450
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Knoevenagel reaction promoted by functional ionic liquids with primary and tertiary amines

, , , &
Article: 2337743 | Received 11 May 2022, Accepted 27 Mar 2024, Published online: 09 Apr 2024

References

  • Zhao, S.; Wang, X.; Zhang, L. Rapid and Efficient Knoevenagel Condensation Catalyzed by a Novel Protic Ionic Liquid Under Ultrasonic Irradiation. RSC Adv. 2013, 3, 11691–11696.
  • Beurden, K.; Koning, S.; Molendijk, D.; Schijndel, J. The Knoevenagel Reaction: A Review of the Unfinished Treasure Map to Forming Carbon-Carbon Bonds. Green Chem. Lett. Rev. 2020, 13, 349–364.
  • Rao, P.S.; Venkatratnam, R.V. Zinc Chloride as a New Catalyst for Knoevenagel Condensation. Tetrahedron Lett. 1991, 32, 5821–5822.
  • Attansi, O.; Fillippone, P.; Mei, A. Effect of Metal Ions in Organic Synthesis. Part XVI. Knoevenagel Condensations of Aldehydes and Tosylhydrazones with 2, 4-Pentanedione by Copper (II) Chloride-Catalyzed Reaction. Synth. Commun. 1983, 13, 1203–1208.
  • Ogiwara, Y.; Takahashi, K.; Kitazawa, T.; Saka, N. Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter. J. Org. Chem. 2015, 80, 3101–3110.
  • Narsaiah, A.V.; Nagaiah, K. An Efficient Knoevenagel Condensation Catalyzed by LaCl3·7H2O in Heterogeneous Medium. Synth. Commun. 2003, 33, 3825–3832.
  • Cai, M.; Wang, X.; Fang, Y.; Chen, Y.; Dai, L. Robust Mg(Ca)Zr-Doped Acid-Base Bifunctional Mesoporous Silica and Their Applications in the Deacetalization-Knoevenagel Reaction. Inorg. Chem. 2021, 60, 8924–8935.
  • Liu, D.; Hou, S.; Shu, Y.; Zhao, J.; Wang, L.; Zhang, P. Mechanochemical NaCl-Mediated Synthesis of Porous CuxMo1–xOy Catalyst for Knoevenagel Condensation. Ind. Eng. Chem. Res. 2021, 60, 17778–17785.
  • Kalantari, F.; Rezayati, S.; Ramazani, A.; Aghahosseini, H.; Ślepokura, K.; Lis, T. Proline-Cu Complex Based 1,3,5-Triazine Coated on Fe3O4 Magnetic Nanoparticles: A Nanocatalyst for the Knoevenagel Condensation of Aldehyde with Malononitrile. ACS Applied Nano Materials 2022, 5, 1783–1797.
  • Zhang, T.; Chen, H.; Liu, S.; Lv, H.; Zhang, X.; Li, Q. Highly Robust {Ln4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO2 and Knoevenagel Condensation. ACS Catal. 2021, 11, 14916–14925.
  • Varnaseri, N.; Rouhani, F.; Ramazani, A.; Morsali, A. Size and Function Influence Study on Enhanced Catalytic Performance of a Cooperative MOF for Mild, Green and Fast C-C Bond Formation. Dalton Trans. 2020, 49, 3234–3242.
  • Kalantari, F.; Ramazani, A.; Heravi, R.P.M.; Aghahosseini, H.; Ślepokura, K. Magnetic Nanoparticles Functionalized with Copper Hydroxyproline Complexes as an Efficient, Recoverable, and Recyclable Nanocatalyst: Synthesis and Its Catalytic Application in a Tandem Knoevenagel–Michael Cyclocondensation Reaction. Inorg. Chem. 2021, 60, 15010–15023.
  • Sadgar, A.L.; Deore, T.S.; Jayaram, R.V. Pickering Interfacial Catalysis-Knoevenagel Condensation in Magnesium Oxide-Stabilized Pickering Emulsion. ACS Omega 2020, 5, 12224–12235.
  • Tavakolian, M.; Najafpour, M.M. Molybdenum Carbide as an Efficient and Durable Catalyst for Aqueous Knoevenagel Condensation. New J. Chem. 2019, 43, 16437–16440.
  • Murase, T.; Nishijima, Y.; Fujita, M. Cage-Catalyzed Knoevenagel Condensation Under Neutral Conditions in Water. J. Am. Chem. Soc. 2012, 134, 162–164.
  • Seckler, D.; Dea, C.M.; Rios, E.A.M.; de Godoi, M.; Rampon, D.S.; D’Oca, M.G.M.; D’Oca, C.D.R.M. Rice Straw Ash Extract/Glycerol: An Efficient Sustainable Approach for Knoevenagel Condensation. New J. Chem. 2022, 46, 4570–4578.
