76
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring the impact of co-exposure timing on drug-drug interactions in signal detection through spontaneous reporting system databases: a scoping review

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 441-453 | Received 22 Dec 2023, Accepted 12 Apr 2024, Published online: 18 Apr 2024

References

  • Ibrahim H, Saad A, Abdo A, et al. Mining association patterns of drug-interactions using post marketing FDA’s spontaneous reporting data. J Biomed Informat. 2016;60:294–308. doi: 10.1016/j.jbi.2016.02.009
  • Zhang T, Leng J, Liu Y. Deep learning for drug–drug interaction extraction from the literature: a review. Brief Bioinform. 2020;21(5):1609–1627. doi: 10.1093/bib/bbz087
  • Spina E, Barbieri MA, Cicala G, et al. Clinically relevant interactions between atypical antipsychotics and anti-infective agents. Pharmaceuticals (Basel). 2020;13(12):439. doi: 10.3390/ph13120439
  • Glassman PM, Muzykantov VR. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J Pharmacol Exp Ther. 2019;370(3):570–580. doi: 10.1124/jpet.119.257113
  • Strandell J, Caster O, Bate A, et al. Reporting patterns indicative of adverse drug interactions: a systematic evaluation in VigiBase. Drug Saf. 2011;34(3):253–266. doi: 10.2165/11586990-000000000-00000
  • Palleria C, Roberti R, Iannone LF, et al. Clinically relevant drug interactions between statins and antidepressants. J Clin Pharm Ther. 2020;45(2):227–239. doi: 10.1111/jcpt.13058
  • Huang J, Niu C, Green CD, et al. Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLOS Comput Biol. 2013;9(3):e1002998. doi: 10.1371/journal.pcbi.1002998
  • Spina E, Barbieri MA, Cicala G, et al. Clinically relevant drug interactions between newer antidepressants and oral anticoagulants. Expert Opin Drug Metab Toxicol. 2020;16(1):31–44. doi: 10.1080/17425255.2020.1700952
  • Wang X, Li L, Wang L, et al. Propensity score‐adjusted three‐component mixture model for drug‐drug interaction data mining in FDA Adverse Event Reporting System. Stat Med. 2020;39(7):996–1010. doi: 10.1002/sim.8457
  • Carnovale C, Mosini G, Gringeri M, et al. Interaction between paracetamol and lamotrigine: new insights from the FDA Adverse Event Reporting System (FAERS) database. Eur J Clin Pharmacol. 2019;75(9):1323–1325. doi: 10.1007/s00228-019-02691-4
  • Cutroneo PM, Sartori D, Tuccori M, et al. Conducting and interpreting disproportionality analyses derived from spontaneous reporting systems. Front Drug Saf Regul. 2024;3:1323057. doi: 10.3389/fdsfr.2023.1323057
  • Good pharmacovigilance practices | European Medicines Agency [Internet]. [cited 2024 Feb 28]. Available from: https://www.ema.europa.eu/en/human-regulatory-overview/post-authorisation/pharmacovigilance-post-authorisation/good-pharmacovigilance-practices.
  • Vignolini G, Sessa F, Greco I, et al. Intraoperative assessment of ureteral and graft reperfusion during robotic kidney transplantation with indocyanine green fluorescence videography. Minerva Urol Nefrol. 2019;71(1):79–84. doi: 10.23736/S0393-2249.18.03278-2
  • Hagengaard L, Søgaard P, Espersen M, et al. Association between serum potassium levels and short-term mortality in patients with atrial fibrillation or flutter co-treated with diuretics and rate- or rhythm-controlling drugs. Eur Heart J Cardiovasc Pharmacother. 2020;6(3):137–144. doi: 10.1093/ehjcvp/pvz024
  • Sessa M, Rossi C, Mascolo A, et al. Suspected adverse reactions to contrast media in Campania Region (Italy): Results from 14 years of post-marketing surveillance. Expert Opin Drug Saf. 2015;14(9):1341–1351. doi: 10.1517/14740338.2015.1067301
  • Sullivan T, Nord M, Domalik D, et al. A structured methodology to assess safety signal strength and inform causality assessment. Pharm Med. 2022;36(4):215–222. doi: 10.1007/s40290-022-00436-w
  • Shang N, Xu H, Rindflesch TC, et al. Identifying plausible adverse drug reactions using knowledge extracted from the literature. J Biomed Informat. 2014;52:293–310. doi: 10.1016/j.jbi.2014.07.011
  • Kahn MG, Callahan TJ, Barnard J, et al. A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. EGEMS (Wash DC). 2016;4, p. 1244.
