur J Clin Pharmacol. 2001, Mar;56(12):935–941. doi: 10.1007/s002280000260
  • Gautier S, Bachelet H, Bordet R, et al. The cost of adverse drug reactions. Expert Opin Pharmacother. 2003, Mar;4(3):319–326. doi: 10.1517/14656566.4.3.319
  • Pirmohamed M, Ostrov DA, Park BK. New genetic findings lead the way to a better understanding of fundamental mechanisms of drug hypersensitivity. J Allergy Clin Immunol. 2015, Aug;136(2):236–244. doi: 10.1016/j.jaci.2015.06.022
  • Seo B, Yang MS, Park SY, et al. Incidence and economic burden of adverse drug reactions in hospitalization: a prospective study in Korea. J Korean Med Sci. 2023 Feb 27;38(8):e56. doi: 10.3346/jkms.2023.38.e56
  • Abou-Taleb DAE, El-Sayed AM, Ghabesha AA, et al. Severe cutaneous adverse drug reactions: incidence, clinical patterns, causative drugs and modalities of treatment in Assiut University Hospital, Upper Egypt. Dermatol Ther. 2020, Nov;33(6):e14176. doi: 10.1111/dth.14176
  • Cameron HA, Ramsay LE. The lupus syndrome induced by hydralazine: a common complication with low dose treatment. Br Med J (Clin Res Ed). 1984 Aug 18;289(6442):410–2
  • Uetrecht J, Naisbitt DJ, Ma Q. Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev. 2013, Apr;65(2):779–808. doi: 10.1124/pr.113.007450
  • Elzagallaai AA, Rieder MJ. In vitro testing for diagnosis of idiosyncratic adverse drug reactions: implications for pathophysiology. Br J Clin Pharmacol. 2015, Oct;80(4):889–900. doi: 10.1111/bcp.12505
  • Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol. 2022 Jul 9;15(6):715–728. doi: 10.1080/17512433.2022.2100345
  • Alfirevic A, Pirmohamed M. Drug-induced hypersensitivity reactions and pharmacogenomics: past, present and future. Pharmacogenomics. 2010, Apr;11(4):497–499. doi: 10.2217/pgs.10.12
  • Kuruvilla R, Scott K, Pirmohamed SM. Pharmacogenomics of drug hypersensitivity: technology and translation. Immunol Allergy Clin North Am. 2022, May;42(2):335–355. doi: 10.1016/j.iac.2022.01.006
  • Sukasem C, Puangpetch A, Medhasi S, et al. Pharmacogenomics of drug-induced hypersensitivity reactions: challenges, opportunities and clinical implementation. Asian Pac J Allergy Immunol. 2014 Jun;32(2):111–123.
  • Turner RM, Magavern EF, Pirmohamed M. Pharmacogenomics: relevance and opportunities for clinical pharmacology. Br J Clin Pharmacol. 2022 Mar 28;88(9):3943–3946. doi: 10.1111/bcp.15329
  • Johansson SG, Hourihane JO, Bousquet J, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force [guideline review]. Allergy. 2001, Sep;56(9):813–24. doi: 10.1111/j.1398-9995.2001.00002.x-i1
  • Brockow K, Wurpts G, Trautmann A, et al. Guideline for allergological diagnosis of drug hypersensitivity reactions: S2k guideline of the German Society for Allergology and clinical immunology (DGAKI) in cooperation with the German dermatological Society (DDG), the Association of German Allergologists (ADA), the German Society for Pediatric Allergology (GPA), the German contact Dermatitis research group (DKG), the German Society for pneumology (DGP), the German Society of Otorhinolaryngology, head and neck surgery, the Austrian Society of Allergology and immunology (OGAI), the Austrian Society of Dermatology and venereology (OGDV), the German academy of Allergology and Environmental Medicine (DAAU), and the German documentation center for severe skin reactions (dZh). Allergol Select. 2023;7:122–139. doi: 10.5414/ALX02422E
  • Johansson SG, Bieber T, Dahl R, et al. Revised nomenclature for allergy for global use: report of the nomenclature review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004, May;113(5):832–6. doi: 10.1016/j.jaci.2003.12.591
  • Demoly P, Viola M, Rebelo Gomes E, et al. Epidemiology and causes of drug hypersensitivity. In: Pichler Weditor. Drug hypersensitivity. Basel: Karger; 2007. p. 2–17.
  • Pagani S, Lombardi N, Crescioli G, et al. Drug-related hypersensitivity reactions leading to emergency department: original data and systematic review. J Clin Med. 2022 May 16;11(10):2811. doi: 10.3390/jcm11102811
  • Coombs R, Gell P. Classifications of allergi reactions responsible for clinical hypersensitivity and disease. In: Gell P, Coombs R Lachman P, editors Clinical aspects of immunology. London: Blackwell Scientific Publications; 1975. p. 761–81.
  • Gell PG, Coombs RR. Clinical aspects of immunology. Clin Aspects Immunol. 1963;xxvi–883.
  • Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy. 2019, Aug;74(8):1457–1471. doi: 10.1111/all.13765
  • Pichler WJ, Adam J, Daubner B, et al. Drug hypersensitivity reactions: pathomechanism and clinical symptoms. Med Clin North Am. 2010, Jul;94(4):645–664, xv. doi: 10.1016/j.mcna.2010.04.003
  • Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy. Allergy. 2014, Apr;69(4):420–437. doi: 10.1111/all.12350
  • Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003 Oct 21;139(8):683–693. doi: 10.7326/0003-4819-139-8-200310210-00012
  • Mockenhaupt M. Epidemiology of cutaneous adverse drug reactions. Chem Immunol Allergy. 2012;97:1–17.
  • Wang CW, Divito SJ, Chung WH, et al. Advances in the pathomechanisms of delayed drug hypersensitivity. Immunol Allergy Clin North Am. 2022, May;42(2):357–373. doi: 10.1016/j.iac.2022.01.002
  • Likic R, Bevanda Glibo D. Pathophysiology of allergic drug reactions. Psychiatr Danub. 2019 Mar;31(Suppl 1):66–69.
  • Balakirski G, Merk HF. Cutaneous allergic drug reactions: update on pathophysiology, diagnostic procedures and differential diagnosic. Cutan Ocul Toxicol. 2017, Dec;36(4):307–316. doi: 10.1080/15569527.2017.1319379
  • Armitage KF, Porter CE, Ahmed S, et al. Penicillin allergy status and its effect on antibiotic prescribing, patient outcomes and antimicrobial resistance (ALABAMA): protocol for a multicentre, parallel-arm, open-label, randomised pragmatic trial. BMJ Open. 2023 Sep 4;13(9):e072253. doi: 10.1136/bmjopen-2023-072253
  • Rodriguez-Perez R, de Las Vecillas L, Cabanas R, et al. Tools for etiologic diagnosis of drug-induced allergic conditions. Int J Mol Sci. 2023 Aug 8;24(16):12577. doi: 10.3390/ijms241612577
  • Sibbald C, Shear NH, Verstegen RHJ. Flaws and limitations of classification criteria for drug reaction with eosinophilia and systemic symptoms. J Allergy Clin Immunol Pract. 2023, Sep;11(9):2693–2696. doi: 10.1016/j.jaip.2023.05.017
  • Benahmed S, Picot MC, Dumas F, et al. Accuracy of a pharmacovigilance algorithm in diagnosing drug hypersensitivity reactions. Arch Intern Med. 2005 Jul 11;165(13):1500–1505. doi: 10.1001/archinte.165.13.1500
  • Um SH, Abuzgaia A, Rieder M. Comparison of the liverpool causality assessment tool vs. the naranjo scale for predicting the likelihood of an adverse drug reaction: a retrospective cohort study. Br J Clin Pharmacol. 2023, Aug;89(8):2407–2412. doi: 10.1111/bcp.15704
  • Benahmed S, Picot MC, Hillaire-Buys D, et al. Comparison of pharmacovigilance algorithms in drug hypersensitivity reactions. Eur J Clin Pharmacol. 2005, Aug;61(7):537–541. doi: 10.1007/s00228-005-0962-1
  • Elzagallaai AA, Jahedmotlagh Z, Del Pozzo-Magana BR, et al. Predictive value of the lymphocyte toxicity assay in the diagnosis of drug hypersensitivity syndrome. Mol Diagn Ther. 2010 Oct 1;14(5):317–322. doi: 10.1007/BF03256387
  • Elzagallaai AA, Knowles SR, Rieder MJ, et al. In vitro testing for the diagnosis of anticonvulsant hypersensitivity syndrome: a systematic review. Mol Diagn Ther. 2009;13(5):313–330.
