45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nitrogen-rich, potato peel-derived hydrochar as an effective dye adsorbent

, &
Received 25 Aug 2023, Accepted 23 Mar 2024, Published online: 21 Apr 2024

References

  • Ahmad A, Kamaruddin MA, H P S AK, et al. Recent advances in nanocellulose aerogels for efficient heavy metal and dye removal. Gels. 2023;9(5):416–416. doi: 10.3390/GELS9050416.
  • Golka K, Kopps S, Myslak ZW. Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett. 2004;151(1):203–210. Jundoi: 10.1016/J.TOXLET.2003.11.016.
  • Ma Y, Liu Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol Adv. 2019;37(7):107414. Novdoi: 10.1016/J.BIOTECHADV.2019.06.013.
  • Al-Amrani WA, Hanafiah MAKM, Mohammed AHA. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. Environ Sci Pollut Res Int. 2022;29(51):76565–76610. 2022 2951Sepdoi: 10.1007/S11356-022-23062-0.
  • Gale P, Tompkins D. Identification and prioritisation of risks to food safety and quality associated with the use of recycled waste-derived materials in agriculture and other aspects of food production; 2016 [cited 2023 Dec 3] [Online]. Available from: https://www.researchgate.net/publication/313509294.
  • Chaleshtori AAN, Meghaddam FM, Sadeghi MM, et al. Removal of acid red 18 (azo-dye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell. J. Environ. Sci. Manag. 2017;20(2):9–16. Dec doi: 10.47125/JESAM/2017_2/02.
  • Genli N, Kutluay S, Baytar O, et al. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. Int J Phytoremediation. 2022;24(1):88–100. doi: 10.1080/15226514.2021.1926911.
  • Han L, Zhang E, Yang Y, et al. Highly efficient U(VI) removal by chemically modified hydrochar and pyrochar derived from animal manure. J Clean Prod. 2020;264:121542. doi: 10.1016/j.jclepro.2020.121542.
  • Ma Y, Zheng YM, Chen JP. A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: synthesis, characterization and performance. J Colloid Interface Sci. 2011;354(2):785–792. Febdoi: 10.1016/J.JCIS.2010.10.041.
  • Liu Y, Chen Y, Li Y, et al. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: a review. J Hazard Mater. 2022;431:128584. doi: 10.1016/J.JHAZMAT.2022.128584.
  • Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018;90:223–247. doi: 10.1016/j.rser.2018.03.071.
  • Wilk M, Magdziarz A, Jayaraman K, et al. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy. 2019;120:166–175. Jan doi: 10.1016/j.biombioe.2018.11.016.
  • Zhang Z, Zhu Z, Shen B, et al. Insights into biochar and hydrochar production and applications: a review. Energy. 2019;171:581–598. doi: 10.1016/j.energy.2019.01.035.
  • Cheng F, Li X. Preparation and application of biochar-based catalysts for biofuel production. Catal. 2018;8(9):346. doi: 10.3390/catal8090346.
  • Amine Azzaz A, Khiari B, Jellali S, et al. Hydrochars production, characterization and application for wastewater treatment: a review 2 3 mechanisms during organic (dyes) and mineral pollutants (heavy metals and nutrients) declaration of interest: none. 2020.
  • Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev. 2015;45:359–378. doi: 10.1016/j.rser.2015.01.050.
  • Masoumi S, Borugadda VB, Nanda S, et al. Hydrochar: a review on its production technologies and applications. Catal. 2021; 11(8):939. doi: 10.3390/catal11080939.
  • Qian WC, Luo XP, Wang X, et al. Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotoxicol Environ Saf. 2018;157:300–306. doi: 10.1016/J.ECOENV.2018.03.088.
  • Busch D, Stark A, Kammann CI, et al. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicol Environ Saf. 2013;97:59–66. doi: 10.1016/J.ECOENV.2013.07.003.
  • Elorf A, Kandasamy J, Belandria V, et al. Heating rate effects on pyrolysis, gasification and combustion of olive waste. Biofuels. 2021;12(9):1157–1164. doi: 10.1080/17597269.2019.1594598.