  • Noguchi Y, Yoshizawa S, Aoyama K, et al. Verification of the “upward variation in the reporting odds ratio scores” to detect the signals of drug–drug interactions. Pharmaceutics. 2021;13(10):1531. doi: 10.3390/pharmaceutics13101531
  • Strandell J, Caster O, Hopstadius J, et al. The development and evaluation of triage algorithms for early discovery of adverse drug interactions. Drug Saf. 2013;36(5):371–388. doi: 10.1007/s40264-013-0053-7
  • Vilar S, Friedman C, Hripcsak G. Detection of drug–drug interactions through data mining studies using clinical sources, scientific literature and social media. Brief Bioinform. 2018;19(5):863–877. doi: 10.1093/bib/bbx010
  • Landmark CJ, Johannessen SI. Safety aspects of antiepileptic drugs—focus on pharmacovigilance. Pharmacoepidemiol Drug Saf. 2012;21(1):11–20. doi: 10.1002/pds.2269
  • Qiu Y, Zhang Y, Deng Y, et al. A comprehensive review of computational methods for drug-drug interaction detection. IEEE/ACM Trans Comput Biol And Bioinf. 2022;19(4):1968–1985. doi: 10.1109/TCBB.2021.3081268
  • Lee CY, Chen Y-P. Prediction of drug adverse events using deep learning in pharmaceutical discovery. Brief Bioinform. 2021;22(2):1884–1901. doi: 10.1093/bib/bbaa040
  • Noguchi Y, Tachi T, Teramachi H. Review of statistical methodologies for detecting drug–drug interactions using spontaneous reporting systems. Front Pharmacol. 2019;10:1319. doi: 10.3389/fphar.2019.01319
  • Chapter 11: Scoping reviews - JBI Manual for Evidence Synthesis - JBI Global Wiki [Internet]. [cited 2023 Aug 13]. Available from: https://jbi-global-wiki.refined.site/space/MANUAL/4687342/Chapter+11%3A+Scoping+reviews.
  • Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. doi: 10.1080/1364557032000119616
  • Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467–473. doi: 10.7326/M18-0850
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing [Internet]. Vienna (Austria): The R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/.
  • Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. doi: 10.1136/bmj.n160
  • Abe J, Umetsu R, Uranishi H, et al. Analysis of polypharmacy effects in older patients using Japanese Adverse Drug Event Report database. PLOS ONE. 2017;12(12):e0190102. doi: 10.1371/journal.pone.0190102
  • Almenoff JS, DuMouchel W, Kindman LA, et al. Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing setting. Pharmacoepidemiol Drug Saf. 2003;12(6):517–521. doi: 10.1002/pds.885
  • Alsheikh-Ali AA, Karas RH. Adverse events with concomitant use of simvastatin or atorvastatin and thiazolidinediones. Am J Cardiol. 2004;93(11):1417–1418. doi: 10.1016/j.amjcard.2004.02.045
  • Antonazzo IC, Poluzzi E, Forcesi E, et al. Myopathy with DPP-4 inhibitors and statins in the real world: investigating the likelihood of drug–drug interactions through the FDA adverse event reporting system. Acta Diabetol. 2020;57(1):71–80. doi: 10.1007/s00592-019-01378-7
  • Cai R, Liu M, Hu Y, et al. Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports. Artif Intell Med. 2017;76:7–15. doi: 10.1016/j.artmed.2017.01.004
  • Chasioti D, Yao X, Zhang P, et al. Mining directional drug interaction effects on myopathy using the FAERS database. IEEE J Biomed Health Inform. 2019;23(5):2156–2163. doi: 10.1109/JBHI.2018.2874533