  • Hirayama, Y.; Kanomata, K.; Hatakeyama, M.; Kitaoka, T. Chitosan Nanofiber-Catalyzed Highly Selective Knoevenagel Condensation in Aqueous Methanol. RSC Adv. 2020, 10, 26771–26776.
  • Takakura, R.; Koyama, K.; Kuwata, M.; Yamada, T.; Sajiki, H.; Sawama, Y. Hydroquinone and Benzoquinone-Catalyzed Aqueous Knoevenagel Condensation. Org. Biomol. Chem. 2020, 18, 6594–6597.
  • Jung, K.; Kim, S.; Choi, S.; Kim, I.; Han, G. Development of a DABCO-Succinic Acid Based Catalytic System for the Aza-Michael Addition and Aza-Michael/Knoevenagel Tandem Reaction of Thiazolidine-2, 4-Dione to Electron Deficient Alkenes. J. Org. Chem. 2021, 86, 16785–16794.
  • Li, J.; He, D.; Lin, Z.; Cen, L.; Wu, W.; Jiang, H. NHC-Palladium-Catalyzed Ionic Liquid-Accelerated Regioselective Oxyarylation of Alkynes with Diaryl Ethers. Green Chem. 2022, 24, 1983–1988.
  • Li, Y.Q.; Xu, X.M.; Zhou, M.Y. n-Butyl Pyridinium Nitrate as a Reusable Ionic Liquid Medium for Knoevenagel Condensation. Chin. Chem. Lett. 2003, 14, 448–450.
  • Morison, D.W.; Forbes, D.C.; Davis, J.H. Base-Promoted Reactions in Ionic Liquid Solvents. The Knoevenagel and Robinson Annulation Reactions. Tetrahedron Lett. 2001, 42, 6053–6055.
  • Wang, Y.; Shang, Z.C.; Fan, T.X.; Chen, X. Synthetic and Theoretical Study on Proline-Catalyzed Knoevenagel Condensation in Ionic Liquid. J. Mol. Catal. A 2006, 253, 212–221.
  • Siddiqui, Z.N.; Khan, K. [Et3NH] [HSO4]-Catalyzed Efficient, Eco-Friendly, and Sustainable Synthesis of Quinoline Derivatives via Knoevenagel Condensation. ACS Sustainable Chem. Eng. 2014, 2, 1187–1194.
  • Li, J.; Sun, H.; Cai, X.-C.; Dai, L.-Y. Application of Basic Ionic Liquid [Bmim]OH to Knoevenagel and Perkin Reactions. Chin. J. Org. Chem. 2007, 27, 1296–1299.
  • Xu, D.-Z.; Liu, Y.; Shi, S.; Wang, Y. A Simple, Efficient and Green Procedure for Knoevenagel Condensation Catalyzed by [C4dabco][BF4] Ionic Liquid in Water. Green Chem. 2010, 12, 514–517.
  • Yang, C.; Su, W.-Q.; Xu, D.-Z. Ionic Liquid [Dabco-H][AcO] as a Highly Efficient and Recyclable Catalyst for the Synthesis of Various Bisenol Derivatives via Domino Knoevenagel-Michael Reaction in Aqueous Media. RSC Adv. 2016, 6, 99656–99663.
  • Ying, A.-G.; Liu, L.; Wu, G.-F.; Chen, X.-Z.; Ye, W.-D.; Chen, J.-H.; Zhang, K.-Y. Knoevenagel Condensation Catalyzed by DBU Brönsted Ionic Liquid Without Solvent. Chem. Res. Chin. Univ. 2009, 25, 876–881.
  • Ying, A.; Ni, Y.; Xu, S.; Liu, S.; Yang, J.; Li, R. Novel DABCO Based Ionic Liquids: Green and Efficient Catalysts with Dual Catalytic Roles for Aqueous Knoevenagel Condensation. Ind. Eng. Chem. Res. 2014, 53, 5678–5682.
  • Garrabou, X.; Wicky, B.I.M.; Hilvert, D. Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme. J. Am. Chem. Soc. 2016, 138, 6972–6974.
  • Islam, M.J.; Kumer, A.; Sarker, M.N.; Paul, S. The Activity of Alkyl Groups in Morpholinium Cation on Chemical Reactivity, and Biological Properties of Morpholinium Tetrafluroborate Ionic Liquid Using the DFT Method. Chem. Methodol. 2020, 4, 130–142.
  • Sajjadifar, S.; Amini, I.; Habibzadeh, S.; Mansouri, G.; Ebadi, E. Acidic Ionic Liquid Based Silica-Coated Fe3O4 Nanoparticles as a New Nanomagnetic Catalyst for Preparation of Aryl and Heteroaryl Thiocyanates. Chem. Methodol. 2020, 4, 624–635.