  • Elzagallaai AA, Koren G, Bend JR, et al. In vitro testing for hypersensitivity-mediated adverse drug reactions: challenges and future directions. Clin Pharmacol Ther. 2011, Sep;90(3):455–460. doi: 10.1038/clpt.2011.155
  • Elzagallaai AA, Koren G, Rieder MJ. The predictive value of the in vitro platelet toxicity assay (iPTA) for the diagnosis of hypersensitivity reactions to sulfonamides. J Clin Pharmacol. 2013, Jun;53(6):626–632. doi: 10.1002/jcph.85
  • Elzagallaai AA, Rieder MJ, Koren G. The in vitro platelet toxicity assay (iPTA): a novel approach for assessment of drug hypersensitivity syndrome. J Clin Pharmacol. 2011, Mar;51(3):428–435. doi: 10.1177/0091270010365554
  • Chiriac AM, Demoly P. Drug provocation tests: up-date and novel approaches. Allergy, Asthma Clin Immunol. 2013 Apr 3;9(1):12. doi: 10.1186/1710-1492-9-12
  • Moral L, Mori F. Drug provocation tests in children: all that glitters is not gold. Pediatr Allergy Immunol. 2023, Aug;34(8):e14002. doi: 10.1111/pai.14002
  • Roujeau JC. Clinical heterogeneity of drug hypersensitivity. Toxicology. 2005 Apr 15;209(2):123–129. doi: 10.1016/j.tox.2004.12.022
  • Bigby M. Incidence, prevalence and the rates of cutaneous reactions to drugs. J Eur Acad Dermatol Venereol. 2000, Nov;14(6):435. doi: 10.1046/j.1468-3083.2000.00167.x
  • Bigby M. Rates of cutaneous reactions to drugs. Arch Dermatol. 2001, Jun;137(6):765–70. doi: 10.1001/archderm.137.12.1639
  • Crowson AN, Brown TJ, Magro CM. Progress in the understanding of the pathology and pathogenesis of cutaneous drug eruptions: implications for management. Am J Clin Dermatol. 2003;4(6):407–428. doi: 10.2165/00128071-200304060-00005
  • Duong TA, Valeyrie-Allanore L, Wolkenstein P, et al. Severe cutaneous adverse reactions to drugs. Lancet. 2017 Oct 28;390(10106):1996–2011. doi: 10.1016/S0140-6736(16)30378-6
  • Cekic S, Canitez Y, Yuksel H, et al. A comprehensive assessment of long-term complications in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. Int Arch Allergy Immunol. 2023 Jul 26;184(10):994–1002. doi: 10.1159/000531366
  • Hama N, Sunaga Y, Ochiai H, et al. Development and validation of a novel score to predict mortality in Stevens-Johnson syndrome and toxic epidermal necrolysis: CRISTEN. J Allergy Clin Immunol Pract. 2023 Jul 8;11(10):3161–3168.e2. doi: 10.1016/j.jaip.2023.07.001
  • Saito Y, Abe R. New insights into the diagnosis and management of Stevens-Johnson syndrome and toxic epidermal necrolysis. Curr Opin Allergy Clin Immunol. 2023 Aug 1;23(4):271–278. doi: 10.1097/ACI.0000000000000914
  • Mockenhaupt M. The current understanding of Stevens–Johnson syndrome and toxic epidermal necrolysis. Expert Rev Clin Immunol. 2011, Nov;7(6):803–815. doi: 10.1586/eci.11.66
  • Hosack T, Damry D, Biswas S. Drug-induced liver injury: a comprehensive review. Therap Adv Gastroenterol. 2023;16:17562848231163410. doi: 10.1177/17562848231163410
  • Teschke R, Uetrecht J. Mechanism of idiosyncratic drug induced liver injury (DILI): unresolved basic issues. Ann Transl Med. 2021, Apr;9(8):730. doi: 10.21037/atm-2020-ubih-05
  • Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic drug-induced liver injury: mechanistic and clinical challenges. Int J Mol Sci. 2021 Mar 14;22(6):2954. doi: 10.3390/ijms22062954
  • Andrade RJ, Robles M, Ulzurrun E, et al. Drug-induced liver injury: insights from genetic studies. Pharmacogenomics. 2009, Sep;10(9):1467–1487. doi: 10.2217/pgs.09.111
  • Martinez-Cabriales SA, Rodriguez-Bolanos F, Shear NH. Drug reaction with Eosinophilia and systemic symptoms (DReSS): how far have we come? Am J Clin Dermatol. 2019, Apr;20(2):217–236. doi: 10.1007/s40257-018-00416-4
  • Hama N, Abe R, Gibson A, et al. Drug-induced hypersensitivity syndrome (Dihs)/drug reaction with eosinophilia and systemic symptoms (DRESS): clinical features and pathogenesis. J Allergy Clin Immunol Pract. 2022, May;10(5):1155–1167 e5. doi: 10.1016/j.jaip.2022.02.004
  • Thongsri T, Chularojanamontri L, Pichler WJ. Cardiac involvement in DRESS syndrome. Asian Pac J Allergy Immunol. 2017, Mar;35(1):3–10. doi: 10.12932/AP0847
  • Shiohara T, Kano Y. Drug reaction with eosinophilia and systemic symptoms (DRESS): incidence, pathogenesis and management. Expert Opin Drug Saf. 2017, Feb;16(2):139–147. doi: 10.1080/14740338.2017.1270940
  • Shiohara T, Iijima M, Ikezawa Z, et al. The diagnosis of a DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations. Br J Dermatol. 2007, May;156(5):1083–1084. doi: 10.1111/j.1365-2133.2007.07807.x
  • Landsteiner K, Jacobs J. Studies on the sensitization of animals with simple chemical compounds. J Exp Med. 1935 Apr 30;61(5):643–656. doi: 10.1084/jem.61.5.643
  • Park BK, Kitteringham NR, Powell H, et al. Advances in molecular toxicology-towards understanding idiosyncratic drug toxicity. Toxicology. 2000 Nov 16;153(1–3):39–60. doi: 10.1016/S0300-483X(00)00303-6
  • Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974, Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974
  • Lima LM, Silva B, Barbosa G, et al. Beta-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem. 2020 Dec 15;208:112829. doi: 10.1016/j.ejmech.2020.112829
  • Zdziarski P. Electrophoretic properties of beta-lactam and serum protein conjugates. Acta Pol Pharm. 2000 Nov;57(6):411–413.