  • Chen J, Wu G, Michelson A, et al. Mining reported adverse events induced by potential opioid-drug interactions. JAMIA Open. 2020;3(1):104–112. doi: 10.1093/jamiaopen/ooz073
  • Chrétien B, Nguyen S, Dolladille C, et al. Association between road traffic accidents and drugs belonging to the antiseizure medications class: A pharmacovigilance analysis in VigiBase. Brit J Clin Pharma. 2023;89(1):222–231. doi: 10.1111/bcp.15481
  • Cohen IV, Makunts T, Abagyan R, et al. Concomitant drugs associated with increased mortality for MDMA users reported in a drug safety surveillance database. Sci Rep. 2021;11(1):5997. doi: 10.1038/s41598-021-85389-x
  • Contejean A, Tisseyre M, Canouï E, et al. Combination of vancomycin plus piperacillin and risk of acute kidney injury: a worldwide pharmacovigilance database analysis. J Antimicrob Chemother. 2021;76(5):1311–1314. doi: 10.1093/jac/dkab003
  • Fahim SM, Mishuk AU, Cheng N, et al. Adverse event reporting patterns of concomitant botanical dietary supplements with CYP3A4 interactive & CYP3A4 non-interactive anticancer drugs in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). Expert Opin Drug Saf. 2019;18(2):145–152. doi: 10.1080/14740338.2019.1562546
  • Fan Q, Hu Y, Yang C, et al. Myocarditis following the use of different immune checkpoint inhibitor regimens: A real-world analysis of post-marketing surveillance data. Int Immunopharmacol. 2019;76:105866. doi: 10.1016/j.intimp.2019.105866
  • Fernandez S, Lenoir C, Samer C, et al. Drug interactions with apixaban: A systematic review of the literature and an analysis of VigiBase, the World Health Organization database of spontaneous safety reports. Pharmacol Res Perspect. 2020;8(5):8. doi: 10.1002/prp2.647
  • Fernandez S, Lenoir C, Samer CF, et al. Drug-drug interactions leading to adverse drug reactions with Rivaroxaban: a systematic review of the literature and analysis of VigiBase. JPM. 2021;11(4):250. doi: 10.3390/jpm11040250
  • Gandhi PK, Gentry WM, Bottorff MB. Dabigatran–dronedarone interaction in a spontaneous reporting system. J Am Pharm Assoc. 2013;53(4):414–419. doi: 10.1331/JAPhA.2013.12218
  • Gómez-Lumbreras A, Boyce RD, Villa-Zapata L, et al. Drugs that interact with colchicine via inhibition of cytochrome P450 3A4 and P-Glycoprotein: a signal detection analysis using a database of spontaneously reported adverse events (FAERS). Ann Pharmacother. 2023;57(10):1137–1146. doi: 10.1177/10600280221148031
  • Gosho M, Maruo K, Tada K, et al. Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems. Eur J Clin Pharmacol. 2017;73(6):779–786. doi: 10.1007/s00228-017-2233-3
  • Gosho M. Risk of hypoglycemia after concomitant use of antidiabetic, antihypertensive, and antihyperlipidemic medications: a database study. J Clin Pharmacol. 2018;58(10):1324–1331. doi: 10.1002/jcph.1147
  • Gosho M. Rhabdomyolysis risk from the use of two‐drug combination of antidyslipidemic drugs with antihypertensive and antidiabetic medications: a signal detection analysis. Fundam Clin Pharmacol. 2019;33(3):339–346. doi: 10.1111/fcp.12435
  • Harpaz R, Chase HS, Friedman C. Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC Bioinf. 2010;11(S9):S7. doi: 10.1186/1471-2105-11-S9-S7
  • Hauben M, Reich L, Gerrits CM, et al. Detection of Spironolactone-associated hyperkalaemia following the randomized aldactone evaluation study (RALES). Drug Saf. 2007;30(12):1143–1149. doi: 10.2165/00002018-200730120-00006
