210
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Transesterification of vegetable oils into biodiesel by an immobilized lipase: a review

, , , &
Pages 1087-1101 | Received 22 Aug 2022, Accepted 12 Apr 2023, Published online: 01 May 2023

References

  • Kothari R, Vashishtha A, Singh HM, et al. Assessment of Indian bioenergy policy for sustainable environment and its impact for rural India: strategic implementation and challenges. Environ Technol Innov. 2020;20:101078.
  • Yasvanthrajan N, Sivakumar P, Muthukumar K, et al. Production of biodiesel from waste bio-oil through ultrasound assisted transesterification using immobilized lipase. Environ Technol Innov. 2021;21:101199.
  • Glanemann N, Willner SN, Levermann A. Paris climate agreement passes the cost-benefit test. Nat Commun. 2020;11(1):110.
  • Baruch MS, Kiesecker JM, Kennedy CM, et al. From Paris to practice: sustainable implementation of renewable energy goals. Environ Res Lett. 2019;14(2):024013.
  • Knothe G. Other uses of biodiesel. In: The Biodiesel Handbook. AOCS Press. 2010; p. 401–403.
  • Quayson E, Amoah J, Hama S, et al. Immobilized lipases for biodiesel production: current and future greening opportunities. Renew Sustain Energy Rev. 2020;134:110355.
  • Mandolesi de ACD, de Andrade CC, de Souza e Silva E, et al. Biodiesel production from used cooking oil: a review. Renew Sustain Energy Rev. 2013;27:445–452.
  • Marwaha A, Rosha P, Mohapatra SK, et al. Waste materials as potential catalysts for biodiesel production: current state and future scope. Fuel Process Technol. 2018;181:175–186.
  • Taher H, Giwa A, Abusabiekeh H, et al. Biodiesel production from nannochloropsis gaditana using supercritical CO2 for lipid extraction and immobilized lipase transesterification: economic and environmental impact assessments. Fuel Process Technol. 2020;198:106249.
  • Wilkanowicz SI, Hollingsworth NR, Saud K, et al. Immobilization of calcium oxide onto polyacrylonitrile (PAN) fibers as a heterogeneous catalyst for biodiesel production. Fuel Process Technol. 2020;197:106214.
  • Kumar R, Ghosh AK, Pal P. Sustainable production of biofuels through membrane-integrated systems. Sep Purif Rev. 2020;49(3):207–228.
  • Kumar R, Pal P. Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of Pongamia pinnata (Karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration. Fuel Process Technol. 2021;211:106577.
  • Verma P, Sharma MP, Dwivedi G. Impact of alcohol on biodiesel production and properties. Renew Sustain Energy Rev. 2016;56:319–333.
  • Gao J, Shi L, Jiang Y, et al. Formation of lipase Candida sp. 99–125 CLEAs in mesoporous silica: characterization and catalytic properties. Catal Sci Technol. 2013;3(12):3353–3359.
  • Jiang W, Wang X, Yang J, et al. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: a new support for biodiesel synthesis. J Colloid Interface Sci. 2018;514:102–107.
  • Li Q, Chen Y, Bai S, et al. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: a sustainable biocatalyst for biodiesel synthesis. Colloids Surf B Biointerfaces. 2020;188:110812.
  • Amini Z, Ilham Z, Ong HC, et al. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers Manag. 2017;141:339–353.
  • Bueso F, Moreno L, Cedeño M, et al. Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America. J Biol Eng. 2015;9(1):12.
  • Hama S, Noda H, Kondo A. How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol. 2018;50:57–64.
  • Kumar V, Thakur IS. Biodiesel production from transesterification of Serratia sp. ISTD04 lipids using immobilised lipase on biocomposite materials of biomineralized products of carbon dioxide sequestrating bacterium. Bioresour Technol. 2020;307:123193.
  • Basso A, Serban S. Industrial applications of immobilized enzymes—a review. Mol Catal. 2019;479:110607.
  • Lu Y, Lv Q, Liu B, et al. Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications. Biomater Sci. 2019;7(12):4963–4983.
  • Khan NR, Rathod VK. Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem. 2015;50(11):1793–1806.
  • Angajala G, Pavan P, Subashini R. Lipases: an overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatal Agric Biotechnol. 2016;7:257–270.
  • Salihu A, Alam M. Solvent tolerant lipases: a review. Process Biochem. 2015;50(1):86–96.
