18,981
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Copernicus Marine Service Ocean State Report, Issue 5

(Editor), (Editor), (Review Editor), (Review Editor), (Review Editor), (Review Editor), (Review Editor), , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & show all

References

Section 1.1. Introduction

Section 1.2 Knowledge and data for international Ocean governance

References

Section 2.1. Modelled sea-ice volume and area transport from the Arctic Ocean to the Nordic and Barents Seas

  • Aagaard K, Carmack EC. 1989. The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res. 94(C10):14485–14498.
  • Aagaard K, Swift JH, Carmack EC. 1985. Thermohaline circulation in the Arctic Mediterranean seas. J Geophys Res. 90(C7):4833–4846.
  • Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen RB. 2012. Quantifying the influence of Atlantic heat on Barents Sea Ice variability and retreat. J Clim. 25:4736–4743.
  • Beszczynzka-Möller A, Fahrbach E, Schauer U, Hansen E. 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J Mar Sci. 69(5):852–863.
  • Bi H, Sun K, Zhou X, Huang H, Xu X. 2016. Arctic Sea Ice area export through the Fram Strait estimated from satellite-based data: 1988–2012. IEEE J Select Top Appl Ear Observat Remot Sens. 9(7):3144–3157.
  • Bi HB, Wang YH, Zhang WF, Zhang ZH, Liang Y, Zhang Y, Hu WM, Fu M, Huang HJ. 2018. Recent satellite-derived sea ice volume flux through the Fram Strait: 2011–2015. Acta Oceanologica Sinica. 37(9):107–115.
  • Chikhar K, Lemieux JF, Dupont F, Roy F, Smith GC, Brady M, Howell SEL, Beaini R. 2019. Sensitivity of ice drift to form drag and ice strength parameterization in a coupled ice-ocean model. Atmos Ocean. 57(5):329–349.
  • Dansereau V, Weiss J, Saramito P, Lattes P. 2016. A Maxwell elasto-brittle rheology of sea ice modelling. Cryosphere. 10(3):1339–1359.
  • Fahrbach E, Meincke J, Østerhus S, Rohardt G, Schauer U, Tverberg V, Verduin J. 2001. Direct measurements of volume transports through Fram Strait. Polar Res. 20(2):217–224.
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. 2015. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Change. doi:https://doi.org/10.1038/nclimate2647.
  • Hansen E, Gerland S, Granskog MA, Pavlova O, Renner AHH, Haapala J, Løyning TB, Tschudi M. 2013. Thinning of Arctic sea ice observed in Fram Strait: 1990–2011. J Geophys Res-Ocean. 118(10):5202–5221.
  • Holland MM, Bitz CM, Eby M, Weaver AJ. 2001. The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J Clim. 14(5):656–675.
  • Hunke EC, Dukowicz JK. 1997. An elastic-viscous-plastic mode for sea ice dynamics. J Phys Oceanogr. 27:1849–1867.
  • Ivanov V, Alexeev N, Koldunov N, Repina I, Sandø A, Smedsrud L, Smirnov A. 2016. Arctic Ocean heat impact on regional ice decay – a suggested positive feedback. J Phys Oceanogr. 46:1437–1456.
  • Lind S, Ingvaldsen RB, Furevik T. 2018. Arctic warming hotspot in the northern Barents Sea linked to declining sea ice import. Nat Clim Change. doi:https://doi.org/10.1038/s41558-018-0205-y.
  • Lique C, Treguier AM, Scheinert M, Penduff T. 2009. A model-based study of ice and freshwater transport variability along both sides of Greenland. Clim Dyn. 33:685–705.
  • Loeng H. 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar Res. 10(1):5–18.
  • Onarheim IH, Eldevik T, Årthun M, Ingvaldsen RB, Smedsrud LH. 2015. Skillful prediction of Barents Sea ice cover. Geophys Res Lett. 42(13):5364–5371.
  • Polyakov IV, Alkire MB, Bluhm BA, Brown KA, Carmack EC, Chierici M, Danielson SL, Ellingsen I, Ershova EA, Gårdfeldt K, et al. 2020a. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic Seas. Front Mar Sci. 7:491. doi:https://doi.org/10.3389/fmars.2020.00491.
  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic ocean. Science. doi:https://doi.org/10.1126/science.aai8204.
  • Polyakov IV, Rippeth TP, Fer I, Alkire MB, Baumann TM, Carmack EC, Ingvaldsen R, Ivanov VV, Janout M, Lind S, et al. 2020b. Weakening of cold halocline layer exposes Sea Ice to oceanic heat in the Eastern Arctic Ocean. J Clim. 33:8107–8123. doi:https://doi.org/10.1175/JCLI-D-19-0976.1.
  • Rabe B, Dodd PA, Hansen E, Falck E, Schauer U, Mackensen A, Beszczynska-Möller A, Kattner G, Rohling EJ, Cox K. 2013. Liquid export of Arctic freshwater components through the Fram Strait 1998–2011. Ocean Sci. 9(1):91–109.
  • Rampal P, Weiss J, Dubois C, Campin J-M. 2011. IPCC climate models do not capture Arctic sea ice drift acceleration: consequences in terms of projected sea ice thinning and decline. J Geophys Res. 116:C00D07. doi:https://doi.org/10.1029/2011JC007110.
  • Ricker R, Girard-Ardhuin F, Krumpen T, Lique C. 2018. Satellite-derived sea ice export and its impact on Arctic ice mass balance. The Cryosphere. 12:3017–3032.
  • Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A. 2012. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci. 8(4):633–656.
  • Skagseth Ø, Eldevik T, Årthun M, Asbjørnsen H, Lien VS, Smedsrud LH. 2020. Reduced efficiency of the Barents Sea cooling machine. Nat Clim Change. doi:https://doi.org/10.1038/s41558-020-0772-6.
  • Smedsrud LH, Esau I, Ingvaldsen RB, Eldevik T, Haugan PM, Li C, Lien VS, Olsen A, Omar AM, Otterå OH, et al. 2013. The role of the Barents Sea in the climate system. Rev Geophys. 51:415–449.
  • Smedsrud LH, Halvorsen MH, Stroeve JC, Zhang R, Kloster K. 2017. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere. 11(1):65–79.
  • Smedsrud LH, Sirevaag A, Kloster K, Sorteberg, Sandven S. 2011. Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. Cryosphere. 5(4):821–829.
  • Sorteberg A, Kvingedal B. 2006. Atmospheric forcing on the barents sea winter ice extent. J Clim. 19(19):4772–4784. y. [accessed 2021 Jul 12]. https://journals.ametsoc.org/view/journals/clim/19/19/jcli3885.1.xml
  • Spreen G, de Steur L, Divine D, Gerland S, Hansen E, Kwok R. 2020. Arctic sea ice volume export through Fram Strait from 1992 to 2014. J Geophys Res – Ocean. 125(6):e2019JC016039.
  • Spreen G, Kern S, Stammer D, Hansen E. 2009. Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophys Res Lett. 36:L19502.
  • Sumata H, Kwok R, Gerdes R, Kauker F, Karcher M. 2015. Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. J Geophys Res – Ocean. 120(8):5285–5301.
  • Tsukernik M, Deser C, Alexander M, Tomas R. 2010. Atmospheric forcing of Fram Strait sea ice export: a closer look. Clim Dyn. 35:1349–1360.
  • van Angelen JH, van den Broeke MR, Kwok R. 2011. The Greenland Sea Jet: a mechanism for wind-driven sea ice export through Fram Strait. Geophys Res Lett. 38:L12805.
  • Vinje T, Nordlund N, Kvambekk Å. 1998. Monitoring ice thickness in Fram Strait. J Geophys Res. 103(C5):10437–10449.
  • Widell K, Østerhus S, Gammelsrød T. 2003. Sea ice velocity in the Fram Strait monitored by moored instruments. Geophys Res Lett. 30(19):1982. doi:https://doi.org/10.1029/2003GL018119.
  • Xie J, Counillon F, Bertino L. 2018. Impact of assimilating a merged sea-ice thickness from CryoSat-2 and SMOS in the Arctic reanalysis. The Cryosphere. 12(11):3671–3691. DOI:https://doi.org/10.5194/tc-12-3671-2018.
  • Zamani B, Krumpen T, Smedsrud LH, Gerdes R. 2019. Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations. Clim Dyn. 53:3257–3270.
  • Zhang JL, Lindsay R, Steele M, Schweiger A. 2008. What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys Res Lett. 35(11):L11505.
  • Zhang ZH, Bi HB, Sun K, Huang HJ, Liu YX, Yan LW. 2017. Arctic sea ice volume export through the Fram Strait from combined satellite and model data: 1979–2012. Acta Oceanologica Sinica. 36:44–55.