  • Zhu, H.-P.; Yang, F.; Tang, J.; He, M.-Y. Brønsted Acidic Ionic Liquid 1-Methylimidazolium Tetrafluoroborate: A Green Catalyst and Recyclable Medium for Esterification. Green Chem. 2003, 5, 38–39.
  • Zhang, L.; Xian, M.; He, Y.; Li, L.; Yang, J.; Yu, S.; Xu, X. A Brønsted Acidic Ionic Liquid as an Efficient and Environmentally Benign Catalyst for Biodiesel Synthesis from Free Fatty Acids and Alcohols. Biores. Technol. 2009, 100 (19), 4368–4373.
  • Azizi, N.; Abdoli-Senejani, M.; Abbasi, F. An Efficient Brønsted–Lewis Acidic Ionic Liquid Catalyzed Tetrahydropyranylation of Alcohols. Tetrahedron Lett. 2016, 57, 5009–5011.
  • Azizi, N.; Shirdel, F. Task Specific Dicationic Acidic Ionic Liquids Catalyzed Efficient and Rapid Synthesis of Benzoxanthenones Derivatives. J. Mol. Liq. 2016, 222, 783–787.
  • Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H. Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts. J. Am. Chem. Soc. 2002, 124, 5962–5963.
  • Amarasekara, A.S. Acidic Ionic Liquids. Chem. Rev. 2016, 116, 6133–6183.
  • Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun. 2001, 1, 2010–2011.
  • Ding, J.; Wang, P.; He, Y.; Cheng, L.; Li, X.; Fang, C.; Li, H.; Wan, H.; Guan, G. Porous Sulfonyl Binuclear Carbonate Poly(Ionic Liquid)s for One-pot Fixation of Diluted CO2 Into Dimethyl Carbonate. Appl. Catal. B Environ. 2023, 324, 122278.
  • Ventura, S.P.M.; Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past,: Present, and Future Trends. Chem. Rev. 2017, 117, 6984–7052.
  • Aflatoonian, M.R.; Tajik, S.; Aflatoonian, B.; Shoaie, I.S.; Sheikhshoaie, M.; Beitollahi, H. Copper Oxide, Ionic Liquid and Mn(III) Salen Modified Carbon Paste Electrode as Selective Electrochemical Sensor for Determination of Droxidopa in the Presence of Carbidopa. Eurasian Chem. Commun. 2020, 2, 387–397.
  • Saghiri, S.; Ebrahimi, M.; Bozorgmehr, M. Electrochemical Amplified Sensor with MgO Nanoparticle and Ionic Liquid: A Powerful Strategy for Methyldopa Analysis. Chem. Methodol. 2021, 5, 234–239.
  • Trujillo-Rodríguez, M.J.; Nan, H.; Varona, M.; Emaus, M.N.; Souza, I.D.; Anderson, J.L. Advances of Ionic Liquids in Analytical Chemistry. Anal. Chem. 2019, 91, 505–531.
  • Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189.
  • Jia, X.; Wang, D.; Zhao, S. Preparation of Deep Eutectic Solvents and Its Application in Morita-Baylis-Hillman Reaction. Chem. Res. Appl. 2021, 33, 2330–2338.
  • Yang, Y.; Yao, H.-F.; Xi, F.-G.; Gao, E.-Q. Amino-Functionalized Zr(IV) Metal-Organic Framework as Bifunctional Acid-Base Catalyst for Knoevenagel Condensation. J. Mol. Catal. A: Chem. 2014, 390, 198–205.
  • Zhang, X.; He, X.; Zhao, S. Preparation of a Novel Fe3O4@SiO2@Propyl@DBU Magnetic Core–Shell Nanocatalyst for Knoevenagel Reaction in Aqueous Medium. Green Chem. Lett. Rev. 2021, 14, 85–98.
  • Song, A.; Wang, X.; Lam, K.S. A Convenient Synthesis of Coumarin-3-Carboxylic Acids via Knoevenagel Condensation of Meldrum'S Acid with Ortho-Hydroxyaryl Aldehydes or Ketones. Tetrahedron Lett. 2003, 44, 1755–1758.
  • Popp, F.D. Notes-Synthesis of 3-Hydroxypyridines. I. Condensation of Aromatic Aldehydes with Ethyl Cyanoacetate. J. Org. Chem. 1960, 25, 646–647.
  • Li, G.; Xiao, J.; Zhang, W. Knoevenagel Condensation Catalyzed by a Tertiary-Amine Functionalized Polyacrylonitrile Fiber. Green Chem. 2011, 13, 1828–1836.
  • Yue, C.; Mao, A.; Wei, Y.; Lue, M. Knoevenagel Condensation Reaction Catalyzed by Task-Specific Ionic Liquid Under Solvent Free Conditions. Catal. Commun. 2008, 9, 1571–1574.