  • Lima RN, dos Anjos CS, Orozco EVM, et al. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Mol Catal. 2019;466:75–105.
  • Navvabi A, Razzaghi M, Fernandes P, et al. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem. 2018;70:61–70.
  • Wancura JCH, Tres MV, Jahn SL, et al. Lipases in liquid formulation for biodiesel production: current status and challenges. Biotechnol Appl Biochem. 2020;67(4):648–667.
  • Li N-W, Zong M-H, Wu H. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem. 2009;44(6):685–688.
  • De-Lima LN, Mendes AA, Fernandez-Lafuente R, et al. Performance of different immobilized lipases in the syntheses of short- and long-chain carboxylic acid esters by esterification reactions in organic media. Molecules. 2018;23(4):766.
  • Sá AGA, Meneses A D, Araújo P D, et al. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol. 2017;69:95–105.
  • Guo Y, Cai Z, Xie Y, et al. Synthesis, physicochemical properties, and health aspects of structured lipids: a review. Compr Rev Food Sci Food Saf. 2020;19(2):759–800.
  • Utama QD, Sitanggang AB, Adawiyah DR, et al. Lipase-catalyzed interesterification for the synthesis of medium-long-medium (MLM) structured lipids – a review. Food Technol Biotechnol. 2019;57(3):305–318.
  • Almeida FLC, Castro MPJ, Travália BM, et al. Trends in lipase immobilization: bibliometric review and patent analysis. Process Biochem. 2021;110:37–51.
  • Sheldon RA, Pelt SV Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42(15):6223–6235.
  • Sheldon R, Basso A, Brady D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem Soc Rev. 2021;50(10):5850–5862.
  • He H, Han H, Shi H, et al. Construction of thermophilic lipase-embedded metal–organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl Mater Interfaces. 2016;8(37):24517–24524.
  • Jiang Y, Shi L, Huang Y, et al. Preparation of robust biocatalyst based on cross-linked enzyme aggregates entrapped in three-dimensionally ordered macroporous silica. ACS Appl Mater Interfaces. 2014;6(4):2622–2628.
  • Jin W, Xu Y, Yu X-W. Formation lipase cross-linked enzyme aggregates on octyl-modified mesocellular foams with oxidized sodium alginate. Colloids Surf B Biointerfaces. 2019;184:110501.
  • Ma B-D, Kong X-D, Yu H-L, et al. Increased catalyst productivity in α-hydroxy acids resolution by esterase mutation and substrate modification. ACS Catal. 2014;4(3):1026–1031.
  • Tan T, Lu J, Nie K, et al. Biodiesel production with immobilized lipase: a review. Biotechnol Adv. 2010;28(5):628–634.
  • Zhong L, Feng Y, Wang G, et al. Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol. 2020;152:207–222.
  • Adlercreutz P. Immobilisation and application of lipases in organic media. Chem Soc Rev. 2013;42(15):6406–6436.
  • Zhao X, Qi F, Yuan C, et al. Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sustain Energy Rev. 2015;44:182–197.
  • Chen H-C, Ju H-Y, Wu T-T, et al. Continuous production of Lipase-Catalyzed biodiesel in a Packed-Bed reactor: optimization and enzyme reuse study. J Biomed Biotechnol. 2011;2011:1–6; e950725.
  • Ameri A, Shakibaie M, Khoobi M, et al. Optimization of immobilization conditions of Bacillus atrophaeus FSHM2 lipase on maleic copolymer coated amine-modified graphene oxide nanosheets and its application for valeric acid esterification. Int J Biol Macromol. 2020;162:1790–1806.
  • Gupta S, Mazumder PB, Scott D, et al. Ultrasound-assisted production of biodiesel using engineered methanol tolerant Proteus vulgaris lipase immobilized on functionalized polysulfone beads. Ultrason Sonochem. 2020;68:105211.
  • Martins M, Dinamarco TM, Goldbeck R. Recombinant chimeric enzymes for lignocellulosic biomass hydrolysis. Enzyme Microb Technol. 2020;140:109647.
  • Remonatto D, Miotti RH, Jr. Monti R, et al. Applications of immobilized lipases in enzymatic reactors: a review. Process Biochem. 2022;114:1–20.
  • Cavalcante FTT, Neto FS, Rafael de Aguiar Falcão I, et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel. 2021;288:119577.
  • Sun X, Wu H, Zhao G, et al. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess Biosyst Eng. 2018;41(7):1029–1038.