Section 2.2. Ocean heat content in the High North

  • Aagaard K, Swift JH, Carmack C. 1985. Thermohaline circulation in the Arctic Mediterranean Seas. J Geophys Res. 90(C3):4833–4846.
  • Årthun M, Eldevik T. 2016. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J Clim. 29:689–704.
  • Årthun M, Eldevik T, Smedsrud LH. 2019. The role of Atlantic heat transport in future Arctic winter sea ice loss. J Clim. 32:3327–3341.
  • Asbjørnsen H, Årthun M, Skagseth Ø, Eldevik T. 2019. Mechanisms of ocean heat anomalies in the Norwegian sea. J Geophys Res Oceans. 124(4):2908–2923. DOI:https://doi.org/10.1029/2018JC014649.
  • Carton JA, Chepurin GA, Reagan* J, Hakkinen S. 2011. Interannual to decadal variability of Atlantic Water in the Nordic and adjacent seas. J Geophys Res. 116:C11035. DOI:https://doi.org/10.1029/2011JC007102.
  • Cheng L, Trenberth KE, Fasullo J, Abraham J, Boyer TP, von Schuckmann K, Zhu J. 2017. Taking the pulse of the planet. Eos. 98. doi:https://doi.org/10.1029/2017EO081839. Published on 13 September 2017.
  • Dmitrenko IA, Kirillov SA, Serra N, Koldunov NV, Ivanov VV, Schauer U, Polyakov IV, Barber D, Janout M, Lien VS, et al. 2014. Heat loss from the Atlantic water layer in the St. Anna Trough (northern Kara Sea): causes and consequences. Ocean Sci. 10:719–730.
  • Furevik T. 2001. Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep-Sea Res I. 48:383–404.
  • González-Pola C, Larsen KMH, Fratantoni P, Beszczynska-Möller A, eds. 2019. ICES report on Ocean climate 2018. ICES cooperative research report no. 349. 122 pp. doi:10.17895/ices.pub.5461.
  • Guinehut S, Dhomps A, Larnicol G, Le Traon P-Y. 2012. High resolution 3-d temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 8(5):845–857.
  • Isachsen PE, Koszalka I, LaCasce JH. 2012. Observed and modeled surface eddy heat fluxes in the eastern Nordic seas. J Geophys Res. 117:C08020.
  • Ivanov V, Alexeev V, Koldunov NV, Repina I, Sandø AB, Smedsrud LH, Smirnov A. 2016. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J Phys Oceanogr. 46:1437–1456.
  • Lien VS, Trofimov AG. 2013. Formation of Barents Sea branch water in the north-eastern Barents Sea. Polar Res. 32:18905.
  • Locarnini RA, Mishonov AV, Baranova OK, Boyer TP, Zweng MM, Garcia HE, Reagan JR, Seidov D, Weathers K, Paver CR, Smolyar I. 2018. World Ocean Atlas 2018, volume 1: temperature. A. mishonov technical Ed.; NOAA Atlas NESDIS 81, 52 p.
  • Mauritzen C. 1996. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: evidence for a revised circulation scheme. Deep Sea Res Part I. 43:769–806.
  • Mayer M, Haimberger L, Pietschnig M, Storto A. 2016. Facets of Arctic energy accumulation based on observations and reanalyses 2000–2015. Geophys Res Lett. 43:10420–10429. doi:https://doi.org/10.1002/2016GL070557.
  • Mayer M, Tietsche S, Haimberger L, Tsubouchi T, Mayer J, Zuo H. 2019. An improved estimate of the coupled Arctic energy budget. J Clim. 32(22):7915–7934.
  • Mork KM, Skagseth Ø. 2012. Heat content in the Norwegian Sea, 1995–2010. ICES J Mar Sci. 69:826–832.
  • Mork KM, Skagseth Ø, Søiland H. 2019. Recent warming and freshening of the Norwegian Sea observed by Argo data. J Climate. 32:3695–3705.
  • Pietschnig M, Mayer M, Tsubouchi T, Storto A, Stichelberger S, Haimberger L. 2018. Volume transports and temperature distributions in the main arctic gateways: a comparative study between an ocean reanalysis and mooring-derived data. doi:10.31223/osf.io/5hg3z.
  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 356(6335):285–291.
  • Polyakov IV, Rippeth TP, Fer I, Alkire MB, Baumann TM, Carmack EC, Ingvaldsen R, Ivanov VV, Janout M, Lind S, Padman L, et al. 2020. Weakening of cold halocline layer exposes sea ice to oceanic heat in the Eastern Arctic Ocean. J Clim. 33(18):8107–8123.
  • Proshutinsky A, Dukhovskoy D, Timmermans M-L, Krishfield R, Bamber JL. 2015. Arctic circulation regimes. Phil Trans R Soc A 373:20140160. doi:https://doi.org/10.1098/rsta.2014.0160
  • Robson J, Sutton R, Lohmann K, Smith D, Palmer MD. 2012. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J Clim. 25:4116–4134.
  • Segtnan OH, Furevik T, Jenkins AD. 2011. Heat and freshwater budgets of the Nordic seas computed from atmospheric reanalysis and ocean observations. J Geophys Res. 116:C11003.
  • Serreze MC, Barry RG. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change. 77:85–96. doi:https://doi.org/10.1016/j.gloplacha.2011.03.004.
  • Skagseth Ø, Eldevik T, Årthun M, Asbjørnsen H, Lien VS, Smedsrud LH. 2020. Reduced efficiency of the Barents Sea cooling machine. Nat Clim Change. doi:https://doi.org/10.1038/s41558-020-0772-6.
  • Timmermans ML, Toole J, Krishfield R. 2018. Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci Adv. 4(8):eaat6773.
  • Tsubouchi, et al. 2020. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nat Clim Chang. 11:21–26. doi:https://doi.org/10.1038/s41558-020-00941-3.
  • Uotila P, Goosse H, Haines K, Chevallier M, Barthélemy A, Bricaud C, Carton J, Fučkar N, Garric G, Iovino D, et al. 2019. An assessment of ten ocean reanalyses in the polar regions. Clim Dyn. 52(3–4):1613–1650.
  • von Schuckmann, K, et al. 2018. Copernicus Marine service Ocean state report. J Oper Oceanogr 11:S1–S142. https://marine.copernicus.eu/science-learning/ocean-state-report/oceanstate-report-2nd-issue/.
  • von Schuckmann K, Cheng L, Palmer MD, Tassone C, Aich V, Adusumilli S, Beltrami H, Boyer T, Cuesta-Valero FJ, Desbruyères D, et al. 2020. Heat stored in the earth system: where does the energy go? The GCOS Earth heat inventory team. Earth Syst Sci Data Discuss. doi:https://doi.org/10.5194/essd-2019-255. in review.
  • Von Schuckmann K, Palmer MD, Trenberth KE, Cazenave A, Chambers D, Champollion N, Hansen J, Josey S, Loeb N, Mathieu P-P, et al. 2016. An imperative to monitor earth’s energy imbalance. Nat Clim Change. 6(2):138–144.

Section 2.3. Declining silicate and nitrate concentrations in the northern North Atlantic

  • Barofsky A, et al. 2010. Growth phase of the diatom skeletonema marinori influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. J Plankt Res. 32:263–272.
  • Bendschneider K, Robinson RI. 1952. A new spectrophotometric method for the determination of nitrite in seawater. J Mar Res. 2:87–96.
  • Berx B, Payne M. 2016. Sub-polar gyre index. doi:10.7489/1806-1.
  • Daniels CJ, et al. 2015. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 12:2395–2409.
  • Egge J, Aksnes D. 1992. Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser. 83:281–289.
  • Eiane K, Tande KS. 2009. Meso and microzooplankton, pp. 209–234. In: Sakshaug E., G. Johnsen, K. Kovac, editor. Ecosystem Barents Sea. Norway: Tapir Academic Press; 587 pp.
  • Furnas MJ. 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rate. J Plankton Res. 12:1117–1151.
  • Garcia HE, et al. 2006. World Ocean Atlas 2005, vol. 4, nutrients (phosphate, nitrate, silicate), 396 pp. In: Levitus S, editor. NOAA Atlas NESDIS, vol. 64. Silver Spring, MD: NOAA.
  • Gjøsæther H. 2009. Commercial fisheries (fish, seafood and marine mammals), pp. 373–414. In: Sakshaug E., G. Johnsen, K. Kovac, editor. Ecosystem Barents Sea, 587 pp.
  • Grasshoff K. 1965. On the Automatic Determination of Phosphate, Silicate and Fluoride in Seawater. ICES Hydrographic Committee Report No. 129. ICESHydrographic Committee Report No. 129. ICES. https://www.ices.dk/.
  • Hátún H, et al. 2005. Influence of the Atlantic Subpolar gyre on the thermohaline circulation. Science. 309:1841–1844.
  • Hátún H, et al. 2017. The subpolar gyre regulates silicate concentrations in the North Atlantic. Sci Rep. 7:14576.
  • Honjo S, Manganini SJ. 1993. Annual biogenic particle fluxes to the interior of the North Atlantic Ocean studied at 34-degrees N 21-degrees W and 48 degrees N 21 degrees W. Deep-Sea Res II. 40:587–607.
  • Irigoien X, et al. 2000. Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr. 45:44–54.
  • Jaccard, P. et al. 2020. Quality information document for global ocean reprocessed in-situ observations of biogeochemical products. Issue 2.0, 77 pp. doi:10.13155/54846
  • Johnson C, et al. 2013. Declining nutrient concentrations in the northeast Atlantic, as a result of a weakening Subpolar Gyre. Deep-Sea Res. 82:95–107.
  • Jonasdottir SH. 1994. Effects of food quality on reproductive success in Acartia tonsa and Acartia hudsonica - laboratory observations. Mar Biol. 121:67–81.
  • Mayzaud P, et al. 1996. The influence of food quality on the nutritional acclimation of the copepod Acartia clausi. In: 6th international conference on Copepoda, Elsevier, Germany, pp. 483–493.
  • McCartney MS, Mauritzen C. 2001. On the origin of warm inflow to the Nordic Seas. Prog Oceanogr. 51:125–214.
  • McQuatters-Gollop A, et al. 2007. A long-term chlorophyll data set reveals regime shift in North Sea phytoplankton biomass unconnected to nutrient trends. Limnol Oceanogr. 52:635–648.
  • Melle W, et al. 2004. Zooplankton: the link to higher trophic levels. In: Skjoldal H.R, editor. The Norwegian Sea Ecosystem. Norway: Tapir Academic Press; p. 209–234.
  • Meyer-Harms B, et al. 1999. Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after the 1997 spring bloom in the Norwegian Sea. Limnol Oceanogr. 44:154–165.
  • Moore PE, et al. 1999. Physical constraints of chemoreception in foraging copepods. Limnol Oceanogr. 44:166–177.
  • Officer CB, Ryther JH. 1980. The possible importance of silicon in marine eutrophication. Mar Ecol Prog Ser. 3:83–91.
  • Olsen MB, et al. 2006. Copepod feeding selectivity on microplankton, including the toxigenic diatoms, Pseudo-nitzchia spp. in the coastal Pacific Northwest. Mar Ecol Prog Ser. 326:207–220.
  • Pollock DE. 1997. The role of diatoms, dissolved silicate and Antarctic glaciation in glacial/interglacial climate change; a hypothesis. Global Planet Change. 14:113–125.
  • Pond D, et al. 1996. Environmental and nutritional factors determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters off Plymouth, UK. Mar Ecol Prog Ser. 143:45–63.
  • Rey F. 2004. Phytoplankton: the grass of the ocean. In: Skjoldal H.R, editor. The Norwegian Sea Ecosystem. Norway: Tapir Academic Press; p. 97–136.
  • Rey F. 2012. Declining silicate concentrations in the Barents Sea. ICES J Mar Sci. 69:208–212.
  • Sarafanov A. 2009. On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters. ICES J Mar Sci. 66:1448–1454.
  • Savidge G, et al. 1995. A study of the spring bloom in the N–E Atlantic Ocean in 1990. Deep Sea Res. 42:599–617.
  • Schlosser P, et al. 1995. The role of the large-scale Arctic Ocean circulation in the transport of contaminants. Deep-Sea Research II. 42:1341–1367.
  • Selander E, et al. 2006. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc Lond Ser B. 273:1673–1680.
  • Skjoldal HR, et al. 2004. Food webs and trophic interactions. In: Skjoldal H.R, editor. The Norwegian Sea Ecosystem. Norway: Tapir Academic Press; p. 447–506.
  • Smayda TJ, et al. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for global epidemic. In: Graneli E, editor. Toxic marine phytoplankton. New York, NY: Elsevier; p. 29–40.
  • Volk T, Hoffert MI. 1985. Ocean Carbon pumps: analysis of relative strengths and efficiencies in Ocean-driven atmospheric CO2 changes. In: Sundquist E.T., W.S. Broecker, editor. The Carbon cycle and atmospheric CO2: natural variations archean to present, geophysical monograph series, vol. 32. doi:https://doi.org/10.1029/GM032p0099