  • Garlapalli RK, Wirth B, Reza MT. Pyrolysis of hydrochar from digestate: effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresour Technol. 2016;220:168–174. doi: 10.1016/J.BIORTECH.2016.08.071.
  • Biller P, Ross AB. Production of biofuels via hydrothermal conversion. Handb Biofuels Prod Process Technol. 2016;:509–547. doi: 10.1016/B978-0-08-100455-5.00017-5.
  • Khosravi A, Zheng H, Liu Q, et al. Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chem Eng J. 2022;430:133142. doi: 10.1016/j.cej.2021.133142.
  • Liu S, Zhao A, He Z, et al. Effects of temperature and urea concentration on nitrogen-rich pyrolysis: pyrolysis behavior and product distribution in bio-oil. Energy. 2022;239:122443. doi: 10.1016/j.energy.2021.122443.
  • Swify S, Mažeika R, Baltrusaitis J, et al. Review: modified urea fertilizers and their effects on improving nitrogen use efficiency (NUE). Sustainability. 2023;16(1):188. doi: 10.3390/SU16010188/S1.
  • Amalina F, Razak ASA, Krishnan S, et al. A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – a review. Clean. Mater. 2022;3:100045. doi: 10.1016/j.clema.2022.100045.
  • Rodríguez-Martínez B, Coelho E, Gullón B, et al. Potato peels waste as a sustainable source for biotechnological production of biofuels: process optimization. Waste Manag. 2023;155:320–328. doi: 10.1016/J.WASMAN.2022.11.007.
  • Fritsch C, Staebler A, Happel A, et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustain. 2017;9(8):1492. doi: 10.3390/su9081492.
  • Atilgan A, Krakowiak-Bal A, Ertop H, et al. The energy potential of waste from banana production: a case study of the mediterranean region. Energies. 2023;16(14):5244. doi: 10.3390/en16145244.
  • Chen J, Lü S, Zhang Z, et al. Environmentally friendly fertilizers: a review of materials used and their effects on the environment. Sci Total Environ. 2018;613–614:829–839. doi: 10.1016/J.SCITOTENV.2017.09.186.
  • Goyi AA, Sher Mohammad NM, Omer KM. Preparation and characterization of potato peel derived hydrochar and its application for removal of Congo red: a comparative study with potato peel powder. Int. J. Environ. Sci. Technol. 2023;21(1):631–642. doi: 10.1007/S13762-023-04965-Y/METRICS.
  • Rooks DJ, McDonald JE, McCarthy AJ. Metagenomic approaches to the discovery of cellulases. Methods Enzymol. 2012;510:375–394. doi: 10.1016/B978-0-12-415931-0.00020-3.
  • Ahmadi M, Seyedin SH. Investigation of NaOH properties, production and sale mark in the world. J Multidiscip Eng Sci Technol. 2019:6:2458–9403.
  • Othmer DF, Gamer CH, Jacobs JJ. Oxalic acid from sawdust - optimum conditions for manufacture. Ind Eng Chem. 2002;34(3):262–267. doi: 10.1021/ie50387a003.
  • Kucek KT, César-Oliveira MAF, Wilhelm HM, et al. Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides. J Americ Oil Chem Soc. 2007;84(4):385–392. doi: 10.1007/S11746-007-1048-2/METRICS.
  • Crum JR. Corrosion by hydrogen chloride and hydrochloric acid. ASM International eBooks; 2006. p. 682–689. doi: 10.31399/asm.hb.v13c.a0004181.
  • Wang CC, Lee SM, Huang YH. Nitrogen-doped 3-D porous carbon network derived from lotus leaves as interlayer for lithium sulfur batteries. Mater Chem Phys. 2023;300:127565. doi: 10.1016/j.matchemphys.2023.127565.
  • Guo Y, Zhang M, Liu Z, et al. Applying and optimizing water-soluble, slow-Release nitrogen fertilizers for water-saving agriculture. ACS Omega. 2020;5(20):11342–11351. doi: 10.1021/ACSOMEGA.0C00303/ASSET/IMAGES/MEDIUM/AO0C00303_M003.GIF.