  • Karimi M. Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel. Biocatal Agric Biotechnol. 2016;8:182–188.
  • Kundys A, Białecka‑Florjańczyk E, Fabiszewska A, et al. Candida antarctica lipase B as catalyst for cyclic esters synthesis, their polymerization and degradation of aliphatic polyesters. J Polym Env. 2018;26:396–407.
  • Trbojević IJ, Milosavić N, Dimitrijević A, et al. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases. Food Chem. 2017;218:505–508.
  • Ciou J-F, Wang P-Y, Wu A-C, et al. Lipase-catalyzed alcoholytic resolution of (R,S)-flurbiprofenyl azolides for preparation of (R)-NO-flurbiprofen ester prodrugs. Process Biochem. 2011;46(4):960–965.
  • Koh MY, Mohd GTI. A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev. 2011;15(5):2240–2251.
  • Xiang Z, Liu Z, Chen X, et al. Biocatalysts for Cascade reaction: porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes. Amino Acids. 2013;45(4):937–945.
  • Badgujar VC, Badgujar KC, Yeole PM, et al. Immobilization of Rhizomucor miehei lipase on a polymeric film for synthesis of important fatty acid esters: kinetics and application studies. Bioprocess Biosyst Eng. 2017;40(10):1463–1478.
  • Vilas BRN, Ceron AA, Bento HBS, et al. Application of an immobilized rhizopus oryzae lipase to batch and continuous ester synthesis with a mixture of a lauric acid and fusel oil. Biomass Bioenergy. 2018;119:61–68.
  • Gumel AM, Annuar MSM. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor. 3 Biotech. 2016;6(1):24.
  • Cui Z, Gao C, Li J, et al. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab Eng. 2017;42:126–133.
  • Ali CH, Mbadinga SM, Liu J-F, et al. Significant enhancement of Pseudomonas aeruginosa FW_SH-1 lipase production using response surface methodology and analysis of its hydrolysis capability. J Taiwan Inst Chem Eng. 2015;52:7–13.
  • Rios NS, Pinheiro BB, Pinheiro MP, et al. Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process Biochem. 2018;75:99–120.
  • Mateos PS, Navas MB, Morcelle SR, et al. Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catal Today. 2021;372:211–219.
  • Barros M, Fleuri LF, Macedo GA. Seed lipases: sources, applications and properties - a review. Braz J Chem Eng. 2010;27(1):15–29.
  • Moussavou MRW, Brunschwig C, Baréa B, et al. Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog Energy Combust Sci. 2013;39(5):441–456.
  • Kouteu Naanssou P. 2017. Mise en œuvre de lipases végétales issues des graines dans la catalyse enzymatique d’esters éthyliques d’huiles végétales pour la production de biodiesel. https://ur-biowooeb.cirad.fr/fr/actualites/actualites-archivees/soutenance-de-these-par-paul-alain-kouteu-nanssou. Accessed 21 Jun 2021
  • Lagrari C. Production améliorée des lipases à partir du rhizopus oryzae NRRL 1526 en utilisant la biomasse lignocellulosique dans un milieu de fermentation liquide. Masters, Université du Québec, Institut National De la Recherche Scientifique; 2019:53.
  • Chicouche F, Djerar H, Lebouazda K. 2010. Utilisation des lipases dans l’industrie alimentaire Thesis, Université Mohamed BOUDIAF de M’Sila
  • Moussavou MRW 2014. Synthèse enzymatique d’esters éthyliques d’huiles végétales pour la production de biodiesel à l’aide de lipases végétales issues de la biomasse africaine Thesis, Montpellier SupAgro
  • Salihu A, Alam M, AbdulKarim MI, et al. Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycl. 2012;58:36–44.
  • Aggarwal V, Pundir CS. 2016. Chapter Ten - Rational design of nanoparticle platforms for “cutting-the-fat”: covalent immobilization of lipase, glycerol kinase, and glycerol-3-Phosphate oxidase on metal nanoparticles. In: Methods in enzymology. Cambridge: Academic Press; p. 197–223.
  • Boudrant J, Woodley JM, Fernandez-Lafuente R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 2020;90:66–80.
  • Costa JB, Lima MJ, Sampaio MJ, et al. Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chem Eng J. 2019;355:974–985.
  • Nwagu TN, Okolo B, Aoyagi H. Immobilization of raw starch saccharifying amylase on glutaraldehyde activated chitin flakes increases the enzyme operation range. Bioresour Technol Rep. 2021;13:100645.