Section 2.4. Eutrophic and oligotrophic indicators for the North Atlantic Ocean

  • Andersen JH, Kallenbach E, Murray C, Ledang AB. 2016. Eutrophication in the Danish parts of the North Sea, Skagerrak and Kattegat 2006–2014. A literature-based status assessment. NIVA Denmark Report. https://brage.bibsys.no/xmlui/handle/11250/2406499.
  • Anderson DM, Glibert PM, Burkholder JM. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries. 25:704–726. doi:https://doi.org/10.1007/BF02804901.
  • Attila J, Kauppila P, Kallio KY, Alasalmi H, Keto V, Bruun E, Koponen S. 2018. Applicability of earth observation chlorophyll-a data in assessment of water status via MERIS – with implications for the use of OLCI sensors. Remote Sens Environ. 212:273–287. doi:https://doi.org/10.1016/j.rse.2018.02.043.
  • Balmer MB, Downing JA. 2011. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters. 1(2):125–132. doi:https://doi.org/10.5268/IW-1.2.366.
  • Baretta-Bekker H, Sell A, Marco-Rius F, Wischnewski J, Walsham P, Malin Mohlin L, Wesslander K, Ruiter H, Gohin F, Enserink L. 2015. The chlorophyll case study in the JMP NS/CS project. Document produced as part of the EU project: ‘Towards joint Monitoring for the North Sea and Celtic Sea’ (Ref: ENV/PP 2012/SEA).
  • Blauw A, Eleveld M, Prins T, Zijl F, Julien Groenenboom J, Gundula Winter G, Kramer L, Troost T, Bartosova A, Johansson J, et al. 2019. Coherence in assessment framework of chlorophyll-a and nutrients as part of the EU project ‘Joint monitoring programme of the eutrophication of the North Sea with satellite data’ (Ref: DG ENV/MSFD Second Cycle/2016). Activity 1 Report.
  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS. 2018. Declining oxygen in the global ocean and coastal waters. Science. 359(6371):eaam7240.
  • Cai W, Hu X, Huang W. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geosci. 4:766–770. https://doi.org/10.1038/ngeo1297.
  • Carvalho L, Mackay EB, Cardoso AC, Baattrup-Pedersen A, Birk S, Blackstock KL, Borics G, Borja A, Feld CK, Ferreira MT, et al. 2019. Protecting and restoring Europe’s waters: an analysis of the future development needs of the water framework directive. Sci Total Environ. 658:1228–1238. doi:https://doi.org/10.1016/j.scitotenv.2018.12.255.
  • CMEMS OMI catalogue. 2020. ATLANTIC_OMI_HEALTH_OceanColour_anomalies. Available from: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=ATLANTIC_OMI_HEALTH_OceanColour_anomalies.
  • Coppini G, Lyubartsev V, Pinardi N, Colella S, Santoleri R, Christiansen T. 2012. Chl-a trends in European seas estimated using ocean-colour products. Ocean Sci Discus. 9:1481–1518. doi:https://doi.org/10.5194/osd-9-1481-2012.
  • Cristina S, Icely J, Goela PC, DelValls TA, Newton A. 2015. Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal. Cont Shelf Res. 108:169–177.
  • Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, Cardoso da Silva M, Garcés E, Heiskanen A-S, Humborg C, Ignatiades L, et al. 2011. Overview of eutrophication indicators to assess environmental status within the European Marine strategy framework directive. Estuarine Coastal Shelf Sci. 93(2):117–131. doi:https://doi.org/10.1016/j.ecss.2011.03.014.
  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 320(5878):889–892. doi:https://doi.org/10.1126/science.1136674.
  • Gohin F, Bryère P, Lefebvre A, Sauriau P-G, Savoye N, Vantrepotte V, Bozec Y, Cariou T, Conan P, Coudray S, et al. 2020. Satellite and in situ monitoring of Chl-a, turbidity, and total suspended matter in coastal waters: experience of the year 2017 along the French coasts. J Mar Sci Eng. 8(9):665. doi:https://doi.org/10.3390/jmse8090665.
  • Gohin F, Saulquin B, Oger-Jeanneret H, Lozac’h L, Lampert L, Lefebvre A, Riou P, Bruchon F. 2008. Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations. Remote Sens Environ. 112:3329e3340.
  • Gohin F, Van der Zande D, Tilstone G, Eleveld MA, Lefebvre A, Andrieux-Loyer F, Blauw AN, Bryère P, Devreker D, Garnesson P, et al. 2019. Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving? Remote Sens Environ. 233:111343. doi:https://doi.org/10.1016/j.rse.2019.111343.
  • Ha NTT, Koike K, Nhuan MT. 2014. Improved accuracy of chlorophyll-a concentration estimates from MODIS imagery using a two-band ratio algorithm and geostatistics: as applied to the monitoring of eutrophication processes over tien Yen Bay (Northern Vietnam). Remote Sens (Basel). 6:421–442.
  • Harvey ET, Kratzer S, Philipson P. 2015. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens Environ. 158:417–430. doi:https://doi.org/10.1016/j.rse.2014.11.017.
  • Howarth RW, Anderson DB, Cloer JE, Elfring C, Hopkinson CS, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley AN, et al. 2000. Nutrient pollution of coastal rivers, bays, and seas. Issues Ecol. 7:1–16.
  • Howarth, RW, Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol Oceanogr. 51(1, part 2). doi:https://doi.org/10.4319/lo.2006.51.1_part_2.0364.
  • Jickells TD. 1998. Nutrient biogeochemistry of the coastal zone. Science. 281:217–222. doi:https://doi.org/10.1126/science.281.5374.217.
  • Lefebvre A, Guiselin N, Barbet F, Artigas LF. 2011. Long-term hydrological and phytoplankton monitoring (1992–2007) of three potentially eutrophicated systems in the eastern English Channel and the southern bight of the North Sea ICES. J Mar Sci. 68(10):2029–2043. https://doi.org/10.1093/icesjms/fsr149.
  • Malone TC, Newton A. 2020. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Front Mar Sci. 7:670. doi:https://doi.org/10.3389/fmars.2020.00670.
  • Murray CJ, Müller-Karulis B, Carstensen J, Conley DJ, Gustafsson BG, Andersen JH. 2019. Past, present and future eutrophication status of the Baltic Sea. Front Mar Sci. 6(2). doi:https://doi.org/10.3389/fmars.2019.00002.
  • Novoa S, Chust G, Sagarminaga Y, Revilla M, Borja A, Franco J. 2012. Water quality assessment using satellite-derived chlorophyll – a within the European directives, in the southeastern Bay of biscay. Mar Pollut Bull. 65:739–750. doi:https://doi.org/10.1016/j.marpolbul.2012.01.020.
  • NOWPAP CEARAC – Northwest Pacific Action Plan Special Monitoring and Coastal Environmental Assessment Regional Activity Centre. 2007. Eutrophication monitoring guidelines by Remote Sensing for the NOWPAP region. Toyama City, Japan. Availble from: https://www.cearac-project.org/wg4/publications/Eutrophication_GL_RS.pdf.
  • OSPAR ICG-EUT. Axe, P., Clausen, U., Leujak, W., Malcolm, S., Ruiter, H., Prins, T., Harvey, E.T. (2017). Eutrophication Status of the OSPAR Maritime Area. Third Integrated Report on the Eutrophication Status of the OSPAR Maritime Area.
  • Papathanasopoulou E, Simis S, Alikas K, Ansper A, Anttila S, Attila J, Barillé AL, Barillé L, Brando V, Bresciani M, et al. 2019. Satellite-assisted monitoring of water quality to support the implementation of the water framework directive. EOMORES White Paper. 28. doi:https://doi.org/10.5281/zenodo.3463051.
  • Park Y, Ruddick K, Lacroix G. 2010. Detection of algal blooms in European waters based on satellite chlorophyll data from MERIS and MODIS. Int J Remote Sens. 31:6567–6583.
  • Sathyendranath S, Pardo S, Benincasa M, Brando VE, Brewin RJW, Mélin F, Santoleri R. 2018. 1.5. Essential variables: Ocean colour in Copernicus Marine service Ocean state report – issue 2. J Operat Oceanogr. 11(Suppl. 1)):1–142. doi:https://doi.org/10.1080/1755876X.2018.1489208.
  • Schindler DW. 2006. Recent advances in the understanding and management of eutrophication. Limnol Oceanogr. 51:356–363.
  • Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Poll Res. 10:126–139. https://doi.org/10.1065/espr2002.12.142.
  • Van der Zande D, Lacroix G, Desmit X, Ruddick K. 2011. Impact of irregular sampling by MERIS on eutrophication monitoring products for WFD and MSFD applications. Proceedings of the 6th 683 EuroGOOS Conference, Sopot, Poland; p. 348–357.
  • Van der Zande D, Lavigne H, Blauw A, Prins T, Desmit X, Eleveld M, Gohin F, Pardo S, Tilstone G, Cardoso Dos Santos J. 2019. Enhance coherence in eutrophication assessments based on chlorophyll, using satellite data as part of the EU project ‘Joint monitoring programme of the eutrophication of the North Sea with satellite data’ (Ref: DG ENV/MSFD Second Cycle/2016). Activity 2 Report.
  • Van der Zande D, Ruescas A, Storm T, Embacher S, Stelzer K, Ruddick K. 2013. Monitoring eutrophication in the North Sea: an operational CHL-P90 tool. Proceedings of IOCS2013 conference held in Darmstadt, Germany, 6–8 May 2013.
  • Van Meerssche E, Pinckney JL. 2019. Nutrient loading impacts on Estuarine phytoplankton size and community composition: community-based indicators of eutrophication. Estuaries Coasts. 42:504–512. doi:https://doi.org/10.1007/s12237-018-0470-z.
  • Wallace RB, Baumann H, Grear JS, Aller RB, Gobler CJ. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine Coastal Shelf Sci. 148:1–13. doi:https://doi.org/10.1016/j.ecss.2014.05.027.