  • Hanis KKA, Muhammad Nasri AR, Wan Farahiyah WK, et al. Bacterial degradation of azo dye Congo red by bacillus sp. J. Phys.: conf. Ser. 2020;1529(2):022048. Apr. doi: 10.1088/1742-6596/1529/2/022048.
  • Steinegger A, Wolfbeis OS, Borisov SM. Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem Rev. 2020;120(22):12357–12489. doi: 10.1021/ACS.CHEMREV.0C00451/ASSET/IMAGES/LARGE/CR0C00451_0034.JPEG.
  • Jiang M, Chen Z, Wu Y, et al. Novel PbMoO4 loaded N-biochar composites with enhanced adsorption-photocatalytic removal of tetracycline. Opt Mater. 2023;137:113540–113540. doi: 10.1016/j.optmat.2023.113540.
  • Brahma S, Ramanujam K, Gardas RL. Nitrogen-doped high surface area porous carbon material derived from biomass and ionic liquid for high-performance supercapacitors. Ind Eng Chem Res. 2022;61(33):12073–12082. doi: 10.1021/acs.iecr.2c00195.
  • Lafi R, Montasser I, Hafiane A. Adsorption of Congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration according to the FTIR analyses, hydrogen bonding and electrostatic interactions between dyes and oxygen-containin. Adsorpt Sci Technol. 2019;37(1–2):160–181. doi: 10.1177/0263617418819227.
  • Aminu I, Gumel SM, Ahmad WA, et al. Adsorption isotherms and kinetic studies of Congo-red removal from waste water using activated carbon prepared from jujube seed. AJAC. 2020;11(01):47–59. doi: 10.4236/ajac.2020.111004.
  • Pratt A. Environmental applications of magnetic nanoparticles. Front Nanosci. 2014;6:259–307. doi: 10.1016/B978-0-08-098353-0.00007-5.
  • Qu K, Dan D. Analysis of water pollutants. Elsevier eBooks; 2024. p. 131–165. doi: 10.1016/b978-0-443-21966-5.00005-3.
  • Li D, Chen W, Wu J, et al. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: focus on N functional groups. J Mater Chem A. 2020;8(47):24977–24995. doi: 10.1039/D0TA07977D.
  • Yutomo EB, Noor FA, Winata T. Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene – a density-functional study. RSC Adv. 2021;11(30):18371–18380. doi: 10.1039/D1RA01095F.
  • Ewels CP, Glerup M. Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol. 2005;5(9):1345–1363. doi: 10.1166/JNN.2005.304.
  • Wu J, Rodrigues MTF, Vajtai R, et al. Tuning the electrochemical reactivity of boron- and nitrogen-substituted graphene. Adv Mater. 2016;28(29):6239–6246. doi: 10.1002/ADMA.201506316.
  • Zhang L-H, Shi Y, Wang Y, et al. Nanocarbon catalysts: recent understanding regarding the active sites. Adv Sci. 2020;7(5):1902126. doi: 10.1002/ADVS.201902126.
  • Shi Z, Yang W, Gu Y, et al. Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv Sci. 2020;7(15):2001069. doi: 10.1002/advs.202001069.
  • Su Y, Shi Y, Jiang M, et al. One-Step synthesis of nitrogen-doped porous biochar based on N-doping Co-activation method and its application in water pollutants control. Int J Mol Sci. 2022;23(23):14618. doi: 10.3390/ijms232314618.
  • Kim KJ, Kim YH, Jeong WJ, et al. Adsorption-desorption characteristics of volatile organic compounds over various zeolites and their regeneration by microwave irradiation. Stud Surf Sci Catal. 2007;165:223–226. doi: 10.1016/S0167-2991(07)80304-1.
  • Zhu X, Liu Y, Qian F, et al. Role of hydrochar properties on the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustainable Chem. Eng. May 2015;3(5):833–840. doi: 10.1021/acssuschemeng.5b00153.
  • Huang J, Feng Y, Xie H, et al. A bibliographic study reviewing the last decade of hydrochar in environmental application: history, status quo, and trending research paths. Biochar. 2023;5(1):1–27. doi: 10.1007/s42773-023-00210-4.