  • Liu D-M, Dong C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020;92:464–475.
  • Meunier SM, Kariminia H-R, Legge RL. Immobilized enzyme technology for biodiesel production. In: Advances in biofeedstocks and biofuels: Production technologies for biofuels II. John Wiley & Sons; 2017. p. 67–106.
  • Zhang B, Weng Y, Xu H, et al. Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol. 2012;93(1):61–70.
  • Zdarta J, Meyer AS, Jesionowski T, et al. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts. 2018;8(2):92.
  • Barbosa O, Torres R, Ortiz C, et al. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules. 2013;14(8):2433–2462.
  • Du Y, Gao J, Zhou L, et al. Enzyme nanocapsules armored by metal-organic frameworks: a novel approach for preparing nanobiocatalyst. Chem Eng J. 2017;327:1192–1197.
  • Garcia GC, Berenguer-Murcia Á, Fernandez-Lafuente R, et al. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 2011;353(16):2885–2904.
  • Tavares APM, Silva CG, Dražić G, et al. Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. J Colloid Interface Sci. 2015;454:52–60.
  • Narayanan CM, Pandey A. Studies on biodiesel synthesis using nanosilica immobilised lipase in inverse fluidized bed bioreactors. JAC. 2018;15(1):6072–6086.
  • Zhiguo Z, Yiqin G, Xiaowu W, et al. 2010. Induction of isolated microspore and optimization of their culture system of different radish varieties. 33–38
  • Jun LY, Yon LS, Mubarak NM, et al. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J Environ Chem Eng. 2019;7(2):102961.
  • Batista KA, Lopes FM, Yamashita F, et al. Lipase entrapment in PVA/chitosan biodegradable film for reactor coatings. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1696–1701.
  • Meunier SM, Legge RL. Evaluation of diatomaceous earth as a support for sol–gel immobilized lipase for transesterification. J Mol Catal B Enzym. 2010;62(1):53–57.
  • Lee KW, Min K, Park K, et al. Development of an amphiphilic matrix for immobilization of Candida antartica lipase B for biodiesel production. Biotechnol Bioproc E. 2010;15(4):603–607.
  • Zarei A, Amin NAS, Talebian-Kiakalaieh A, et al. Immobilized lipase-catalyzed transesterification of Jatropha curcas oil: optimization and modeling. J Taiwan Inst Chem Eng. 2014;45(2):444–451.
  • Ying H, Zhang L, Wu D, et al. Ionic strength-response hyperbranched polyglycerol/polyacrylic acid hydrogel for the reversible immobilization of enzyme and the synthesis of biodiesel. Energy Convers Manag. 2017;144:303–311.
  • Zhao K, Di Q, Cao X, et al. Production of biodiesel using immobilized lipase and the characterization of different Co-Immobilizing agents and immobilization methods. Sustainability. 2016;8(9):764.
  • Cazaban D, Illanes A, Wilson L, et al. Bio-inspired silica lipase nanobiocatalysts for the synthesis of fatty acid methyl esters. Process Biochem. 2018;74:86–93.
  • Shah S, Gupta MN. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 2007;42(3):409–414.
  • Zhao X, Fan M, Zeng J, et al. Kinetics of lipase recovery from the aqueous phase of biodiesel production by macroporous resin adsorption and reuse of the adsorbed lipase for biodiesel preparation. Enzyme Microb Technol. 2013;52(4-5):226–233.
  • Arumugam A, Thulasidharan D, Jegadeesan GB. Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel. Renew Energy. 2018;116:755–761.
  • Liu L-H, Shih Y-H, Liu W-L, et al. Enzyme immobilized on nanoporous carbon derived from metal–organic framework: a new support for biodiesel synthesis. ChemSusChem. 2017;10(7):1364–1369.
  • Wang J-X, Huang Q-D, Huang F-H, et al. Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant. Sheng Wu Gong Cheng Xue Bao. 2007;23(6):1121–1128.
  • Naranjo JC, Córdoba A, Giraldo L, et al. Lipase supported on granular activated carbon and activated carbon cloth as a catalyst in the synthesis of biodiesel fuel. J Mol Catal B Enzym. 2010;66(1-2):166–171.
  • Xie W, Huang M. Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly (glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel. Renew Energy. 2020;158:474–486.