Section 2.5. Nitrate, ammonium and phosphate pools in the Baltic Sea

Section 2.6. Long term changes monitored in two Mediterranean Channels

Section 2.7. Interannual variations of the Black Sea Rim Current intensity

Section 2.8. Climatology and 2019 anomaly of maximum waves in the Mediterranean and Black Seas

Section 2.9. Strong positive Indian Ocean Dipole events over the period 1993 to 2019

References

Section 3.1. The chlorophyll-a gradient as primary Earth observation index of marine ecosystem feeding capacity

  • https://fishreg.jrc.ec.europa.eu/web/fish-habitat/publications-and-press-release.
  • Allen M, Antwi-Agyei P, Aragon-Durand F, Babiker M, Bertoldi P, Bind M, Brown S, Buckeridge M, et al. 2019. Technical summary: global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.
  • Brandini FP, Boltovskoy D, Piola AR, Kocmur S, Rottgers R, Abreu PC, Mendes Lopes R. 2000. Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30–62°S). Deep Sea Res I. 47:1015–1033.
  • Briscoe DK, Hobday AJ, Carlisle A, Scales K, Eveson JP, Arrizabalaga H, Druon JN, Fromentin JM. 2017. Ecological bridges and barriers in pelagic ecosystems. Deep Sea Res Part II Top Stud Oceanogr. 140:182–192.
  • Druon J-N, Fiorentino F, Murenu M, Knittweis L, Colloca F, Osio C, Mérigot B, Garofalo G, Mannini A, Jadaud A, et al. 2015. Modelling of European hake nurseries in the Mediterranean Sea: an ecological niche approach. Prog Oceanogr. 130:188–204.
  • Druon JN. 2017. Ocean productivity index for fish in the Arctic: first assessment from satellite derived plankton-to-fish favourable habitats, EUR 29006 EN. Publications Office of the European Union. ISBN 978-92-79-77299-3, JRC109947. https://doi.org/10.2760/28033.
  • Druon JN, Chassot E, Murua H, Lopez J. 2017. Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans. Front Mar Sci. 4:315. DOI:https://doi.org/10.3389/fmars.2017.00315.
  • Druon JN, Fromentin JM, Hanke A, Arrizabalaga H, Damalas D, Tičina V, Quílez-Badia G, Ramirez K, Arregui I, Tserpes G, et al. 2016. Habitat suitability of the Atlantic bluefin tuna by size class: an ecological niche approach. Prog Oceanogr. 142:30–46. doi:https://doi.org/10.1016/j.pocean.2016.01.002.
  • Druon JN, Gascuel D, Gibin M, Zanzi A, Fromentin JM, Colloca F, Hélaouët P, Coll M, Mannini A, Bluemel J, et al. 2021. Mesoscale productivity fronts and local fishing opportunities in the European Seas. Fish Fish. DOI:https://doi.org/10.1111/faf.12585.
  • Druon JN, Hélaouët P, Beaugrand G, Fromentin JM, Palialexis A, Hoepffner N. 2019. Satellite-based indicator of zooplankton distribution for global monitoring. Nat Sci Rep. 9:4732. DOI:https://doi.org/10.1038/s41598-019-41212-2.
  • Druon JN, Panigada S, David L, Gannier A, Mayol P, Arcangeli A, Cañadas A, Laran S, Di Méglio N, Gauffier P. 2012. Potential feeding habitat of fin whales in the western Mediterranean Sea: an environmental niche model. Mar Ecol Prog Ser. 464:289–306. DOI:https://doi.org/10.3354/meps09810.
  • Dutkiewicz S, Hickman AE, Jahn O, Henson S, Beaulieu C, Monier E. 2019. Ocean colour signature of climate change. Nat Commun. 10:578. DOI:https://doi.org/10.1038/s41467-019-08457-x.
  • European Commission. 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (text with EEA relevance).
  • European Commission. 2013. REGULATION (EU) No 1380/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC.
  • European Commission. 2017. Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing decision 2010/477/EU (Text with EEA relevance).
  • Garnesson P, Mangin A, Fanton d'Andon O, Demaria J, Bretagnon M. 2019. The CMEMS GlobColour chlorophyll-a product based on satellite observation: multi-sensor merging and flagging strategies. Ocean Sci. 15(3):819–830. DOI:https://doi.org/10.5194/os-15-819-2019.
  • Gohin F, Druon JN, Lampert L. 2002. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int J Remote Sens. 23:1639–1661 (not open access).
  • Hernvann PY, Gascuel D, Grüss A, Druon JN, Kopp D, Perez I, Piroddi C, Robert M. 2020. The Celtic Sea through time and space: ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front Mar Sci. 7:1018. DOI:https://doi.org/10.3389/fmars.2020.578717.
  • Hu C, Lee Z, Franz B. 2012. Chlorophyll aalgorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J Geophys Res. 117:C01011. DOI:https://doi.org/10.1029/2011JC007395.
  • Kahru M, Di Lorenzo E, Manzano-Sarabia M, Mitchell BG. 2012. Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California current. J Plankton Res. 34(9):749–760. DOI:https://doi.org/10.1093/plankt/fbs010.
  • Kouketsu S, Kaneko H, Okunishi T, Sasaoka K, Itoh S, Inoue R, Ueno H. 2016. Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio extension. J Oceanogr. 72:439–451. DOI:https://doi.org/10.1007/s10872-015-0286-4.
  • Libralato S, Coll M, Tudela S, Palomera I, Pranovi F. 2008. Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar Ecol Prog Ser. 355:107–129.
  • Panigada S, Donovan G, Druon JN, Lauriano G, Pierantonio N, Pirotta E, Zanardelli M, Zerbini A, Notarbartolo di Sciara G. 2017. Satellite tagging of Mediterranean fin whales: working towards the identification of critical habitats and the focussing of mitigation measures. Nat Sci Rep. 7:3365. DOI:https://doi.org/10.1038/s41598-017-03560-9.
  • Pegau WS, Boss E, Martinez A. 2002. Ocean color observations of eddies during the summer in the Gulf of California. Geophys Res Lett 29:1295. DOI:https://doi.org/10.1029/2001GL014076.
  • Pitarch J, Volpe G, Colella S, Krasemann H, Santoleri R. 2016. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data. Ocean Sci. 12(2):379–389.
  • Polovina JJ, Howell E, Kobayashi DR, Seki MP. 2001. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Prog Oceanogr. 49:469–483.
  • Raymont JEG. 1980. Plankton & productivity in the oceans: volume 1: phytoplankton, 1- marine plankton. 2nd ed. Oxford: Pergamon Press Ltd.
  • Takahashi W, Kawamura H. 2005. Detection method of the Kuroshio front using the satellite-derived chlorophyll-a images. Remote Sens Environ. 97:83–91.
  • Valavanis DV, Kapantagakis A, Katara I, Palialexis A. 2004. Critical regions: A GIS-based model of marine productivity hotspots. Aquat Sci. 66:139–148. DOI:https://doi.org/10.1007/s00027-003-0669-2.
  • von Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Djavidnia S, Gattuso J-P, Grégoire M, Nolan G. 2019. Copernicus marine service ocean state report, issue 3. J Oper Oceanogr. 12:S1–S123.
  • von Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Djavidnia S, Gattuso J-P, Grégoire M, Nolan G. 2020. Copernicus marine service ocean state report, issue 4. J Oper Oceanogr. 13:sup1, S1–S172. DOI:https://doi.org/10.1080/1755876X.2020.1785097.

Section 3.2. Marine heatwaves and cold-spells, and their impact on fisheries in the North Sea

Section 3.3. Massive occurrence of the jellyfish Portuguese Man-of-War in the Mediterranean Sea: implication for coastal management