  • Meng X, Al-Attar Z, Yaseen FS, et al. Definition of the nature and hapten threshold of the beta-lactam antigen required for T cell activation in vitro and in patients. J Immunol. 2017 Jun 1;198(11):4217–4227. doi: 10.4049/jimmunol.1700209
  • Bechara R, Maillere B, Joseph D, et al. Identification and characterization of a naive CD8+ T cell repertoire for benzylpenicillin. Clin Exp Allergy. 2019, May;49(5):636–643. doi: 10.1111/cea.13338
  • Padovan E, Mauri-Hellweg D, Pichler WJ, et al. T cell recognition of penicillin G: structural features determining antigenic specificity. Eur J Immunol. 1996, Jan;26(1):42–48. doi: 10.1002/eji.1830260107
  • Brander C, Mauri-Hellweg D, Bettens F, et al. Heterogeneous T cell responses to beta-lactam-modified self-structures are observed in penicillin-allergic individuals. J Immunol. 1995 Sep 1;155(5):2670–2678. doi: 10.4049/jimmunol.155.5.2670
  • Nicoletti P, Aithal GP, Chamberlain TC, et al. Drug-Induced Liver Injury due to Flucloxacillin: Relevance of Multiple Human Leukocyte Antigen Alleles. Clin Pharmacol Ther. 2019, Jul;106(1):245–253. doi: 10.1002/cpt.1375
  • Manson LEN, Swen JJ, Guchelaar HJ. Diagnostic test criteria for HLA genotyping to prevent drug hypersensitivity reactions: a systematic review of actionable HLA recommendations in CPIC and DPWG guidelines. Front Pharmacol. 2020;11:567048. doi: 10.3389/fphar.2020.567048
  • Gao Y, Song B, Aoki S, et al. Conjugation of human serum albumin and flucloxacillin provokes specific immune response in HLA-B*57:01 transgenic mice. Immunol Lett. 2022, Sep;249:5–11
  • Pallardy M, Bechara R. Chemical or drug hypersensitivity: is the immune system clearing the danger? Toxicol Sci. 2017 Jul 1;158(1):14–22. doi: 10.1093/toxsci/kfx084
  • Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001, Feb;13(1):114–9. doi: 10.1016/S0952-7915(00)00191-6
  • Mitchell JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 1973 Oct;187(1):185–194.
  • Boyd MR, Burka LT, Wilson BJ. Distribution, excretion, and binding of radioactivity in the rat after intraperitoneal administration of the lung-toxic furan, [14C]4-ipomeanol. Toxicol Appl Pharmacol. 1975, Apr;32(1):147–57. doi: 10.1016/0041-008X(75)90205-7
  • Gillette JR, Michell JR, Brodie BB. Biochemical mechanisms of drug toxicity. Ann Rev Pharmacol. 1974;14:271–288. doi: 10.1146/annurev.pa.14.040174.001415
  • Jollow DJ, Mitchell JR, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973 Oct;187(1):195–202.
  • Reid WD, Krishna G, Gillette R, et al. Biochemical mechanism of hepatic necrosis induced by aromatic hydrocarbons. Pharmacology. 1973;10(4):193–214.
  • Mitchell JR, Zimmerman HJ, Ishak KG, et al. Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. Ann Intern Med. 1976, Feb;84(2):181–92. doi: 10.7326/0003-4819-84-2-181
  • Park BK, Naisbitt DJ, Gordon SF, et al. Metabolic activation in drug allergies. Toxicology. 2001 Feb 2;158(1–2):11–23. doi: 10.1016/S0300-483X(00)00397-8
  • Pirmohamed M, Kitteringham NR, Park BK. The role of active metabolites in drug toxicity. Drug Saf. 1994, Aug;11(2):114–144. doi: 10.2165/00002018-199411020-00006
  • Naisbitt DJ, Williams DP, Pirmohamed M, et al. Reactive metabolites and their role in drug reactions. Curr Opin Allergy Clin Immunol. 2001, Aug;1(4):317–325. doi: 10.1097/00130832-200108000-00007
  • Elzagallaai AA, Sultan EA, Bend JR, et al. Role of oxidative stress in hypersensitivity reactions to sulfonamides. J Clin Pharmacol. 2020, Mar;60(3):409–421. doi: 10.1002/jcph.1535
  • Ali SE, Meng X, Kafu L, et al. Detection of hepatic drug metabolite-specific T-Cell responses using a human hepatocyte, immune cell coculture system. Chem Res Toxicol. 2023 Mar 20;36(3):390–401. doi: 10.1021/acs.chemrestox.2c00343
  • Ju C, Uetrecht JP. Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. J Pharmacol Exp Ther. 1999 Jan;288(1):51–56.