  • Hauben M, Hung EY. A quantitative analysis of the spontaneous reporting of congestive heart failure-related adverse events with systemic anti-fungal drugs. J Clin Pharmacol. 2013;53(7):762–772. doi: 10.1002/jcph.84
  • Hult S, Sartori D, Bergvall T, et al. A feasibility study of drug–drug interaction signal detection in regular pharmacovigilance. Drug Saf. 2020;43(8):775–785. doi: 10.1007/s40264-020-00939-y
  • Ikemura K, Hiramatsu S, Shinogi Y, et al. Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci Rep. 2019;9(1):20359. doi: 10.1038/s41598-019-56900-2
  • Inaba I, Kondo Y, Iwasaki S, et al. Risk evaluation for acute kidney injury induced by the concomitant use of valacyclovir, analgesics, and renin–angiotensin system inhibitors: the detection of signals of drug–drug interactions. Front Pharmacol. 2019;10:874. doi: 10.3389/fphar.2019.00874
  • Jeong E, Nelson SD, Su Y, et al. Detecting drug-drug interactions between therapies for COVID-19 and concomitant medications through the FDA adverse event reporting system. Front Pharmacol. 2022;13:938552. doi: 10.3389/fphar.2022.938552
  • Jeong E, Person AK, Stollings JL, et al. Detecting drug-drug interactions in COVID-19 patients. Stud Health Technol Inform. 2022;290:330–334.
  • Kamdar MR, Tech M, Musen MA Mechanism-based Pharmacovigilance over the life sciences linked open data cloud. AMIA Annual Symposium Proceedings American Medical Informatics Association. 2017;2017:p. 1014–1023.
  • Labat V, Arnaud M, Miremont-Salamé G, et al. Risk of myopathy associated with DPP-4 inhibitors in combination with statins: a disproportionality analysis using data from the WHO and French Spontaneous Reporting Databases. Diabetes Care. 2017;40(3):e27–e29. doi: 10.2337/dc16-1822
  • Li H, Deng J, Yue Z, et al. Detecting drug–herbal interaction using a spontaneous reporting system database: an example with benzylpenicillin and qingkailing injection. Eur J Clin Pharmacol. 2015;71(9):1139–1145. doi: 10.1007/s00228-015-1898-8
  • Li Y, Zhan P, Sun Z, et al. Data-driven prediction of beneficial drug combinations in spontaneous reporting systems. AMIA Annu Symp Proc. 2016;2016:808–817.
  • Lin S-F, Xiao K-T, Huang Y-T, et al. Analysis of adverse drug reactions using drug and drug target interactions and graph-based methods. Artif Intell Med. 2010;48(2–3):161–166. doi: 10.1016/j.artmed.2009.11.002
  • Liu N, Chen C-B, Kumara S. Semi-supervised learning algorithm for identifying high-priority drug–drug interactions through adverse event reports. IEEE J Biomed Health Inform. 2020;24(1):57–68. doi: 10.1109/JBHI.2019.2932740
  • French Association of Regional Pharmacovigilance Centers, Maschino F, Hurault-Delarue C, et al. Bleeding adverse drug reactions (ADRs) in patients exposed to antiplatelet plus serotonin reuptake inhibitor drugs: analysis of the French Spontaneous Reporting Database for a controversial ADR. Eur J Clin Pharmacol. 2012;68(11):1557–1560.
  • Matsuo J, Yamaori S. Detecting drug‐drug interactions that increase the incidence of long QT syndrome using a spontaneous reporting system. Clinical Pharmacy Therapeu. 2022;47(1):70–80. doi: 10.1111/jcpt.13539
  • Matsuo J, Yamaori S, Murai K, et al. Detecting coadministered drugs that affect the incidence of long QT syndrome associated with fluoroquinolone antibiotics using a spontaneous reporting system. J Pharmacovigil. 2020;8:1–8.