  • Angel DL, Edelist D, Freeman S. 2016. Local perspectives on regional challenges: jellyfish proliferation and fish stock management along the Israeli Mediterranean coast. Reg Environ Change. 16(2):315–323.
  • Badré S. 2014. Bioactive toxins from stinging jellyfish. Toxicon. 91:114–125.
  • Bosch-Belmar M, Azzurro E, Pulis K, Milisenda G, Fuentes V, Yahia OK, Micallef A, Deidun A, Piraino S. 2017. Jellyfish blooms perception in Mediterranean finfish aquaculture. Mar Policy. 76:1–7.
  • Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D. 2012. Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia. 690:3–20.
  • Burnett JW, Gable WD. 1989. A fatal jellyfish envenomation by the Portuguese Man-ó-War. Toxicon. 27:823–824.
  • Cazorla-Perfetti DJ, Loyo J, Lugo L, Acosta ME, Morales P, Hadda V, Jr, Rodriguez-Morales AJ. 2012. Epidemiology of the Cnidarian Physalia physalis stings attended at a health care center in beaches of Adicora, Venezuela. Travel Med Infect Dis. 10:263–266.
  • Ciscar JC, Iglesias A, Feyen L, Szabó L, Van Regemorter D, Amelung B, Nicholls R, Watkiss P, Christensen OB, Dankers R, Garrote L. 2001. Physical and economic consequences of climate change in Europe. Proc Natl Acad Sci USA. 108:2678–2683.
  • Eurostat. 2020. Tourism database. Available at the Eurostat website [accessed 2020 Dec 1]. https://ec.europa.eu/eurostat/web/tourism/data/database.
  • Ferrer L, Pastor A. 2017. The Portuguese Man-of-War: gone with the wind. Reg Stud Marine Sci. 14:53–62.
  • Ferrer L, Zaldua-Mendizabal N, Del Campo A, Franco J, Mader J, Cotano U, Uriarte A, Aranada JA. 2015. Operational protocol for the sighting and tracking of Portuguese Man-of-War in the southeastern Bay of Biscay: observations and modeling. Cont Shelf Res. 95:39–53.
  • Ghermandi A, Galil B, Gowdy J, Nunes PALD. 2015. Jellyfish outbreak impacts on recreation in the Mediterranean Sea: welfare estimates from a socioeconomic pilot survey in Israel. Ecosyst Serv. 11:140–147.
  • Haddad V, Jr, Virga R, Bechara A, Lang da Silveira F, Morandini AC. 2013. An outbreak of Portuguese Man-of-War (Physalia physalis – Linnaeus, 1758) envenoming in Southeastern Brazil. Rev Soc Bras Med Trop. 46(5):641–644.
  • Headlam J, Lyons K, Kenny J, Lenihan ES, Quigley DTG, Helps W, Dugon MM, Doyle TK. 2020. Insights on the origin and drift trajectories of Portuguese man of war (Physalia physalis) over the Celtic Sea shelf area. Estuarine Coastal Shelf Sci. 246:107033.
  • Kirkpatrick PA, Pugh PR. 1984. Siphonophores and velellids. Synop Br Fauna New Ser. 29:1–154.
  • Kogovsek T, Bogunovic B, Malej A. 2010. Recurrence 1571 of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia. 645:81–96.
  • Kontogianni AD, Emmanouilides CJ. 2014. The cost of a gelatinous future and loss of critical habitats in the Mediterranean. ICES J Mar Sci. DOI:https://doi.org/10.1093/icesjms/fst194.
  • Labadie M, Aldabe B, Ong N, Joncquiert-Latarjet A, Groult V, Poulard A, Coudreuse M, Cordier L, Rolland P, Chanseau P, de Haro L. 2012. Portuguese Man-of-War (Physalia physalis) envenomation on the aquitaine coast of France: an emerging health risk. Clin Toxicol. 50:567–570.
  • Lett C, Verley P, Mullon C, Parada P, Brochier T, Penven P, Blanke B. 2008. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ Model Softw. 23(9):1210–1214.
  • Macias D, Cózar A, Garcia-Gorriz E, González-Fernández D, Stips A. 2019. Surface water circulation develops seasonally changing patterns of floating litter accumulation in the Mediterranean Sea. A modelling approach. Mar Pollut Bull. 149:110619.
  • Macias D, Garcia-Gorriz E, Piroddi C, Stips A. 2014. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Global Biogeochem Cycles. 28(8):897–907.
  • Mapstone GM. 2014. Global diversity and review of Siphonophorae (Cnidaria: Hidrozoa). PLoS One. 9(2):e87737. doi:https://doi.org/10.1371/journal.pone.0087737.
  • Munro C, Vue Z, Behringer RR, Dunn CW. 2019. Morphology and development of the Portuguese man of war, Physalia physalis. Sci Rep. 9:15522. doi:https://doi.org/10.1038/s41598-019-51842-1.
  • Hurrell J, National Center for Atmospheric Research Staff, editors. 2020. The climate data guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). [accessed 2020 Apr 24]. https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based.
  • Prieto L. 2018. Diagnosis, prognosis, and management of jellyfish swarms. In: Chassignet EP, Pascual A, Tintoré J, Verron J, editors. New Frontiers in operational oceanography. p. 737–758. DOI:https://doi.org/10.17125/gov2018.ch28.737.
  • Prieto L, Macías D, Peliz A, Ruiz J. 2015. Portuguese Man-of-War (Physalia physalis) in the Mediterranean: a permanent invasion or a casual appearance? Sci Rep. 5:11545.
  • Purcell JE, Uye S-I, Lo W-T. 2007. Anthropogenic causes of jellyfish blooms and direct consequences for humans: a review. Mar Ecol Prog Ser. 350:153–174.
  • World Tourism Organization. 2018. European Union tourism trends. Madrid: UNWTO. DOI:https://doi.org/10.18111/9789284419470.

Section 3.4. Recent changes of the salinity distribution and zooplankton community in the South Adriatic Pit