  • Kato R, Ijiri Y, Hayashi T, et al. The 2-hydroxyiminostilbene metabolite of carbamazepine or the supernatant from incubation of hepatocytes with carbamazepine activates inflammasomes: implications for carbamazepine-induced hypersensitivity reactions. Drug Metab Dispos. 2019, Oct;47(10):1093–1096. doi: 10.1124/dmd.119.087981
  • Pirmohamed M, Kitteringham NR, Guenthner TM, et al. An investigation of the formation of cytotoxic, protein-reactive and stable metabolites from carbamazepine in vitro. Biochem Pharmacol. 1992 Apr 15;43(8):1675–1682. doi: 10.1016/0006-2952(92)90696-G
  • Knowles SR, Uetrecht J, Shear NH. Idiosyncratic drug reactions: the reactive metabolite syndromes. Lancet. 2000 Nov 4;356(9241):1587–1591. doi: 10.1016/S0140-6736(00)03137-8
  • Szultka M, Krzeminski R, Jackowski M, et al. Identification of in vitro metabolites of amoxicillin in human liver microsomes by LC-ESI/MS. Chromatographia. 2014;77:1027–1035. doi: 10.1007/s10337-014-2648-2
  • Born SL, Hu JK, Lehman-McKeeman LD. O-hydroxyphenylacetaldehyde is a hepatotoxic metabolite of coumarin. Drug Metab Dispos. 2000 Feb;28(2):218–223.
  • Sharma AM, Klarskov K, Uetrecht J. Nevirapine bioactivation and covalent binding in the skin. Chem Res Toxicol. 2013 Mar 18;26(3):410–421. doi: 10.1021/tx3004938
  • Sharma AM, Novalen M, Tanino T, et al. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash. Chem Res Toxicol. 2013 May 20;26(5):817–827. doi: 10.1021/tx400098z
  • Uetrecht J. Idiosyncratic drug reactions: a 35-year chemical research in Toxicology perspective. Chem Res Toxicol. 2022 Jun 10;35(10):1649–1654. doi: 10.1021/acs.chemrestox.2c00090
  • Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12(1):991–1045. doi: 10.1146/annurev.iy.12.040194.005015
  • Zhao T, Cai Y, Jiang Y, et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023 Jul 19;8(1):283. doi: 10.1038/s41392-023-01557-7
  • Matzinger P. An innate sense of danger. Semin Immunol. 1998, Oct;10(5):399–415. doi: 10.1006/smim.1998.0143
  • Uetrecht JP. New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol. 1999, May;12(5):387–395. doi: 10.1021/tx980249i
  • Zhang X, Sharma AM, Uetrecht J. Identification of danger signals in nevirapine-induced skin rash. Chem Res Toxicol. 2013 Sep 16;26(9):1378–1383. doi: 10.1021/tx400232s
  • Bergmann C, Poli A, Agache I, et al. AllergoOncology: danger signals in allergology and oncology: a European Academy of Allergy and clinical immunology (EAACI) position paper. Allergy. 2022 Feb 13;77(9):2594–2617. doi: 10.1111/all.15255
  • Sanchez-Quintero MJ, Torres MJ, Blazquez AB, et al. Synergistic effect between amoxicillin and TLR ligands on dendritic cells from amoxicillin-delayed allergic patients. PLoS One. 2013;8(9):e74198.
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999, Nov;5(11):1249–1255. doi: 10.1038/15200
  • Ramirez GA, Ripa M, Burastero S, et al. Drug reaction with Eosinophilia and systemic symptoms (DRESS): focus on the pathophysiological and diagnostic role of viruses. Microorganisms. 2023 Jan 30;11(2). doi: 10.3390/microorganisms11020346
  • Shiohara T, Ushigome Y, Kano Y, et al. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin Rev Allergy Immunol. 2015, Oct;49(2):192–202. doi: 10.1007/s12016-014-8421-3
  • Levy M. The combined effect of viruses and drugs in drug-induced diseases. Med Hypotheses. 1984, Jul;14(3):293–296. doi: 10.1016/0306-9877(87)90131-9
  • Onodi-Nagy K, Kinyo A, Meszes A, et al. Amoxicillin rash in patients with infectious mononucleosis: evidence of true drug sensitization. Allergy, Asthma Clin Immunol. 2015;11(1):1.