  • Xie W, Ma N. Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels. 2009;23(3):1347–1353.
  • Adriano AM, Roberto CG, Raquel de LCG, et al. Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: application of the biocatalysts in biodiesel synthesis. J Mol Catal B Enzym. 2011;68:109–115.
  • Yücel Y. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatal Agric Biotechnol. 2012;1(1):39–44.
  • Mehrasbi MR, Mohammadi J, Peyda M, et al. Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy. 2017;101:593–602.
  • Luna C, Verdugo C, Sancho ED, et al. Biocatalytic behaviour of immobilized Rhizopus oryzae lipase in the 1,3-selective ethanolysis of sunflower oil to obtain a biofuel similar to biodiesel. Molecules. 2014;19(8):11419–11439. ED
  • Ranieri G, Mazzei R, Wu Z, et al. Use of a ceramic membrane to improve the performance of two-separate-phase biocatalytic membrane reactor. Molecules. 2016;21(3):345.
  • Ashjari M, Garmroodi M, Amiri Asl F, et al. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem. 2020;90:156–167.
  • Deep A, Sharma AL, Kumar P. Lipase immobilized carbon nanotubes for conversion of Jatropha oil to fatty acid methyl esters. Biomass Bioenergy. 2015;81:83–87.
  • Du Y, Gao J, Kong W, et al. Enzymatic synthesis of glycerol carbonate using a lipase immobilized on magnetic organosilica nanoflowers as a catalyst. ACS Omega. 2018;3(6):6642–6650.
  • Yang Y, Yu H, Zhou X, et al. Shallow porous microsphere carriers with core-shell structure based on glass beads cross-linking chitosan for immobilizing inulinase. Mol Catal. 2020;486:110871.
  • Cantone S, Ferrario V, Corici L, et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev. 2013;42(15):6262–6276.
  • Xie W, Zang X. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: a magnetic biocatalyst for interesterification of soybean oil. Food Chem. 2017;227:397–403.
  • Conte MP, Lau KHA, Ulijn RV. Biocatalytic self-assembly using reversible and irreversible enzyme immobilization. ACS Appl Mater Interfaces. 2017;9(4):3266–3271.
  • Mohamad NR, Marzuki NHC, Buang NA, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015;29(2):205–220.
  • Samah B. Immobilisation de la lipase de Candida rugosa sur la résine Amberjet 4200Cl Optimisation de l’énantioselectivité par la méthode des surfaces de réponse. Algeria: Université Badji Mokhtar-Annaba; 2010.
  • Haigh KF, Vladisavljević GT, Reynolds JC, et al. Kinetics of the pre-treatment of used cooking oil using Novozyme 435 for biodiesel production. Chem Eng Res Des. 2014;92(4):713–719.
  • Lee Y, Kim SB, Lee T, et al. Efficient and simultaneous cleaner production of biodiesel and glycerol carbonate in solvent-free system via statistical optimization. J Clean Prod. 2019;218:985–992.
  • Mateo C, Pessela BCC, Fuentes M, et al. 2020. Very strong but reversible immobilization of enzymes on supports coated with ionic polymers. In: Guisan JM, Bolivar JM, López-Gallego F, Rocha-Martín J, editors. Immobilization of enzymes and cells: methods and protocols. New York, NY: Springer US; p. 129–141.
  • Kacem I. 2012. Textiles à activité biologique via le greffage par plasma et l’immobilisation de molécules bioactives. These de doctorat, Lille 1
  • Mendes AA, Freitas L, de Carvalho AKF, et al. Immobilization of a commercial lipase from Penicillium camembertii (lipase G) by different strategies. Enzyme Res. 2011;2011:967239.
  • Stoytcheva M, Montero G. Biodiesel: feedstocks and processing technologies. BoD – Books on Demand. Rijeka, croatia: IntechOpen; 2011. p. 458.
  • Wahab RA, Elias N, Abdullah F, et al. On the taught new tricks of enzymes immobilization: an all-inclusive overview. React Funct Polym. 2020;152:104613.
  • Hwang HT, Qi F, Yuan C, et al. Lipase-catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnol Bioeng. 2014;111(4):639–653.
  • Brena B, González-Pombo P, Batista-Viera F. 2013. Immobilization of enzymes: a literature survey. In: Guisan JM, editor. Immobilization of enzymes and cells. : third edition. Totowa, NJ: Humana Press; p. 15–31.