  • Batistić M, Garić R, Jasprica N, Ljubimir S, Mikuš J. 2018. Bloom of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921 and tunicates Salpa fusiformis Cuvier, 1804 and Salpa maxima Forskål, 1775 in the open southern Adriatic in 2009. J Mar Biol Assoc UK. 99:1049–1058. DOI:https://doi.org/10.1017/S0025315418001029.
  • Batistić M, Garić R, Molinero JC. 2014. Interannual variations in Adriatic Sea zooplankton mirror shifts in circulation regimes in the Ionian Sea. Clim Res. 61:231–240.
  • Batistić M, Jasprica N, Carić M, Čalić M, Kovačević V, Garić R, Njire J, Mikuš J, Bobanović-Ćolić S. 2012. Biological evidence of a winter convection event in the South Adriatic: a phytoplankton maximum in the aphotic zone. Cont Shelf Res. 44:57–71. DOI:https://doi.org/10.1016/j.csr.2011.01.004.
  • Batistić M, Mikuš J, Njire J. 2003. Chaetognaths in the South Adriatic: vertical distribution and feeding. J Mar Biol Ass UK. 83(6):1301–1306.
  • Batistić M, Viličić D, Kovačević V, Jasprica N, Garić R, Lavigne H, Carić M. 2019. Occurrence of winter phytoplankton bloom in the open southern Adriatic: relationship with hydroclimatic events in the Eastern Mediterranean. Cont Shelf Res. 174:12–25.
  • Benović A. 2000. Zooplankton biomass and fish production in the Adriatic Sea. CIESM Workshop Series. 12:23–24.
  • Boero F, Belmonte G, Bracale R, Fraschetti S, Piraino S, Zampardi S. 2013. A salp bloom (Tunicata, Thaliacea) along the Apulian coast and in the Otranto channel between March-May 2013. F1000Res. 2:181.
  • Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S. 2008. Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser. 356:299–310.
  • Boldrin A, Miserocchi S, Rabitti S, Turchetto MM, Balboni V, Socal G. 2002. Particulate matter in the southern Adriatic and Ionian Sea: characterization and downward fluxes. J Mar Sys. 33–34:389–410.
  • Borme D, Tirelli V, Brandt SB, Umani SF, Arneri E. 2009. Diet of Engraulis encrasicolus in the northern Adriatic Sea (Mediterranean): ontogenetic changes and feeding selectivity. Mar Ecol Prog Ser. 392:193–209. DOI:https://doi.org/10.3354/meps08214.
  • Borme D, Tirelli V, Palomera I. 2013. Feeding habits of European pilchard late larvae in a nursery area in the Adriatic Sea. J Sea Res. 78:8–17. DOI:https://doi.org/10.1016/j.seares.2012.12.010.
  • Cardin V, Bensi M, Pacciaroni M. 2011. Variability of water mass properties in the last two decades in the South Adriatic Sea with emphasis on the period 2006–2009. Cont Shelf Res. 31:951–965. DOI:https://doi.org/10.1016/j.csr.2011.03.002.
  • Carniel S, Bergamasco A, Book JB, Hobbs RW, Sclavo M, Wood WT. 2012. Tracking bottom waters in the southern Adriatic Sea applying seismic oceanography techniques. Cont Shelf Res. 44:30–38. DOI:https://doi.org/10.1016/j.csr.2011.09.004.
  • Cerino F, Bernardi Aubry F, Coppola J, La Ferla R, Maimone G, Socal GG, Totti C. 2012. Spatial and temporal variability of pico-, nano- and micro phytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea). Cont Shelf Res. 44:94–105.
  • Civitarese G, Gačić M, Eusebi Borzelli GL, Lipizer M. 2010. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (eastern Mediterranean). Biogeosciences. 7:3987–3997. doi:https://doi.org/10.5194/bg-7-3987-2010.
  • Cushman-Roisin B, Gacic M, Poulain P-M, Artegiani A. 2001. Chapter 8: toward the future. In: Cushman-Roisin B, Gacic M, Poulain P-M, Artegiani A, editors. Physical oceanography of the Adriatic Sea – past, present and future. Dordrecht: Kluwer Academic Publishers; p. 241–245.
  • D’Alelio D, Libralato S, Wyatt T, Ribera D'Alcala M. 2016. Ecological-network models link diversity, structure and function in the plankton food-web. Sci Rep. 6:21806.
  • Dragičević B, Matić-Skoko S, Dulčić J. 2017. Fish and fisheries of the eastern Adriatic Sea in the light of climate change, trends in fisheries and aquatic animal health, berillis, panagiotis (ur.). Sharjah: Bentham e-books. str. 1–22. DOI:10.2174/97816810858071170101.
  • Fogarty MJ, Rosenberg AA, Cooper AB, Dickey-Collas M, Fulton EA, Gutiérrez NL, Hyde KJ, Kleisner KM, Kristiansen T, Longo C, Minte-Vera CV. 2016. Fishery production potential of large marine ecosystems: a prototype analysis. Environ Develop. 17:211–219.
  • Gacic M, Civitarese G. 2012. Introductory notes on the South Adriatic oceanography. Cont Shelf Res. 44:2–4.
  • Gačić M, Civitarese G, Miserocchi S, Cardin V, Crise A, Mauri E. 2002. The open-ocean convection in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom. Cont Shelf Res. 22:1897–1908.
  • Grbec B, Dulčić J, Morović M. 2002. Long-term changes in landings of small pelagic fish in the eastern Adriatic – possible influence of climate oscillations over the northern hemisphere. Clim Res. 20:241–252. doi:https://doi.org/10.3354/cr020241.
  • Grbec B, Morović M, Paklar GB, Kušpilić G, Matijević S, Matić F, Ninčević Gladan Ž. 2009. The relationship between the atmospheric variability and productivity in the Adriatic Sea area. J Mar Biol Assoc UK. 89:1549–1558.
  • Guglielmo R, Bergamasco A, Minutoli R, Patti FP, Belmonte G, Spanò N, Zagami G, Bonanzinga V, Guglielmo L, Granata A. 2019. The Otranto channel (South Adriatic Sea), a hot-spot area of plankton biodiversity: pelagic polychaetes. Sci Rep. 9:19490.
  • Harris R, Wiebe P, Lenz J, Skjodal HR, Huntley M., editors. 2000. ICES zooplankton methodology manual. London: Academic Press. p. 684.
  • Hernández-León S, Pilar Olivar M, Fernández de Puelles ML, Bode A, Castellón A, López-Pérez C, Tuset VM, González-Gordillo JI. 2019. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front Mar Sci. 6:535. DOI:https://doi.org/10.3389/fmars.2019.00535.
  • Houpert L, Durrieu de Madron X, Testor P, Bosse A, d'Ortenzio F, Bouin MN, Dausse D, Le Goff H, Kunesch S, Labaste M, Coppola L. 2016. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: seasonal and interannual variability of mixing and deep water masses for the 2007–2013 period. J Geophys Res Oceans. 121:8139–8171. DOI:https://doi.org/10.1002/2016JC011857.
  • Hure J, Ianora A, Scotto di Carlo B. 1980. Spatial and temporal distribution of copepod communities in the Adriatic Sea. J Plankton Res. 2:295–316.
  • Hure J, Kršinić F. 1998. Planktonic copepods of the Adriatic Sea. Spatial and temporal distribution. Nat Croat. 7:1–135.
  • Janeković I, Mihanović H, Vilibić I, Tudor M. 2014. Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. J Geophys Res Oceans. 119:3200–3218. DOI:https://doi.org/10.1002/2014JC009865.
  • Klein B, Roether W, Civitarese G, Gacic M, Manca BB, d'Alcala MR. 2000. Is the Adriatic returning to dominate the production of Eastern Mediterranean deep water? Geophys Res Lett. 27(20):3377–3380. DOI:https://doi.org/10.1029/2000GL011620.
  • Kokkini Z, Mauri E, Gerin R, Poulain P-M, Simoncelli S, Notarstefano G. 2019. On the salinity structure in the South Adriatic as derived from float and glider observations in 2013–2016. Deep-Sea Research Part II. 171:104625. p. 11.
  • Kokkini Z, Notarstefano G, Poulain P-M, Mauri E, Gerin R, Simoncelli S. 2018. In Von Schuckmann et al., 2018. Unusual salinity pattern in the South Adriatic Sea. Copernicus marine service ocean state report 2018-09-08. J Oper Oceanogr. 11(sup1):S1–S142.
  • Libralato S, Coll M, Tudela S, Palomera I, Pranovi F. 2008. Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar Ecol Prog Ser. 355:107–129. doi:https://doi.org/10.3354/meps07224.
  • Lipizer M, Partescano E, Rabitti A, Giorgetti A, Crise A. 2014. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea. Ocean Sci.10:771--797. DOI:https://doi.org/10.5194/os-10-771-2014.
  • Manca BB, Kovacevic V, Gacic M, Viezzoli D. 2002. Dense water formation in the southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999. J Mar Sys. 33:133–154. DOI:https://doi.org/10.1016/S0924-7963(02)00056-8.
  • Mattia G, Zavatarelli M, Vichi M, Oddo P. 2013. The eastern Mediterranean Sea biogeochemical dynamics in the 1990s: a numerical study. J Geophys Res Oceans. 118:2231–2248.
  • Mauri E, Gerin R, Poulain P-M. 2016. Measurements of water-mass properties with a glider in the south-western Adriatic Sea. J Oper Oceanogr. 9(sup1):s3–s9. DOI:https://doi.org/10.1080/1755876X.2015.1117766.
  • Miloslavić M, Lučić D, Njire J, Gangai B, Onofri I, Garić R, Žarić M, Miri Osmani F, Pestorić B, Nikleka E, Shumka S. 2012. Zooplankton composition and distribution across coastal and offshore waters off Albania (southern Adriatic) in late spring. Acta Adriat. 53(2):163–178.
  • Morello EB, Arneri E. 2009. Anchovy and sardine in the Adriatic Sea – an ecological review. In: Gibson RN, Atkinson RJA, Gordon JDM, editors. Oceanography and marine biology: an annual review, volume 47. CRC Press; p. 209–255.
  • Njire J, Batistić M, Kovačević V, Garić R, Bensi M. 2019. Tintinnid ciliate communities in pre- and post-winter conditions in the southern Adriatic Sea (NE Mediterranean). Water. 11:2329. DOI:https://doi.org/10.3390/w11112329.
  • Notarstefano G, Poulain P-M. 2010. Delayed mode quality control of Argo salinity data in the Mediterranean and Black Sea. 2010-01-01 – Tech. Rep. 2010/32 OGA 6 SIRE.
  • Notarstefano G, Poulain P-M. 2013. Delayed mode quality control of Argo salinity data in the Mediterranean Sea: a regional approach 2013/103 Sez. OCE 40 MAOS 19pp.
  • Owens WB, Wong APS. 2009. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ–S climatology. Deep Sea Res Part I. 56(3):450–457.
  • Paklar GB, Vilibic I, Grbec B, Matc F, Mihanovich H, Dzoic T, Santic D, Sestanovic S, Solic M, Ivatek-Sahdan S, et al. 2020. Record-breaking salinities in the middle Adriatic during summer 2017 and concurrent changes in the microbial food web. Prog Oceanog. 185:102345. DOI:https://doi.org/10.1016/j.pocean.2020.102345.
  • Pakhomov EA, Froneman PW, Perissinotto R. 2002. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep Sea Res Part II. 49(9–10):1881–1907.
  • Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature. 374(6519):255–257.
  • Poulain P-M, Cushman-Roisin B. 2001. Chapter 3: circulation. In: Cushman-Roisin B, Gacic M, Poulain P-M, Artegiani A, editors. Physical oceanography of the Adriatic Sea – past, present and future. Dordrecht: Kluwer Academic Publishers; p. 67–109.
  • Russo A, Artegiani A. 1996. Adriatic Sea hydrography. Sci Mar. 60(2):33–43.
  • Socal G, Boldrin A, Bianchi F, Civitarese G, De Lazzari A, Rabitti S, Totti C, Turchetto MM. 1999. Nutrient, particulate matter and phytoplankton variability in the photic layer of the Otranto strait. J Mar Sys. 20:381–398.
  • Turchetto MM, Bianchi F, Boldrin A, Malaguti A, Rabitti S, Socal G, Strada L. 2000. Nutrients, phytoplankton and primary production processes in oligotrophic areas (southern Adriatic and northern Ionian seas). Atti Assoc Ital Oceanol Limnol. 13(2):269–278.
  • Ursella L, Cardin V, Batistić M, Garić R, Gačić M. 2018. Evidence of zooplankton vertical migration from continuous southern Adriatic buoy current-meter records. Prog Oceanogr. 167:78–96.
  • Vidjak O, Bojanić N, Bojanić N, Matijević S, Kušplić G, Ninčević G, Skejić S, Grbec B. 2012. Environmental drivers of zooplankton variability in the coastal eastern Adriatic (Mediterranean Sea). Acta Adriat. 52(2):243–262.
  • Vilibić I, Matijević S, Šepić J, Kušpilić G. 2012. Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean transient. Biogeosciences. 9:2085–2097.
  • Vilibić I, Supić N. 2005. Dense water generation on a shelf: the case of Adriatic Sea. Ocean Dyn. 55:403–415. DOI https://doi.org/10.1007/s10236-005-0030-5.
  • Viličić D. 1991. A study of phytoplankton in the Adriatic Sea after the July 1984 bloom. Internationale Revue der Gesamten Hydrobiologie. 76(2):197–211.
  • Viličić D. 1994. Distribution of phytoplankton biomass in relation to oceanographic conditions in the Adriatic Sea. Period Biol. 96:444–446.
  • Viličić D. 1998. Phytoplankton taxonomy and distribution in the offshore southern Adriatic. Nat Croat. 7(2):127–141.
  • Viličić D, Leder N, Gržetić Z, Jasprica N. 1995. Microphytoplankton in the Strait of Otranto (eastern Mediterranean). Mar Biol. 123:619–630.
  • Viličić D, Vučak Z, Škrivanić A, Grzetić Z. 1989. Phytoplankton blooms in the oligotrophic open South Adriatic waters. Mar Chem. 28(1–3):89–107.
  • Wong A, Keeley R, Carval T, Argo Data Management Team. 2020. Argo quality control manual for CTD and trajectory data. DOI:https://doi.org/10.13155/33951.
  • Zonn IS, Kostianoy AG. 2016. The Adriatic Sea. In: Joksimović A, Djurović M, Semenov A, Zonn I, Kostianoy A, editor. The Boka Kotorska Bay environment. The handbook of environmental chemistry, Vol. 54. Cham: Springer; p. 19–42.

Section 3.5. Delivering high quality sea-ice information around the Svalbard archipelago to marine end-users

Section 3.6. Developing spatial distribution models for demersal species by the integration of trawl surveys data and relevant ocean variables