  • Renn CN, Straff W, Dorfmuller A, et al. Amoxicillin-induced exanthema in young adults with infectious mononucleosis: demonstration of drug-specific lymphocyte reactivity. Br J Dermatol. 2002, Dec;147(6):1166–1170. doi: 10.1046/j.1365-2133.2002.05021.x
  • Thompson DF, Ramos CL. Antibiotic-induced rash in patients with infectious mononucleosis. Ann Pharmacother. 2017, Feb;51(2):154–162. doi: 10.1177/1060028016669525
  • Shiohara T, Kano Y. A complex interaction between drug allergy and viral infection. Clin Rev Allergy Immunol. 2007, Oct;33(1–2):124–133. doi: 10.1007/s12016-007-8010-9
  • Coopman SA, Johnson RA, Platt R, et al. Cutaneous disease and drug reactions in HIV infection. N Engl J Med. 1993 Jun 10;328(23):1670–1674. doi: 10.1056/NEJM199306103282304
  • Rzany B, Mockenhaupt M, Stocker U, et al. Incidence of Stevens-Johnson syndrome and toxic epidermal necrolysis in patients with the acquired immunodeficiency syndrome in Germany. Arch Dermatol. 1993, Aug;129(8):1059. doi: 10.1001/archderm.1993.01680290135026
  • Chimbetete T, Buck C, Choshi P, et al. HIV-Associated immune dysregulation in the skin: a crucible for exaggerated inflammation and hypersensitivity. J Invest Dermatol. 2023, Mar;143(3):362–373. doi: 10.1016/j.jid.2022.07.035
  • Adeyanju K, Bend JR, Rieder MJ, et al. HIV-1 tat expression and sulphamethoxazole hydroxylamine mediated oxidative stress alter the disulfide proteome in jurkat T cells. Virol J. 2018 May 9;15(1):82. doi: 10.1186/s12985-018-0991-x
  • Bigby M, Jick S, Jick H, et al. Drug-induced cutaneous reactions. A report from the Boston collaborative drug surveillance program on 15,438 consecutive inpatients, 1975 to 1982. JAMA. 1986 Dec 26;256(24):3358–63. doi: 10.1001/jama.1986.03380240052027
  • Gordin FM, Simon GL, Wofsy CB, et al. Adverse reactions to trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency syndrome. Ann Intern Med. 1984, Apr;100(4):495–9. doi: 10.7326/0003-4819-100-4-495
  • Hennessy S, Strom BL, Berlin JA, et al. Predicting cutaneous hypersensitivity reactions to cotrimoxazole in HIV-infected individuals receiving primary Pneumocystis carinii pneumonia prophylaxis. J Gen Intern Med. 1995, Jul;10(7):380–386. doi: 10.1007/BF02599836
  • Medina I, Mills J, Leoung G, et al. Oral therapy for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. A controlled trial of trimethoprim-sulfamethoxazole versus trimethoprim-dapsone. N Engl J Med. 1990 Sep 20;323(12):776–782. doi: 10.1056/NEJM199009203231202
  • Walmsley SL, Khorasheh S, Singer J, et al. A randomized trial of N-acetylcysteine for prevention of trimethoprim-sulfamethoxazole hypersensitivity reactions in Pneumocystis carinii pneumonia prophylaxis (CTN 057). Canadian HIV trials network 057 study group. J Acquir Immune Defic Syndr Hum Retrovirol. 1998 Dec 15;19(5):498–505. doi: 10.1097/00042560-199812150-00009
  • Picard D, Janela B, Descamps V, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med. 2010 Aug 25;2(46):46ra62. doi: 10.1126/scitranslmed.3001116
  • Almeida CA, van Miert P, O’Driscoll K, et al. Virus-specific T-cell clonotypes might contribute to drug hypersensitivity reactions through heterologous immunity. J Allergy Clin Immunol. 2019, Aug;144(2):608–611 e4. doi: 10.1016/j.jaci.2019.05.009
  • Pavlos R, Mallal S, Ostrov D, et al. Fever, rash, and systemic symptoms: understanding the role of virus and HLA in severe cutaneous drug allergy. J Allergy Clin Immunol Pract. 2014, Jan;2(1):21–33. doi: 10.1016/j.jaip.2013.11.005
  • Asano Y, Kagawa H, Kano Y, et al. Cytomegalovirus disease during severe drug eruptions: report of 2 cases and retrospective study of 18 patients with drug-induced hypersensitivity syndrome. Arch Dermatol. 2009, Sep;145(9):1030–1036. doi: 10.1001/archdermatol.2009.195
  • Aota N, Shiohara T. Viral connection between drug rashes and autoimmune diseases: how autoimmune responses are generated after resolution of drug rashes. Autoimmun Rev. 2009, May;8(6):488–494. doi: 10.1016/j.autrev.2009.02.029
  • Tohyama M, Hashimoto K, Yasukawa M, et al. Association of human herpesvirus 6 reactivation with the flaring and severity of drug-induced hypersensitivity syndrome. Br J Dermatol. 2007, Nov;157(5):934–940. doi: 10.1111/j.1365-2133.2007.08167.x
  • Seishima M, Yamanaka S, Fujisawa T, et al. Reactivation of human herpesvirus (HHV) family members other than HHV-6 in drug-induced hypersensitivity syndrome. Br J Dermatol. 2006, Aug;155(2):344–349. doi: 10.1111/j.1365-2133.2006.07332.x
  • Kano Y, Hiraharas K, Sakuma K, et al. Several herpesviruses can reactivate in a severe drug-induced multiorgan reaction in the same sequential order as in graft-versus-host disease. Br J Dermatol. 2006, Aug;155(2):301–306. doi: 10.1111/j.1365-2133.2006.07238.x
  • Shiohara T, Kano Y. Are viral infections responsible for the development of drug-induced hypersensitivity syndrome as well as graft-versus-host diseases? Dermatology. 2005;210(4):259–260. doi: 10.1159/000084747
  • Kano Y, Inaoka M, Shiohara T. Association between anticonvulsant hypersensitivity syndrome and human herpesvirus 6 reactivation and hypogammaglobulinemia. Arch Dermatol. 2004, Feb;140(2):183–188. doi: 10.1001/archderm.140.2.183
  • Descamps V, Valance A, Edlinger C, et al. Association of human herpesvirus 6 infection with drug reaction with eosinophilia and systemic symptoms. Arch Dermatol. 2001 Mar;137(3):301–304.