  • Meng L, Huang J, Qiu F, et al. Peripheral neuropathy during concomitant administration of proteasome inhibitors and factor Xa inhibitors: identifying the likelihood of drug-drug interactions. Front Pharmacol. 2022;13:757415. doi: 10.3389/fphar.2022.757415
  • Montastruc F, Benevent J, Rousseau V, et al. Risk of diabetes with fibrates and statins: a pharmacoepidemiological study in VigiBase ®. Fundam Clin Pharmacol. 2019;33(1):108–112. doi: 10.1111/fcp.12406
  • Montastruc J-L, Toutain P-L. A new drug–drug interaction between hydroxychloroquine and metformin? A signal detection study. Drug Saf. 2020;43(7):657–660. doi: 10.1007/s40264-020-00955-y
  • Nishiuchi S, Yagi K, Saito H, et al. Investigation of drugs for the prevention of doxorubicin-induced cardiac events using big data analysis. Eur J Pharmacol. 2022;928:175083. doi: 10.1016/j.ejphar.2022.175083
  • Noguchi Y, Ueno A, Otsubo M, et al. A new search method using association rule mining for drug-drug interaction based on spontaneous report system. Front Pharmacol. 2018;9:197. doi: 10.3389/fphar.2018.00197
  • Noguchi Y, Tachi T, Teramachi H. Subset analysis for screening drug–drug interaction signal using pharmacovigilance database. Pharmaceutics. 2020;12(8):762. doi: 10.3390/pharmaceutics12080762
  • Noguchi Y, Tachi T, Teramachi H. Comparison of signal detection algorithms based on frequency statistical model for drug-drug interaction using spontaneous reporting systems. Pharm Res. 2020;37(5):86. doi: 10.1007/s11095-020-02801-3
  • Norén GN, Sundberg R, Bate A, et al. A statistical methodology for drug–drug interaction surveillance. Stat Med. 2008;27(16):3057–3070. doi: 10.1002/sim.3247
  • Okunaka M, Kano D, Matsui R, et al. Evaluation of the expression profile of irinotecan-induced diarrhea in patients with colorectal cancer. Pharmaceuticals (Basel). 2021;14(4):377. doi: 10.3390/ph14040377
  • Pariente A, Sanctussy D-R, Miremont-Salamé G, et al. Factors associated with serious adverse reactions to cholinesterase inhibitors: a study of spontaneous reporting. CNS Drugs. 2010;24(1):55–63. doi: 10.2165/11530300-000000000-00000
  • Qian Y, Ye X, Du W, et al. A computerized system for detecting signals due to drug–drug interactions in spontaneous reporting systems. Brit J Clin Pharma. 2010;69(1):67–73. doi: 10.1111/j.1365-2125.2009.03557.x
  • Racz R, Soldatos TG, Jackson D, et al. Association between serotonin syndrome and second-generation antipsychotics via pharmacological target-adverse event analysis: association between serotonin syndrome and second generation antipsychotics via pharmacological target-adverse event analysis. Clinical Translational Sci. 2018;11(3):322–329. doi: 10.1111/cts.12543
  • Sainz-Gil M, Merino Kolly N, Velasco-González V, et al. Hydroxychloroquine safety in Covid-19 vs non-Covid-19 patients: analysis of differences and potential interactions. Expert Opin Drug Saf. 2023;22(1):71–79. doi: 10.1080/14740338.2022.2078303
  • Sarayani A, Cicali B, Henriksen CH, et al. Safety signals for QT prolongation or Torsades de Pointes associated with azithromycin with or without chloroquine or hydroxychloroquine. Res Social Administrative Pharm. 2021;17(2):483–486. doi: 10.1016/j.sapharm.2020.04.016
  • Sato K, Mano T, Iwata A, et al. Safety of memantine in combination with potentially interactive drugs in the real world: a pharmacovigilance study using the Japanese adverse drug event report (JADER) database. JAD. 2021;82(3):1333–1344. doi: 10.3233/JAD-210524