  • Amoroso RO, Pitcher CR, Rijnsdorp AD, Mcconnaughey RA, Parma AM, Suuronen P, Silva C. 2018. Bottom trawl fishing footprints on the world’s continental shelves. Proc Natl Acad Sci U S A. 115(43):E10275–E10282.
  • Bastardie F, Rasmus Nielsen J, Miethe T. 2014. DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement – integrating underlying fish population models. Can J Fish Aquat Sci. 71:366–386. DOI:https://doi.org/10.1139/cjfas-2013-0126.
  • Bertrand JA, De Sola LG, Papaconstantinou C, Relini G, Souplet A. 2002. The general specifications of the MEDITS surveys. Sci Mar. 66(Suppl. 2):9–17.
  • Bitetto I, Romagnoni G, Adamidou A, Certain G, Di Lorenzo M, Donnaloia M, Lembo G, Maiorano P, Milisenda G, Musumeci C, et al. 2019. Modelling spatio-temporal patterns of fish community size structure across the northern Mediterranean Sea: an analysis combining MEDITS survey data with environmental and anthropogenic drivers. Sci Mar. 83(S1):141–151. DOI:https://doi.org/10.3989/scimar.05015.06A.
  • Brodie SJ, Thorson JT, Carroll G, Hazen EL, Bograd S, Haltuch MA, Holsma KK, Kotwicki S, Samhouri JF, Willis-Norton E, Selden RL. 2020. Trade-offs in covariate selection for species distribution models: a methodological comparison. Ecography. 43(1):11–24.
  • Cao J, Thorson JT, Richards RA, Chen Y. 2017. Spatiotemporal index standardization improves the stock assessment of northern shrimp in the Gulf of Maine. Can J Fish Aquat Sci. 74(11):1781–1793.
  • Carlucci R, Bandelj V, Ricci P, Capezzuto F, Sion L, Maiorano P, Libralato S. 2018. Exploring spatio-temporal changes in the demersal and benthopelagic assemblages of the north-western Ionian Sea (central Mediterranean Sea). Mar Ecol Prog Ser. 598:1–19.
  • Carlucci R, Lembo G, Maiorano P, Capezzuto F, Marano CA, Sion L, Spedicato MT, Ungaro N, Tursi A, D’Onghia G. 2009. Nursery areas of red mullet (Mullus barbatus), hake (Merluccius merluccius), and deepwater rose shrimp (Parapenaeus longirostris) in the eastern-central Mediterranean Sea. Estuar Coast Shelf Sci. 83:529–538.
  • Colloca F, Garofalo G, Bitetto I, Facchini MT, Grati F, Martiradonna A, Mastrantonio G, Nikolioudakis N, Ordinas F, Scarcella G, et al. 2015. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS One. 10(3):e0119590. DOI:https://doi.org/10.1371/journal.pone.0119590.
  • Cotter J, Petitgas P, Abella A, Apostolaki P, Mesnil B, Politou C-Y, Rivoirard J, Rochet M-J, Spedicato MT, Trenkel VM, Woillez M. 2009. Towards an ecosystem approach to fisheries management (EAFM) when trawl surveys provide the main source of information. Aquat Living Resour. 22:243–254. DOI:https://doi.org/10.1051/alr/2009025.
  • Druon JN, Fiorentino F, Murenu M, Knittweis L, Colloca F, Osio C, Sbrana M. 2015. Modelling of European hake nurseries in the Mediterranean Sea: an ecological niche approach. Prog Oceanogr. 130:188–204.
  • EU. 2013. Council regulation (EU) 1385/2013 of 17 December 2013, amending Council Regulations (EC) No 850/98 and (EC) 1224/2009, and Regulations (EC) 1069/2009, (EU) No 1379/2013 and (EU) 1380/2013 of the European Parliament and of the Council, following the amendment of the status of Mayotte with regard to the European Union. Official Journal of the European Communities L 354/86.
  • EUSAIR. 2014. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions concerning the European Union Strategy for the Adriatic and Ionian Region. COM (2014) 357 final.
  • FAO. 2018. The state of Mediterranean and Black Sea fisheries. Rome: General Fisheries Commission for the Mediterranean. 172 pp.
  • Fulton EA, Link JS, Kaplan IC, Savina-Rolland M, Johnson P, Ainsworth C, Smith DC. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fisheries. 12(2):171–188.
  • GFCM. 2019. Report of Working Group on Stock Assessment of Demersal Species (WGSAD). http://www.fao.org/gfcm/technical-meetings/detail/en/c/1274921/.
  • Giannoulaki M, Valavanis VD, Palialexis A, Tsagarakis K, Machias A, Somarakis S, Papaconstantinou C. 2008. Modelling the presence of anchovy Engraulis encrasicolus in the Aegean Sea during early summer, based on satellite environmental data. Hydrobiologia. 612:225–240.
  • Grati F, Scarcella G, Polidori P, Domenichetti F, Bolognini L, Gramolini R, Vasapollo C, Giovanardi O, Raicevich S, Celić I, et al. 2013. Multi-annual investigation of the spatial distributions of juvenile and adult sole (Solea solea, L.) in the Adriatic Sea (northern Mediterranean). J Sea Res. 84:122–132.
  • Grüss A, Chagaris DD, Babcock EA, Tarnecki JH. 2018. Assisting ecosystem-based fisheries management efforts using a comprehensive survey database, a large environmental database, and generalized additive models. Mar Coast Fish. 10(1):40–70.
  • Grüss A, Drexler M, Ainsworth CH. 2014. Using delta generalized additive models to produce distribution maps for spatially explicit ecosystem models. Fish Res. 159:11–24.
  • Lauria V, Garofalo G, Fiorentino F, Massi D, Milisenda G, Piraino S, Russo T, Gristina M. 2017. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Sci Rep. 7(1):1–14.
  • Maunder MN, Punt AE. 2004. Standardizing catch and effort data: a review of recent approaches. Fish Res. 70(2–3):141–159.
  • MEDITS-Handbook. 2017. Version n. 9, MEDITS Working Group: 106 pp.
  • Melaku Canu D, Solidoro C, Cossarini G, Giorgi F. 2010. Effect of global change on bivalve rearing activity and the need for adaptive management. Clim Res. 42:13–26. doi:https://doi.org/10.3354/cr00859.
  • Moullec F, Veleza L, Verley P, Barrier N, Ulses C, Carbonara P, Esteban A, Follesa C, Gristina M, Jadaud A, et al. 2019. Capturing the big picture of Mediterranean marine biodiversity with an end to end model of climate and fishing impacts. Prog Oceanogr. 178:102179.
  • Orio A, Florin A-B, Bergström U, Šics I, Baranova T, Casini M. 2017. Modelling indices of abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using newly standardized trawl survey data. ICES J Mar Sci. 74(5):1322–1333. doi:https://doi.org/10.1093/icesjms/fsx005.
  • Potts SE, Rose KA. 2018. Evaluation of GLM and GAM for estimating population indices from fishery independent surveys. Fish Res. 208:167–178.
  • Rubec PJ, Kiltie R, Leone E, Flamm RO, McEachron L, Santi C. 2016. Using delta-generalized additive models to predict spatial distributions and population abundance of juvenile pink shrimp in Tampa Bay, Florida. Mar Coast Fish. 8(1):232–243.
  • Rufino MM, Bez N, Brind’Amour A. 2018. Integrating spatial indicators in the surveillance of exploited marine ecosystems. PLoS One. 13(11):e0207538.
  • Russo T, D’Andrea L, Parisi A, Cataudella S. 2014. VMSbase: an R-package for VMS and logbook data management and analysis in fisheries ecology. PLoS One. 9:e100195. DOI:https://doi.org/10.1371/journal.pone.0100195.
  • Russo T, Morello EB, Parisi A, Scarcella G, Angelini S, Labanchi L, et al. 2018. A model combining landings and VMS data to estimate landings by fishing ground and harbor. Fish Res. 199:218–230. doi:https://doi.org/10.1016/j.fishres.2017.11.002.
  • Sartor P, Mannini A, Carlucci R, Massaro E, Queirolo S, Sabatini A, Scarcella G, Simoni R, editors. 2017. Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani [Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas]. Biol Mar Mediterr. 24(Suppl. 1):608.
  • Scarcella G, Fabi G, Grati F, Polidori P, Domenichetti F, Bolognini L, Celic I. 2011. SoleMon survey for the study of flatfish stocks in the central and northern Adriatic Sea. International Flatfish Symposium 2011, IJmuiden.
  • Schismenou E, Tsoukali S, Giannoulaki M, Somarakis S. 2017. Modelling small pelagic fish potential spawning habitats: eggs vs spawners and in situ vs satellite data. Hydrobiologia. 788(1):17–32.
  • Sheather S. 2009. A modern approach to regression with R. New York (NY): Springer.
  • Simoncelli S, Fratianni C, Pinardi N, Grandi A, Drudi M, Oddo P, Dobricic S. 2019. Mediterranean Sea physical reanalysis (CMEMS MED-Physics) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004.
  • Sion L, Zupa W, Calculli C, Garofalo G, Hidalgo M, Jadaud A, Lefkaditou E, Ligas A, Peristeraki P, Bitetto I, et al. 2019. Spatial distribution pattern of European hake, Merluccius merluccius (Pisces: Merlucciidae), in the Mediterranean Sea. Sci Mar. 83(S1):21–32.
  • Spedicato MT, Massutí E, Mérigot B, Tserpes G, Jadaud A, Relini G. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci Mar. 83(S1):9–20. DOI:https://doi.org/10.3989/scimar.04915.11X.
  • Spedicato MT, Zupa W, Carbonara P, Fiorentino F, Follesa MC, Galgani F, García-Ruiz C, Jadaud A, Ioakeimidis C, Lazarakis G, et al. 2019. Spatial distribution of marine macro-litter on the seafloor in the northern Mediterranean Sea: the MEDITS initiative. Sci Mar. 83(S1):257–270. DOI:https://doi.org/10.3989/scimar.04987.14A.
  • STECF (Scientific, Technical and Economic Committee for Fisheries). 2019. Stock assessments part 2: European fisheries for demersal species in the Adriatic Sea (STECF-19-16). Publications Office of the European Union. ISBN 978-92-76-14558-5, JRC119057. DOI:https://doi.org/10.2760/95875.
  • Travers-Trolet M, Bourdaud P, Genu M, Velez L, Vermard Y. 2020. The risky decrease of fishing reference points under climate change. Front Mar Sci. 7:850. DOI:https://doi.org/0.3389/fmars.2020.568232.
  • Teruzzi A, Bolzon G, Cossarini G, Lazzari P, Salon S, Crise A, Solidoro C. 2019. Mediterranean Sea biogeochemical reanalysis (CMEMS MED-biogeochemistry) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/MEDSEA_REANALYSIS_BIO_006_008.
  • Tserpes G, Massuti E, Fiorentino F, Facchini MT, Viva C, Jadaud A, Joksimovic A, Pesci P, Piccinetti C, Sion L, et al. 2019. Distribution and spatio-temporal biomass trends of red mullets across the Mediterranean. Sci Mar. 83(S1):43–55. DOI:https://doi.org/10.3989/scimar.04888.21A.
  • Tukey J. 1949. Comparing individual means in the analysis of variance. Biometrics. 5(2):99–114. doi:https://doi.org/10.2307/3001913.
  • Woillez M, Rivoirard J, Petitgas P. 2009. Notes on survey-based spatial indicators for monitoring fish populations. Aquat Living Resour. 22:155–164.