  • Tohyama M, Yahata Y, Yasukawa M, et al. Severe hypersensitivity syndrome due to sulfasalazine associated with reactivation of human herpesvirus 6. Arch Dermatol. 1998, Sep;134(9):1113–1117. doi: 10.1001/archderm.134.9.1113
  • Suzuki Y, Inagi R, Aono T, et al. Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol. 1998, Sep;134(9):1108–1112. doi: 10.1001/archderm.134.9.1108
  • Pichler WJ, Bruggen MC. Viral infections and drug hypersensitivity. Allergy. 2023 Jan;78(1):60–70. doi: 10.1111/all.15558
  • Miyagawa F, Asada H. Current perspective regarding the Immunopathogenesis of drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS). Int J Mol Sci. 2021 Feb 21;22(4):2147. doi: 10.3390/ijms22042147
  • Shiohara T. Viral infections, allergy and autoimmunity: a complex, but fascinating link. Journal Of Dermatological Science. 2000 Apr;22(3):149–51. doi: 10.1016/S0923-1811(99)00080-8
  • Shiohara T, Inaoka M, Kano Y. Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allergol Int. 2006, Mar;55(1):1–8. doi: 10.2332/allergolint.55.1
  • Elzagallaai AA, Rieder MJ. Pathophysiology of drug hypersensitivity. Br J Clin Pharmacol. 2022 Dec 14. doi: 10.1111/bcp.15645
  • Selin LK, Brehm MA, Naumov YN, et al. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev. 2006, Jun;211(1):164–181. doi: 10.1111/j.0105-2896.2006.00394.x
  • Selin LK, Cornberg M, Brehm MA, et al. CD8 memory T cells: cross-reactivity and heterologous immunity. Semin Immunol. 2004, Oct;16(5):335–347. doi: 10.1016/j.smim.2004.08.014
  • Welsh RM, Che JW, Brehm MA, et al. Heterologous immunity between viruses. Immunol Rev. 2010, May;235(1):244–266. doi: 10.1111/j.0105-2896.2010.00897.x
  • Shen ZT, Nguyen TT, Daniels KA, et al. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. J Immunol. 2013 Nov 15;191(10):5139–52. doi: 10.4049/jimmunol.1300852
  • Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 1998, Sep;19(9):395–404. doi: 10.1016/S0167-5699(98)01299-7
  • Macdonald WA, Chen Z, Gras S, et al. T cell allorecognition via molecular mimicry. Immunity. 2009 Dec 18;31(6):897–908. doi: 10.1016/j.immuni.2009.09.025
  • Abuzgaia AM, Elzagallaai AA, Mullowney T, et al. Drug hypersensitivity reactions in patients with cystic fibrosis: potential value of the lymphocyte toxicity assay to assess risk. Mol Diagn Ther. 2023 Mar 20;27(3):395–403. doi: 10.1007/s40291-023-00644-3
  • Mazza C, Auphan-Anezin N, Gregoire C, et al. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J. 2007 Apr 4;26(7):1972–1983. doi: 10.1038/sj.emboj.7601605
  • Yin Y, Mariuzza RA. The multiple mechanisms of T cell receptor cross-reactivity. Immunity. 2009 Dec 18;31(6):849–851. doi: 10.1016/j.immuni.2009.12.002
  • Yerly D, Pompeu YA, Schutte RJ, et al. Structural elements recognized by Abacavir-Induced T Cells. Int J Mol Sci. 2017 Jul 7;18(7):1464. doi: 10.3390/ijms18071464
  • Gorovits B, Clements-Egan A, Birchler M, et al. Pre-existing antibody: biotherapeutic modality-based review. AAPS J. 2016, Mar;18(2):311–320. doi: 10.1208/s12248-016-9878-1
  • Baldo BA, Fisher MM, Pham NH. On the origin and specificity of antibodies to neuromuscular blocking (muscle relaxant) drugs: an immunochemical perspective. Clin Exp Allergy. 2009, Mar;39(3):325–344. doi: 10.1111/j.1365-2222.2008.03171.x
  • Schnyder B, Mauri-Hellweg D, Zanni M, et al. Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones. J Clin Invest. 1997 Jul 1;100(1):136–141. doi: 10.1172/JCI119505
  • Moulon C, Vollmer J, Weltzien HU. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol. 1995, Dec;25(12):3308–3315. doi: 10.1002/eji.1830251216
  • Romagnoli P, Spinas GA, Sinigaglia F. Gold-specific T cells in rheumatoid arthritis patients treated with gold. J Clin Invest. 1992, Jan;89(1):254–258. doi: 10.1172/JCI115569
  • Pichler WJ. The important role of non-covalent drug-protein interactions in drug hypersensitivity reactions. Allergy. 2022, Feb;77(2):404–415. doi: 10.1111/all.14962
  • Pichler WJ, Beeler A, Keller M, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int. 2006, Mar;55(1):17–25. doi: 10.2332/allergolint.55.17
  • Pichler WJ. The p-i concept: pharmacological interaction of drugs with immune receptors. World Allergy Organ J. 2008, Jun;1(6):96–102. doi: 10.1097/WOX.0b013e3181778282