  • Shibata Y, Tamemoto Y, Singh SP, et al. Plausible drug interaction between cyclophosphamide and voriconazole via inhibition of CYP2B6. Drug Metabol Pharmacokinetics. 2021;39:100396. doi: 10.1016/j.dmpk.2021.100396
  • Souza-Peres JV, Flores K, Umloff B, et al. Everyday evaluation of herb/dietary supplement–drug interaction: a pilot study. Medicines. 2023;10(3):20. doi: 10.3390/medicines10030020
  • Strandell J, Bate A, Hägg S, et al. Rhabdomyolysis a result of azithromycin and statins: an unrecognized interaction. Brit J Clin Pharma. 2009;68(3):427–434. doi: 10.1111/j.1365-2125.2009.03473.x
  • Suzuki A, Yuen NA, Ilic K, et al. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase™. Regul Toxicol Pharmacol. 2015;72(3):481–490. doi: 10.1016/j.yrtph.2015.05.004
  • Suzuki Y, Suzuki H, Umetsu R, et al. Analysis of the interaction between clopidogrel, aspirin, and proton pump inhibitors using the FDA adverse event reporting system database. Biol Pharm Bull. 2015;38(5):680–686. doi: 10.1248/bpb.b14-00191
  • Tada K, Gosho M. Increased risk of urinary tract infection and pyelonephritis under concomitant use of sodium‐dependent glucose cotransporter 2 inhibitors with antidiabetic, antidyslipidemic, and antihypertensive drugs: An observational study. Fundamental Clinical Pharma. 2022;36(6):1106–1114. doi: 10.1111/fcp.12792
  • Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc. 2012;19(1):79–85. doi: 10.1136/amiajnl-2011-000214
  • Thakrar BT, Grundschober SB, Doessegger L. Detecting signals of drug–drug interactions in a spontaneous reports database. Br J Clin Pharmacol. 2007;64(4):489–495. doi: 10.1111/j.1365-2125.2007.02900.x
  • Tod M, Rodier T, Auffret M. Quantitative prediction of adverse event probability due to pharmacokinetic interactions. Drug Saf. 2022;45(7):755–764. doi: 10.1007/s40264-022-01190-3
  • Uno T, Wada K, Hosomi K, et al. Drug interactions between tacrolimus and clotrimazole troche: a data mining approach followed by a pharmacokinetic study. Eur J Clin Pharmacol. 2020;76(1):117–125. doi: 10.1007/s00228-019-02770-6
  • Van Puijenbroek EP, Egberts ACG, Meyboom RHB, et al. Signalling possible drug–drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole. Br J Clin Pharmacol. 1999;47(6):689–693. doi: 10.1046/j.1365-2125.1999.00957.x
  • Van Puijenbroek EP, Egberts ACG, Heerdink ER, et al. Detecting drug–drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol. 2000;56(9–10):733–738. doi: 10.1007/s002280000215
  • Wang L, Pan W, Wang Q, et al. A modified skip-gram algorithm for extracting drug-drug interactions from AERS reports. Comput Math Meth Med. 2020;2020:1–9. doi: 10.1155/2020/1747413
  • Wang L, Shendre A, Chiang C-W, et al. A pharmacovigilance study of pharmacokinetic drug interactions using a translational informatics discovery approach. Brit J Clin Pharma. 2022;88(4):1471–1481. doi: 10.1111/bcp.14762
  • Wang F, Zhou B, Sun H, et al. Proarrhythmia associated with antiarrhythmic drugs: a comprehensive disproportionality analysis of the FDA adverse event reporting system. Front Pharmacol. 2023;14:1170039. doi: 10.3389/fphar.2023.1170039
  • Xu D, Ham AG, Tivis RD, et al. MSBIS: A multi-step biomedical informatics screening approach for identifying medications that mitigate the risks of metoclopramide-induced tardive dyskinesia. EBioMedicine. 2017;26:132–137. doi: 10.1016/j.ebiom.2017.11.015