  • Ying, A.-G.; Wang, L.-M.; Wang, L.-L.; Chen, X.-Z.; Ye, W.-D. Green and Efficient Knoevenagel Condensation Catalyzed by a DBU Based Ionic Liquid in Water. J. Chem. Res. 2010, 1, 30–33.
  • Zhang, J.; Jiang, T.; Han, B.; Zhu, A.; Ma, X. Knoevenagel Condensation Catalyzed by 1,1,3,3-Tetramethylguanidium Lactate. Synth. Commun. 2006, 36, 3305–3317.
  • Ren, Z.; Cao, W.; Tong, W. The Knoevenagel Condensation Reaction of Aromatic Aldehydes with Malononitrile by Grinding in the Absence of Solvents and Catalysts. Synth. Commun. 2002, 32, 3475–3479.
  • Zhao, S.; He, M.; Guo, Z.; Zhou, N.; Wang, D.; Li, J.; Zhang, L. [HyEtPy]Cl-H2O: An Efficient and Versatile Solvent System for the DABCO-Catalyzed Morita-Baylis-Hillman Reaction. RSC Adv. 2015, 5, 32839–32845.
  • Zhao, S.; Xu, X.; Zheng, L.; Liu, H. An Efficient Ultrasonic-Assisted Synthesis of Imidazolium and Pyridinium Salts Based on the Zincke Reaction. Ultrason. Sonochem. 2010, 17, 685–689.
  • Parvin, M.N.; Jin, H.; Ansari, M.B.; Oh, S.-M.; Park, S.-E. Imidazolium Chloride Immobilized SBA-15 as a Heterogenized Organocatalyst for Solvent Free Knoevenagel Condensation Using Microwave. Appl. Catal. A 2012, 413–414, 205–212.
  • Postole, G.; Chowdhury, B.; Karmakar, B.; Pinki, K.; Banerji, J.; Auroux, A. Knoevenagel Condensation Reaction Over Acid–Base Bifunctional Nanocrystalline CexZr1−xO2 Solid Solutions. J. Catal. 2010, 269, 110–121.
  • Ansari, M.B.; Jin, H.; Parvin, M.N.; Park, S.-E. Mesoporous Carbon Nitride as a Metal-Free Base Catalyst in the Microwave Assisted Knoevenagel Condensation of Ethylcyanoacetate with Aromatic Aldehydes. Catal. Today 2012, 185, 211–216.
  • Liu, Y.; Liang, J.; Liu, X.H.; Fan, J.C.; Shang, Z.C. Polyethylene Glycol (PEG) as a Benign Solvent for Knoevenagel Condensation. Chin. Chem. Lett. 2008, 19, 1043–1046.
  • Boroujeni, K.P.; Jafarinasa, M. Polystyrene-Supported Chloroaluminate Ionic Liquid as a New Heterogeneous Lewis Acid Catalyst for Knoevenagel Condensation. Chin. Chem. Lett. 2012, 23, 1067–1070.
  • Kumar, A.; Dewan, M.; Saxena, A.; De, A.; Mozumdar, S. Knoevenagel Condensation Catalyzed by Chemo-Selective Ni-Nanoparticles in Neutral Medium. Catal. Commun. 2010, 11, 679–683.
  • Sugahara, K.; Kimura, T.; Kamata, K.; Yamaguchi, K.; Mizuno, N. A Highly Negatively Charged γ-Keggin Germanodecatungstate Efficient for Knoevenagel Condensation. Chem. Commun. 2012, 48, 8422–8424.
  • Elhamifar, D.; Kazempoor, S.; Karimi, B. Amine-Functionalized Ionic Liquid-Based Mesoporous Organosilica as a Highly Efficientnanocatalyst for the Knoevenagel Condensation. Catal. Sci. Technol. 2016, 6, 4318–4326.
  • Sayed, M.; Shi, Z.; Gholami, F.; Fatehi, P.; Soliman, A.I.A. Ag@TiO2 Nanocomposite as an Efficient Catalyst for Knoevenagel Condensation. ACS Omega 2022, 7, 32393–32400.
  • Jia, X.; Zhang, X.; Wang, Z.; Zhao, S. Tertiary Amine Ionic Liquid Incorporated Fe3O4 Nanoparticles as a Versatile Catalyst for the Knoevenagel Reaction. Synth. Commun. 2022, 52, 774–786.
  • Meng, D.; Qiao, Y.; Wang, X.; Wen, W.; Zhao, S. DABCO-Catalyzed Knoevenagel Condensation of Aldehydes with Ethyl Cyanoacetate Using Hydroxy Ionic Liquid as a Promoter. RSC Adv. 2018, 8, 30180–30185.