  • Andrade RJ, Aithal GP, de Boer YS, et al. Nomenclature, diagnosis and management of drug-induced autoimmune-like hepatitis (DI-ALH): an expert opinion meeting report. J Hepatol. 2023 May 8;79(3):853–866. doi: 10.1016/j.jhep.2023.04.033
  • Pichler WJ, Thoo L, Yerly D. Drug hypersensitivity and eosinophilia: the decisive role of p-i stimulation. Allergy. 2023 Jul 3;78(10):2596–2605. doi: 10.1111/all.15795
  • Pichler WJ, Watkins S, Yerly D. Risk assessment in drug hypersensitivity: detecting small molecules which outsmart the immune system. Front Allergy. 2022;3:827893. doi: 10.3389/falgy.2022.827893
  • Pichler WJ, Yerly D. Drug hypersensitivity: we need to do more. J Allergy Clin Immunol. 2018, Jan;141(1):89–91. doi: 10.1016/j.jaci.2017.11.002
  • Rauch A, Nolan D, Martin A, et al. Prospective genetic screening decreases the incidence of abacavir hypersensitivity reactions in the Western Australian HIV cohort study. Clin Infect Dis. 2006 Jul 1;43(1):99–102. doi: 10.1086/504874
  • Mallal S, Phillips E, Carosi G, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008 Feb 7;358(6):568–579. doi: 10.1056/NEJMoa0706135
  • Ostrov DA, Grant BJ, Pompeu YA, et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9959–9964. doi: 10.1073/pnas.1207934109
  • Norcross MA, Luo S, Lu L, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 2012 Jul 17;26(11):F21–9. doi: 10.1097/QAD.0b013e328355fe8f
  • Illing PT, Vivian JP, Dudek NL, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012 Jun 28;486(7404):554–558. doi: 10.1038/nature11147
  • Schroder K, Tschopp J. The inflammasomes. Cell. 2010 Mar 19;140(6):821–832. doi: 10.1016/j.cell.2010.01.040
  • Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015, May;265(1):6–21. doi: 10.1111/imr.12296
  • Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006, Nov;8(11):1812–1825. doi: 10.1111/j.1462-5822.2006.00751.x
  • Franchi L, Warner N, Viani K, et al. Function of nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009, Jan;227(1):106–128. doi: 10.1111/j.1600-065X.2008.00734.x
  • Yeon SH, Yang G, Lee HE, et al. Oxidized phosphatidylcholine induces the activation of NLRP3 inflammasome in macrophages. J Leukocyte Biol. 2017, Jan;101(1):205–215. doi: 10.1189/jlb.3VMA1215-579RR
  • Kumar H, Kumagai Y, Tsuchida T, et al. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol. 2009 Dec 15;183(12):8061–7. doi: 10.4049/jimmunol.0902477
  • Park S, Juliana C, Hong S, et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J Immunol. 2013 Oct 15;191(8):4358–4366. doi: 10.4049/jimmunol.1301170
  • Watanabe H, Gaide O, Petrilli V, et al. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol. 2007, Aug;127(8):1956–63. doi: 10.1038/sj.jid.5700819
  • Sutterwala FS, Ogura Y, Szczepanik M, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006, Mar;24(3):317–327. doi: 10.1016/j.immuni.2006.02.004
  • Imaeda AB, Watanabe A, Sohail MA, et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009, Feb;119(2):305–314. doi: 10.1172/JCI35958
  • Kato R, Ijiri Y, Hayashi HT. Amiodarone, unlike Dronedarone, activates inflammasomes via its reactive metabolites: implications for amiodarone adverse reactions. Chem Res Toxicol. 2021 Aug 16;34(8):1860–1865. doi: 10.1021/acs.chemrestox.1c00127
  • Sernoskie SC, Lobach AR, Kato R, et al. Clozapine Induces an Acute Proinflammatory Response That Is Attenuated by Inhibition of Inflammasome Signaling: Implications for Idiosyncratic Drug-Induced Agranulocytosis. Toxicol Sci. 2022 Feb 28;186(1):70–82. doi: 10.1093/toxsci/kfab154
  • Kato R, Ijiri Y, Hayashi T, et al. Reactive metabolite of gefitinib activates inflammasomes: implications for gefitinib-induced idiosyncratic reaction. J Toxicol Sci. 2020;45(11):673–680.
  • Kobayashi H, Sato K, Niioka T, et al. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib. Med Oncol. 2016, Jun;33(6):57. doi: 10.1007/s12032-016-0773-5
  • Li X, Kamenecka TM, Cameron MD. Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. Chem Res Toxicol. 2009, Oct;22(10):1736–1742. doi: 10.1021/tx900256y
  • Yan M, Li W, Li WB, et al. Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice. Drug Metab Rev. 2023, Feb;55(1–2):94–106. doi: 10.1080/03602532.2022.2149775
  • Puig M, Norcross MA. Transgenic murine models for the study of drug hypersensitivity reactions linked to HLA-I molecules. Curr Opin Allergy Clin Immunol. 2023 Aug 1;23(4):279–286. doi: 10.1097/ACI.0000000000000913

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.