  • Yamada T, Mitsuboshi S, Suzuki K, et al. Risk of muscle toxicity events for daptomycin with and without statins: Analysis of the Japanese Adverse Event Report database. Basic Clin Pharmacol Toxicol. 2021;129(3):268–272. doi: 10.1111/bcpt.13618
  • Yao X, Tsang T, Sun Q, et al. Mining and visualizing high-order directional drug interaction effects using the FAERS database. BMC Med Inform Decis Mak. 2020;20:50. doi: 10.1186/s12911-020-1053-z
  • Yagi K, Mitstui M, Zamami Y, et al. Investigation of drugs affecting hypertension in bevacizumab‐treated patients and examination of the impact on the therapeutic effect. Cancer Med. 2021;10(1):164–172. doi: 10.1002/cam4.3587
  • Yonezawa R, Sunaga T. Signal of safety due to adverse drug reactions induced by tacrolimus with or without azithromycin. Trans Infect Dis. 2022;24(3):e13833. doi: 10.1111/tid.13833
  • Yue Z, Shi J, Jiang P, et al. Acute kidney injury during concomitant use of valacyclovir and loxoprofen: detecting drug-drug interactions in a spontaneous reporting system: valacyclovir-loxoprofen interaction. Pharmacoepidemiol Drug Saf. 2014;23(11):1154–1159. doi: 10.1002/pds.3626
  • Yue Z, Shi J, Li H, et al. Association between Concomitant Use of Acyclovir or Valacyclovir with NSAIDs and an increased risk of acute kidney injury: data mining of FDA adverse event reporting system. Biol Pharm Bull. 2018;41(2):158–162. doi: 10.1248/bpb.b17-00547
  • Villa-Zapata L, Gómez-Lumbreras A, Horn J, et al. A Disproportionality Analysis of Drug–Drug Interactions of Tizanidine and CYP1A2 Inhibitors from the FDA Adverse Event Reporting System (FAERS). Drug Saf. 2022;45(8):863–871. doi: 10.1007/s40264-022-01200-4
  • Zhan C, Roughead E, Liu L, et al. Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data. J Biomed Informat. 2020;112:103603. doi: 10.1016/j.jbi.2020.103603
  • Zhang P, Wang F, Hu J, et al. Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep. 2015;5(1):12339. doi: 10.1038/srep12339
  • Alkabbani W, Pelletier R, Beazely MA, et al. Drug–drug interaction of the sodium glucose co-transporter 2 inhibitors with statins and myopathy: a disproportionality analysis using adverse events reporting data. Drug Saf. 2022;45(3):287–295. doi: 10.1007/s40264-022-01166-3
  • Bandekar MS, Anwikar SR, Kshirsagar NA. Quality check of spontaneous adverse drug reaction reporting forms of different countries. Pharmacoepidemiol Drug Saf. 2010;19(11):1181–1185. doi: 10.1002/pds.2004
  • Hasegawa S, Ikesue H, Satake R, et al. Osteonecrosis of the Jaw Caused by Denosumab in Treatment-Naïve and Pre-Treatment with Zoledronic Acid Groups: A Time-to-Onset Study Using the Japanese Adverse Drug Event Report (JADER) Database. Drugs Real World Outcomes. 2022;9(4):659–665. doi: 10.1007/s40801-022-00324-4
  • Mazhar F, Battini V, Gringeri M, et al. The impact of anti-TNFα agents on weight-related changes: new insights from a real-world pharmacovigilance study using the FDA adverse event reporting system (FAERS) database. Expert Opin Biol Ther. 2021;21(9):1281–1290. doi: 10.1080/14712598.2021.1948529
  • Kara V, Powell G, Mahaux O, et al. Finding needles in the haystack: clinical utility score for prioritisation (cusp), an automated approach for identifying spontaneous reports with the highest clinical utility. Drug Saf. 2023;46(9):847–855. doi: 10.1007/s40264-023-01327-y
  • Muñoz MA, Dal Pan GJ, Wei Y-J-J, et al. Towards automating adverse event review: a prediction model for case report utility. Drug Saf. 2020;43(4):329–338. doi: 10.1007/s40264-019-00897-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.