  • Ovsejevi K, Manta C, Batista-Viera F. 2013. Reversible covalent immobilization of enzymes via disulfide bonds. In: Guisan JM, editor. Immobilization of enzymes and cells: third edition. Totowa, NJ: Humana Press; p. 89–116.
  • Jegannathan KR, Chan E-S, Ravindra P. Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J Mol Catal B Enzym. 2009;58(1-4):78–83.
  • Jegannathan KR, Jun-Yee L, Chan E-S, et al. Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel. 2010;89(9):2272–2277.
  • Macario A, Moliner M, Corma A, et al. Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic–inorganic system. Microporous Mesoporous Mater. 2009;118(1-3):334–340.
  • Cao L. Carrier-bound immobilized enzymes: principles, application and design. Hoboken: John Wiley & Sons. 2006.
  • Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv. 2006;24(3):296–308.
  • Galarneau A, Renard G, Mureseanu M, et al. Synthesis of sponge mesoporous silicas from lecithin/dodecylamine mixed-micelles in ethanol/water media: a route towards efficient biocatalysts. Microporous Mesoporous Mater. 2007;104(1-3):103–114.
  • Jacoby J. 2018. Lipase Mucor miehei immobilisée dans des matériaux poreux silicatés: bioréacteurs pour la synthèse d’esters méthyliques à partir d’huiles végétales. 216
  • Macario A, Verri F, Diaz U, et al. Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catal Today. 2013;204:148–155.
  • Harguindeguy M. Développement de supports d’immobilisation biosourcés pour la dégradation enzymatique de micro polluants dans un réacteur à lit fluidisé : New bio-based immobilization supports for enzymatic removal of micro-pollutants in fluidized-bed reactor. Doctoral dissertation, Université, Montpellier; 2020.
  • Lai J-Q, Hu Z-L, Sheldon RA, et al. Catalytic performance of cross-linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochem. 2012;47(12):2058–2063.
  • Voběrková S, Solčány V, Vršanská M, et al. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere. 2018;202:694–707.
  • Gupta P, Dutt K, Misra S, et al. Characterization of cross-linked immobilized lipase from thermophilic mould thermomyces lanuginosa using glutaraldehyde. Bioresour Technol. 2009;100(18):4074–4076.
  • Kim SH, Kim S, Park S, et al. Biodiesel production using cross-linked Staphylococcus haemolyticus lipase immobilized on solid polymeric carriers. J Mol Catal B Enzym. 2013;85-86:10–16.
  • Binhayeeding N, Yunu T, Pichid N, et al. Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochem. 2020;95:174–185.
  • Yujun W, Jian X, Guangsheng L, et al. Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresour Technol. 2008;99(7):2299–2303.
  • Yang J, Ma X, Zhang Z, et al. Lipase immobilized by modification-coupled and adsorption–cross-linking methods: a comparative study. Biotechnol Adv. 2010;28(5):644–650.
  • Yan J, Yan Y, Liu S, et al. Preparation of cross-linked lipase-coated micro-crystals for biodiesel production from waste cooking oil. Bioresour Technol. 2011;102(7):4755–4758.
  • Wu S, Snajdrova R, Moore JC, et al. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed Engl. 2021;60(1):88–119.
  • A, Sheldon R, Brady D, L, Bode M. The hitchhiker’s guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci. 2020;11(10):2587–2605.
  • Hauer B. Embracing nature’s catalysts: a viewpoint on the future of biocatalysis. ACS Catal. 2020;10(15):8418–8427.
  • Cucciniello R, Cespi D. Recycling within the chemical industry: the circular economy era. Recycling. 2018;3(2):22.
  • Intasian P, Prakinee K, Phintha A, et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem Rev. 2021;121(17):10367–10451.
  • Firoiu D, Ionescu GH, Băndoi A, et al. Achieving sustainable development goals (SDG): implementation of the 2030 agenda in Romania. Sustainability. 2019;11(7):2156.
  • Pei X, Luo Z, Qiao L, et al. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem Soc Rev. 2022;51(16):7281–7304.
  • Lindeque R, Woodley J. Reactor selection for effective continuous biocatalytic production of pharmaceuticals. Catalysts. 2019;9(3):262.
  • Ali Z, Tian L, Zhang B, et al. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk–shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Enzyme Microb Technol. 2017;103:42–52.
  • Cesarini S, Pastor FIJ, Diaz P. Improvement of P. aeruginosa 42A2 lipase preparations for FAMEs production, both in immobilized and soluble form. J Mol Catal B Enzym. 2014;99:1–7.