Section 3.7. A benthic hypoxia index (BH-index) for assessing the Good Environmental Status of the Black Sea’s north-western shelf waters

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, et al. 2018. Declining oxygen in the global ocean and coastal waters. Science. 359(6371). DOI:https://doi.org/10.1126/science.aam7240.
  • Capet A, Beckers J-M, Grégoire M. 2013. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication. Biogeosciences. 10(6):3943–3962.
  • Capet A, Cook P, Garcia-Robledo E, Hoogakker B, Paulmier A, Rabouille C, Vaquer-Sunyer R. 2020. Editorial: facing marine deoxygenation. Front Mar Sci. 7:46.
  • Capet A, Meysman FJR, Akoumianaki I, Soetaert K, Grégoire M. 2016. Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Modelling. 101:83–100.
  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE. 2009. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science. 323(5917):1014–1015.
  • Fennel K, Testa JM. 2019. Biogeochemical controls on coastal hypoxia. Ann Rev Mar Sci. 11:105–130.
  • Friedrich J, Balan S, van Beusekom JE, Naderipour C, Secrieru D. 2017. Seasonal seafloor oxygen dynamics on the Romanian Black Sea Shelf. Geophysical Research Abstracts, 2845.
  • Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Dale AW, Etiope G, Erdem Z, Geraga M, et al. 2014. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences. 11(4):1215–1259.
  • Friedrich J, van Beusekom JEE, Naderipour C, Balan S, Radulescu V, Secrieru D. 2019. River-born and climate drivers of hypoxia on the NW Black Sea Shelf. Geophysical Research Abstracts, 21. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-16147.pdf.
  • Grégoire M, Friedrich J. 2004. Nitrogen budget of the northwestern Black Sea shelf inferred from modeling studies and in situ benthic measurements. Mar Ecol Prog Ser. 270:15–39.
  • Grégoire M, Raick C, Soetaert K. 2008. Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Prog Oceanogr. 76(3):286–333.
  • Hrycik AR, Almeida LZ, Höök TO. 2017. Sub-lethal effects on fish provide insight into a biologically-relevant threshold of hypoxia. Oikos. 126(3):307–317.
  • Jessen GL, Lichtschlag A, Ramette A, Pantoja S, Rossel PE, Schubert CJ, Struck U, Boetius A. 2017. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci Adv. 3(2):e1601897.
  • Kemp WM, Testa JM, Conley DJ, Gilbert D, Hagy JD. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences. 6(12):2985–3008.
  • Langmead O, McQuatters-Gollop A, Mee LD, Friedrich J, Gilbert AJ, Gomoiu M-T, Jackson EL, Knudsen S, Minicheva G, Todorova V. 2009. Recovery or decline of the northwestern Black Sea: a societal choice revealed by socio-ecological modelling. Ecol Modell. 220(21):2927–2939.
  • Lichtschlag A, Donis D, Janssen F, Jessen GL, Holtappels M, Wenzhöfer F, Mazlumyan S, Sergeeva N, Waldmann C, Boetius A. 2015. Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean Shelf). Biogeosciences. 12:5075–5092.
  • Low NHN, Micheli F. 2018. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar Ecol Prog Ser. 594:165–173.
  • Ludwig W, Dumont E, Meybeck M, Heussner S. 2009. River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr. 80(3):199–217.
  • Mee L. 2006. Reviving dead zones. Sci Am. 295(5):78–85.
  • Mikhailov V, Denga Y, Derezyuk N, Kostylyov E, Lisovsky R, Orlova I, Pavlenko M, Popov Y. 2002. State of the Black Sea environment, national report of Ukraine, 1996–2000. Ukrainian Scientific Centre of the Ecology of the Sea, Ministry of Ecology and Natural Resources of Ukraine.
  • Steckbauer A, Duarte CM, Carstensen J, Vaquer-Sunyer R, Conley DJ. 2011. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environ Res Lett. 6(2):025003.
  • Stevens T, Mee L, Friedrich J, Aleynik D, Minicheva G. 2019. Partial recovery of macro-epibenthic assemblages on the north-west shelf of the Black Sea. Front Mar Sci. 6:474.
  • Stow CA, Jolliff J, McGillicuddy DJ, Jr, Doney SC, Allen JI, Friedrichs MAM, Rose KA, Wallhead P. 2009. Skill assessment for coupled biological/physical models of marine systems. J Mar Syst J Eur Assoc Mar Sci Tech. 76(1–2):4–15.
  • Vandenbulcke L, Capet A, Beckers JM, Grégoire M, Besiktepe S. 2010. Onboard implementation of the GHER model for the Black Sea, with SST and CTD data assimilation. J Oper Oceanogr. 3(2):47–54.
  • Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA. 105(40):15452–15457.
  • Vaquer-Sunyer R, Duarte CM. 2011. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glb Chg Bio. 17(5):1788–1797.
  • Yunev OA, Carstensen J, Moncheva S, Khaliulin A, Ærtebjerg G, Nixon S. 2007. Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuar Coast Shelf Sci. 74(1):63–76.
  • Zaitsev Y, Mamaev V. 1997. Biological diversity in the Black Sea: a study of change and decline. In: Y Zaitsev, V Mamaev, editors Black Sea environmental series, Vol. 3. New York (NY): UN Publications; 208pp. https://digitallibrary.un.org/record/245415?ln=en.

References

Section 4.1. Sea-ice and ocean conditions surprisingly normal in the Svalbard-Barents Sea region after large sea-ice inflows in 2019

Section 4.2. Monitoring storms by merged data sources for the Malta shelf area in 2019

  • Bartzokas A, Azzopardi J, Bertotti L, Buzzi A, Cavaleri L, Conte D, Davolio S, Dietrich S, Drago A, Drofa O, et al. 2010. The RISKMED project: philosophy, methods and results. Nat Hazards Earth Syst Sci. 10:1391–1401.
  • Capodici F, Cosoli S, Ciraolo G, Naselli C, Maltese A, Poulaine P-M, Drago A, Azzopardi J, Gauci A. 2019. Validation of HF radar sea surface currents in the Malta-Sicily channel. Remote Sens Environ. 225:65–76.
  • Chapman RD, Shay LK, Graber HC, Edson JB, Karachintsev A, Trump CL, Ross DB. 1997. On the accuracy of HF radar surface current measurements: intercomparisons with ship-based sensors. J Geophys Res Oceans. 102:18737–18748. DOI:https://doi.org/10.1029/97JC00049.
  • Cosoli S, Ličer M, Vodopivec M, Malačič V. 2013. Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J Geophys Res Oceans. 118:6183–6200. DOI:https://doi.org/10.1002/2013JC009261.
  • Drago A, Azzopardi J, Gauci A, Tarasova R, Ciraolo G, Capodici F, Cosoli S, Gacic M. 2013. Sea surface currents by HF radar in the Malta channel. Rapp Comm Int Mer Medit. 40:144.
  • Drago A, Ciraolo G, Capodici F, Cosoli S, Gacic M, Poulain P-M, Tarasova R, Azzopardi J, Gauci A, Maltese A, et al. 2015. CALYPSO – an operational network of HF radars for the Malta-Sicily Channel. In: Dahlin H, Fleming NC, Petersson SE, editors, Proceedings of the Seventh International Conference on EuroGOOS; Oct 28–30, 2014, Lisbon. First published 2015. Eurogoos Publication No. 30. p. 167–176. ISBN 978-91-974828-9-9.
  • Emery BM, Washburn L, Harlan JA. 2004. Evaluating radial current measurements from CODAR high-frequency radars with moored current meters. J Atmos Ocean Technol. 21:1259–1271. DOI:https://doi.org/10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2.
  • Fernandes M, Fernandes C, Barroqueiro T, Agostinho P, Martins N, Alonso-Martirena A. 2018. Extreme wave height events in Algarve (Portugal): comparison between HF radar systems and wave buoys. 5as Jornadas de Engenharia Hidrográfica, Lisboa. p. 222–225.
  • Lopez G, Conley DC. 2019. Comparison of HF radar fields of directional wave spectra against in situ measurements at multiple locations. J Mar Sci Eng. 7(8):271–271.
  • Lorente P, Sotillo MG, Aouf L, Amo-Baladrón A, Barrera E, Dalphinet A, et al. 2018. Extreme wave height events in NW Spain: a combined multi-sensor and model approach. Remote Sens. 10:1. DOI:https://doi.org/10.3390/rs10010001.
  • Orasi A, Picone M, Drago A, Capodici F, Gauci A, Nardone G, Inghilesi R, Azzopardi J, Galea A, Ciraolo G. 2018. HF radar for wind waves measurements in the Malta-Sicily channel. Measurement. 128:446–454. DOI:https://doi.org/10.1016/j.measurement.2018.06.060. ISSN 0263-2241. http://www.sciencedirect.com/science/article/pii/S0263224118305864.
  • Pascual A, Lana A, Troupin C, Ruiz S, Faugère Y, Escudier R, Tintoré J. 2015. Assessing SARAL/AltiKa delayed-time data in the coastal zone: comparisons with HF radar observations. Mar Geod. 8(sup1):260–276. DOI:https://doi.org/10.1080/01490419.2015.1019656.
  • Reyes S, Cook NC, Gačić MS, Paduan M, Drago A, Cardin V. 2019. Sea surface circulation structures in the Malta-Sicily channel from remote sensing data. Water. 11:1589.
  • Roarty H, Cook T, Hazard L, George D, Harlan J, Cosoli S, Wyatt L, Alvarez Fanjul E, Terrill E, Otero M, Largier J. 2019. The global high frequency radar network. Front Mar Sci. DOI:https://doi.org/10.3389/fmars.2019.00164. ISSN 2296-7745.
  • Tintoré J, Pinardi N, Álvarez-Fanjul E, Aguiar E, Álvarez-Berastegui D, Bajo M, Balbin R, Bozzano R, Nardelli BB, Cardin V, Casas B. 2019. Challenges for sustained observing and forecasting systems in the Mediterranean Sea. Front Mar Sci. DOI:https://doi.org/10.3389/fmars.2019.00568.
  • Villa L, Nieddu C, Marsiaj P, Corsini S, Orasi A, Mariani S, Trovatore E, Pedemonte L, Gallino S, Sacchetti D, et al. 2008. Chapter 4: numerical modelling for weathrrouting. In: Delitala A, Speranza A, editors, WERMED Weatherrouting dans la Méditerranée – results of the project. p. 53–68.

Section 4.3. The November 2019 record high water levels in Venice, Italy

Section 4.4. Extreme waves and low sea level during the storm in the Gulf of Bothnia, Baltic Sea

Section 4.5. Establishment of Pterois miles (Bennett, 1828) in the Ionian Sea