  • Thunshirn P, Wenzel WW, Pfeifer C. Pore characteristics of hydrochars and their role as a vector for soil bacteria: a critical review of engineering options. Crit Rev Environ Sci Technol. 2022;52(23):4147–4171. doi: 10.1080/10643389.2021.1974256.
  • Wieser ME, Brand WA. Isotope Ratio Studies using Mass Spectrometry. In: Lindon JC, Tranter GE, Holmes JL, editors. Encyclopedia of spectroscopy and spectrometry. Academic Press. ISBN 0-12-226680-5.
  • Xu S, Chen J, Peng H, et al. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel. 2021;291:120128. doi: 10.1016/j.fuel.2021.120128.
  • Xiao K, Liu H, Li Y, et al. Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem Eng J. 2020;382:122997. doi: 10.1016/j.cej.2019.122997.
  • Larock RC, Yao T. Formation of nitriles, carboxylic acids, and derivatives by oxidation, substitution, and addition. Compr Org Transform. 2017;:1–85. doi: 10.1002/9781118662083.COT09-001.
  • Guo L, Peng L, Li J, et al. Graphitic N-doped biochar for superefficient uranium recycling from nuclear wastewater. Sci Total Environ. 2023;882:163462–163462. doi: 10.1016/J.SCITOTENV.2023.163462.
  • Li X, Liu P, Mao Y, et al. Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl Catal B Environ. 2015;164:352–359. doi: 10.1016/j.apcatb.2014.09.053.
  • Zhang Y, Jiang Q, Xie W, et al. Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover. Biomass Bioenergy. 2019;122:175–182. doi: 10.1016/j.biombioe.2019.01.035.
  • The SEM images and particle size distribution (obtained from TEM) for… | Download scientific diagram; 2023 [cited 2023 Mar 6]. Available from: https://www.researchgate.net/figure/The-SEM-images-and-particle-size-distribution-obtained-from-TEM-for-the-samples-with-x_fig2_314081359.
  • Deng C, Lin R, Kang X, et al. Co-production of hydrochar, levulinic acid and value-added chemicals by microwave-assisted hydrothermal carbonization of seaweed. Chem Eng J. 2022;441:135915. doi: 10.1016/j.cej.2022.135915.
  • Pimenta-Ocampo M, Gascó G, Méndez A, et al. Pyrolysis or hydrothermal carbonisation for anaerobic-digested sewage sludge? A comparison of pyrochar and hydrochar structure and stability. Biomass Convers Biorefinery. 2023;1:1–14. doi: 10.1007/S13399-023-05019-6/FIGURES/5.
  • Shi N, Liu Q, He X, et al. Molecular structure and formation mechanism of hydrochar from hydrothermal carbonization of carbohydrates. Energy Fuels. 2019;33(10):9904–9915. doi: 10.1021/acs.energyfuels.9b02174.
  • Zhang M, Xi Z, Gong Z, et al. Reaction mechanism of nitrogen-containing heterocyclic compounds affecting coal spontaneous combustion. ACS Omega. 2023;8(38):35295–35306. doi: 10.1021/ACSOMEGA.3C05088/ASSET/IMAGES/LARGE/AO3C05088_0025.JPEG.
  • Feng Y, Bu T, Zhang Q, et al. Pyrolysis characteristics of anaerobic digestate from kitchen waste and availability of phosphorus in pyrochar. J Anal Appl Pyrolysis. 2022;168:105729. doi: 10.1016/j.jaap.2022.105729.
  • Butnan S, Deenik JL, Toomsan B, et al. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma. 2015;237–238:105–116. Jan doi: 10.1016/j.geoderma.2014.08.010.
  • Dang CH, Cappai G, Chung J-W, et al. Research needs and pathways to advance hydrothermal carbonization technology. Agronomy. 2024;14(2):247. doi: 10.3390/agronomy14020247.
  • Rong L, Wu L, Zhang T, et al. Significant differences in the effects of nitrogen doping on pristine biochar and graphene-like biochar for the adsorption of tetracycline. Molecules. 2023;29(1):173. doi: 10.3390/MOLECULES29010173/S1.