  • Xu L, Ke C, Huang Y, et al. Immobilized Aspergillus niger lipase with SiO2 nanoparticles in Sol-Gel materials. Catalysts. 2016;6(10):149.
  • Nawani N, Singh R, Kaur J. Immobilization and stability studies of a lipase from thermophilic Bacillus sp: the effect of process parameters on immobilization of enzyme. Electron J Biotechnol. 2006;9(5):0–0.
  • Yang D, Rhee JS. Continuous hydrolysis of olive oil by immobilized lipase in organic solvent. Biotechnol Bioeng. 1992;40(6):748–752.
  • Li C, Zhang G, Liu N, et al. Preparation and properties of Rhizopus oryzae lipase immobilized using an adsorption-crosslinking method. Int J Food Prop. 2016;19(8):1776–1785.
  • Rehman S, Bhatti HN, Bilal M, et al. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol. 2016;91:1161–1169.
  • Kharrat N, Ali YB, Marzouk S, et al. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochem. 2011;46(5):1083–1089.
  • Mihailović M, Stojanović M, Banjanac K, et al. Immobilization of lipase on epoxy-activated Purolite® A109 and its post-immobilization stabilization. Process Biochem. 2014;49(4):637–646.
  • Dicosimo R, McAuliffe J, Poulose AJ, et al. Industrial use of immobilized enzymes. Chem Soc Rev. 2013;42(15):6437–6474.
  • Mokhtar NF, Abd. Rahman RNZR, Muhd Noor ND, et al. The immobilization of lipases on porous support by adsorption and hydrophobic interaction method. Catalysts. 2020;10(7):744.
  • Kumar A, Dhar K, Kanwar SS, et al. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online. 2016;18(1):1–11.
  • Bhushan I, Saraswat R, Gupta P, et al. Enantioselective resolution of 2-arylpropionic acid derivatives employing immobilization of lipase from Bacillus subtilis strain Kakrayal_1 (BSK-L). Bioresour Technol. 2018;269:581–585.
  • Facin BR, Valério A, Bresolin D, et al. Improving reuse cycles of Thermomyces lanuginosus lipase (NS-40116) by immobilization in flexible polyurethane. Biocatal Biotransformation. 2018;36(5):372–380.
  • Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013;3(1):1–9.
  • Sheldon RA. Cross-linked enzyme aggregates (CLEA®s): stable and recyclable biocatalysts. Biochem Soc Trans. 2007;35(Pt 6):1583–1587.
  • Tufvesson P, Lima-Ramos J, Nordblad M, et al. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev. 2011;15(1):266–274.
  • Rodrigues RC, Fernandez LR. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B Enzym. 2010;64(1-2):1–22.
  • Dussan KJ, Cardona CA, Giraldo OH, et al. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresour Technol. 2010;101(24):9542–9549.
  • Katiyar M, Ali A. Immobilization of Candida rugosa lipase on MCM-41 for the transesterification of cotton seed oil. J Oleo Sci. 2012;61(9):469–475.
  • Rós DPCM, Silva GAM, Mendes AA, et al. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Bioresour Technol. 2010;101(14):5508–5516.
  • Dhake KP, Bhatte KD, Wagh YS, et al. Immobilization of steapsin lipase on macroporous immobead-350 for biodiesel production in solvent free system. Biotechnol Bioproc E. 2012;17(5):959–965.
  • Li Q, Yan Y. Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from sapium sebiferum oil in micro-aqueous phase. Appl Energy. 2010;87(10):3148–3154.
  • Li Z, Deng L, Lu J, et al. Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99–125. Chin J Chem Eng. 2010;18(5):870–875.
  • Nassreddine S, Karout A, Lorraine Christ M, et al. Transesterification of a vegetal oil with methanol catalyzed by a silica fibre reinforced aerogel encapsulated lipase. Appl Catal Gen. 2008;344(1-2):70–77.
  • Bartha VJ-H, Moisă ME, Bencze LC, et al. Efficient biodiesel production catalyzed by nanobioconjugate of lipase from Pseudomonas fluorescens. Molecules. 2020;25(3):651.
  • Vickers NJ. Animal communication: when I’m calling you, will you answer too? Curr Biol. 2017;27(14):R713–R715.