  • Zhao S, Lu W, Li D, et al. Study on acid resistance and high temperature resistance of composite geopolymer-stabilized lead–zinc tailing. Constr Build Mater. 2023;407:133554. doi: 10.1016/J.CONBUILDMAT.2023.133554.
  • Zeng K, Li R, Minh DP, et al. Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass. Energy. 2020;206:118128. doi: 10.1016/j.energy.2020.118128.
  • Liu Y, Liu X, Ren N, et al. Effect of pyrochar and hydrochar on water evaporation in clayey soil under greenhouse cultivation. Int J Environ Res Public Health. 2019;16(14):2580. doi: 10.3390/IJERPH16142580.
  • Safar M, Lin B-J, Chen W-H, et al. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl Energy. 2019;235:346–355. doi: 10.1016/j.apenergy.2018.10.065.
  • Liu Y, Miao J, Han H, et al. Differences in influence of particle size on the adsorption capacity between deformed and undeformed coal. ACS Omega. 2021;6(8):5886–5897. doi: 10.1021/ACSOMEGA.0C06306/ASSET/IMAGES/LARGE/AO0C06306_0009.JPEG.
  • Wang Z, Zhang S, Zhang X, et al. Effect of microstructure and chemical composition of coal on methane adsorption. J Nat Gas Sci Eng. 2020;82:103507. doi: 10.1016/j.jngse.2020.103507.
  • Sahoo SS, Vijay VK, Chandra R, et al. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean Eng Technol. 2021;3:100101. doi: 10.1016/j.clet.2021.100101.
  • Khan A, Goepel M, Colmenares JC, et al. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustainable Chem Eng. 2020;8(12):4708–4727. doi: 10.1021/acssuschemeng.9b07522.
  • Lourenço MAO, Frade T, Bordonhos M, et al. N-doped sponge-like biochar: a promising CO2 sorbent for CO2/CH4 and CO2/N2 gas separation. Chem Eng J. 2023;470:144005. doi: 10.1016/j.cej.2023.144005.
  • Min Song H, Chan Joo J, Hyun Lim S, et al. Production of polyhydroxyalkanoates containing monomers conferring amorphous and elastomeric properties from renewable resources: current status and future perspectives. Bioresour Technol. 2022;366:128114. doi: 10.1016/j.biortech.2022.128114.
  • Periasamy R. CO2 Capture using KOH/Urea Activated Hydrochar By Ranjithkumar Periasamy. Thesis for the degree of Bachelor of Science Chemistry Department of Chemistry, Faculty of Science University of Prince Edward Island, Charlottetown, Prince Edward Island; 2023.
  • Popović S. Quantitative phase analysis by X-ray diffraction—doping methods and applications. Cryst. 2020;10(1):27. doi: 10.3390/cryst10010027.
  • Branca C, D'Angelo G, Crupi C, et al. Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR-ATR study on chitosan and chitosan/clay films. Polymer. 2016;99:614–622. doi: 10.1016/j.polymer.2016.07.086.
  • Aristri MA, Sari RK, Lubis MAR, et al. Eco-friendly tannin-based non-isocyanate polyurethane resins for the modification of ramie (Boehmeria nivea L.) fibers. Polymers. 2023;15(6):1492. doi: 10.3390/POLYM15061492.
  • Hadjiivanov KI, Panayotov DA, Mihaylov MY, et al. Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem Rev. 2021;121(3):1286–1424. doi: 10.1021/ACS.CHEMREV.0C00487/ASSET/IMAGES/LARGE/CR0C00487_0040.JPEG.
  • Bahrami Miyanji P, Semnani D, Hossein Ravandi A, et al. Fabrication and characterization of chitosan-gelatin/single-walled carbon nanotubes electrospun composite scaffolds for cartilage tissue engineering applications. Polym Adv Techs. 2022;33(1):81–95. doi: 10.1002/pat.5492.
  • Kilic JA. Fungal decomposition dynamics using Fourier transform infrared spectroscopy and atomic force microscopy. Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey for the degree of Doctor of Philosophy, New Brunswick, New; 2013.
  • Bellamy LJ. The infra-red spectra of complex molecules. Springer eBooks; 1975. doi: 10.1007/978-94-011-6017-9.
  • Luo H, Li P, Ma J, et al. Bioinspired ‘cage traps’ for closed-loop lead management of perovskite solar cells under real-world contamination assessment. Nat Commun. 2023;14(1):4730. doi: 10.1038/s41467-023-40421-8.
  • Zhu Z, Yang P, Li X, et al. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochim Acta A Mol Biomol Spectrosc. 2020;227:117659. doi: 10.1016/J.SAA.2019.117659.
  • Smidt E, Eckhardt KU, Lechner P, et al. Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodegradation. 2005;16(1):67–79. doi: 10.1007/S10531-004-0430-8/METRICS.
  • Lin Z, Wang R, Tan S, et al. Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: effect of nitrogen source in wastewater on the adsorption performance of hydrochar. J Environ Manage. 2023;334:117503. doi: 10.1016/J.JENVMAN.2023.117503.
  • Ding Z, Zhang L, Mo H, et al. Microwave-assisted catalytic hydrothermal carbonization of Laminaria japonica for hydrochars catalyzed and activated by potassium compounds. Bioresour Technol. 2021;341:125835. doi: 10.1016/J.BIORTECH.2021.125835.
  • Straten JW, Schleker P, Krasowska M, et al. Nitrogen‐functionalized hydrothermal carbon materials by using urotropine as the nitrogen precursor. Chemistry. 2018;24(47):12298–12317. doi: 10.1002/CHEM.201800341.
  • García DB, Sanchez MC, Bacigalupe A, et al. Green rubber composites. Elsevier eBooks; 2022. p. 273–312. doi: 10.1016/b978-0-323-99643-3.00008-5.
  • Li Y, Xu R, Wang B, et al. Enhanced N-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2. Nanomaterials. 2019;9(2):266. doi: 10.3390/nano9020266.
  • Banerjee S, Chattopadhyaya MC. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem. 2017;10:S1629–S1638. doi: 10.1016/j.arabjc.2013.06.005.
  • Adeyemo AA, Adeoye IO, Bello OS. Adsorption of dyes using different types of clay: a review. Appl Water Sci. 2015;7(2):543–568. doi: 10.1007/s13201-015-0322-y.
  • Al-Ghouti MA, Al-Absi RS. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-72996-3.
  • Nizam NUM, Hanafiah MM, Mahmoudi E, et al. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci Rep. 2021;11(1):8623. doi: 10.1038/s41598-021-88084-z.
  • Plazas-Tuttle J, Giraldo FM, Avila A. Nano-enabled technologies for wastewater remediation. Elsevier eBooks; 2020. p. 1–17.
  • Chiban M, Carja G, Lehutu G, et al. Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents. Arab J Chem. 2016;9: S988–S999. doi: 10.1016/j.arabjc.2011.10.002.
  • Kyzas GZ, Deliyanni EA. Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chem Eng Res Des. 2015;97:135–144. doi: 10.1016/j.cherd.2014.08.020.
  • Zhai S, Chen R, Liu J, et al. N-doped magnetic carbon aerogel for the efficient adsorption of Congo red. J Taiwan Inst Chem Eng. 2021;120:161–168. doi: 10.1016/j.jtice.2021.03.002.
  • Li HZ, Zhang YN, Guo JZ, et al. Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo. Bioresour Technol. 2021;337:125442. doi: 10.1016/J.BIORTECH.2021.125442.
  • Kyzas GZ, Deliyanni EA, Matis KA. Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption. Colloids Surf A Physicochem Eng Asp. 2016;490:74–83. doi: 10.1016/j.colsurfa.2015.11.038.
  • Abbaci F, Nait-Merzoug A, Guellati O, et al. Bio/KOH ratio effect on activated biochar and their dye based wastewater depollution. J Anal Appl Pyrolysis. 2022;162:105452. doi: 10.1016/j.jaap.2022.105452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.