  • Hu Y, Dai L, Liu D, et al. Hydrophobic pore space constituted in macroporous ZIF-8 for lipase immobilization greatly improving lipase catalytic performance in biodiesel preparation. Biotechnol Biofuels. 2020;13(1):1–9.
  • Estevez R, Aguado-Deblas L, López-Tenllado FJ, et al. Biodiesel is dead: long life to advanced biofuels—a comprehensive critical review. Energies. 2022;15(9):3173.
  • Doble M, Kruthiventi AK. 2007. Chapter 4 - biocatalysis: green chemistry. In: Doble M, Kruthiventi AK, editors. Green Chemistry and Engineering. Burlington: Academic Press; p. 69–91.
  • Gumba RE, Saallah S, Misson M, et al. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res J. 2016;3(3):431–447.
  • Ayoola AA, Hymore KF, Omonhinmin CA. Optimization of biodiesel production from selected waste oils using response surface methodology. Biotechnology. 2017;16(1):1–9.
  • Avhad MR, Marchetti JM. A review on recent advancement in catalytic materials for biodiesel production. Renew Sustain Energy Rev. 2015;50:696–718.
  • Gao G, Feng Y, Guo H, et al. Synthesis, structure characterization, and engine performance test of ethylene glycol n-Propyl ether palm oil monoester as biodiesel. Energy Fuels. 2011;25(10):4686–4692.
  • Tongboriboon K, Cheirsilp B, H-Kittikun A. Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J Mol Catal B Enzym. 2010;67(1-2):52–59.
  • Xie W, Ma N. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy. 2010;34(6):890–896.
  • Moreno PJC, Giraldo L. Study of immobilized Candida rugosa lipase for biodiesel fuel production from palm oil by flow microcalorimetry. Arab J Chem. 2011;4(1):55–62.
  • Verdugo C, Luna D, Posadillo A, et al. Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: optimization by response surface methodology. Catal Today. 2011;167(1):107–112.
  • Huang D, Han S, Han Z, et al. Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system. Biochem Eng J. 2012;63:10–14.
  • Abdulla R, Ravindra P. Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenergy. 2013;56:8–13.
  • Li Y, Du W, Liu D. Free lipase-catalyzed biodiesel production from phospholipids-containing oils. Biomass Bioenergy. 2014;71:162–169.
  • Baron AM, Barouh N, Barea B, et al. Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel. 2014;117:458–462.
  • Huang J, Xia J, Jiang W, et al. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour Technol. 2015;180:47–53.
  • Su F, Li G-L, Fan Y-L, et al. Enhancing biodiesel production via a synergic effect between immobilized rhizopus oryzae lipase and novozym 435. Fuel Process Technol. 2015;137:298–304.
  • Vipin VC, Sebastian J, Muraleedharan C, et al. Enzymatic transesterification of rubber seed oil using rhizopus oryzae lipase. Procedia Technol. 2016;25:1014–1021.
  • Firdaus MY, Brask J, Nielsen PM, et al. Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. J Mol Catal B Enzym. 2016;133:55–64.
  • Sivaramakrishnan R, Incharoensakdi A. Direct transesterification of botryococcus sp. catalysed by immobilized lipase: ultrasound treatment can reduce reaction time with high yield of methyl ester. Fuel. 2017;191:363–370.
  • Xie W, Huang M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Convers Manag. 2018;159:42–53.
  • Jambulingam R, Shalma M, Shankar V. Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. J Clean Prod. 2019;215:245–258.
  • Jing L, Jiandong Z, Shuguang S, et al. Magnetic responsive Thermomyces lanuginosus lipase for biodiesel synthesis. Mater Today Commun. 2020;24:101197.
  • Abdulla R, Chan ES, Ravindra P. Biodiesel production from Jatropha curcas : a critical review. Crit Rev Biotechnol. 2011;31(1):53–64.
  • Musa IA. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet. 2016;25(1):21–31.
  • Richard R. 2011. Transestérification éthanolique d’huile végétale dans des microréacteurs : transposition du batch au continu. 271
  • Ribeiro BD, Castro AM, de Coelho MAZ, et al. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011;2011:615803.
  • Maassen S. Bibliometric analysis of research on wastewater irrigation during 1991–2014. Irrig and Drain. 2016;65(5):644–653.
  • Ouattara LY, Kouassi EKA, Soro D, et al. Cocoa pod husks as potential sources of renewable high-value-added products: a review of current valorizations and future prospects. BioRes. 2020;16(1):1988–2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.