158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Seed oil of Capsella bursa-pastoris (L.) Medik. a non-edible promising feedstock for biodiesel synthesis

, ORCID Icon, , , ORCID Icon &
Received 22 Jan 2024, Accepted 20 Apr 2024, Published online: 02 May 2024

References

  • Mirhashemi FS, Sadrnia H. On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal. J Energy Inst. 2019;2019:1–23. doi: 10.1016/j.joei.2019.04.003.
  • Al-Muhtaseb AH, Osman AI, Sahaya P, et al. Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Convers Manag. 2021;236:114040. doi: 10.1016/j.enconman.2021.114040.
  • Knothe G, Razon LF. Biodiesel fuels. PECS. 2017;58:36–59. doi: 10.1016/j.pecs.2016.08.001.
  • Campbell JE, Block E. Land-use and alternative bioenergy pathways for waste biomass. Environ Sci Technol. 2010;44(22):8665–8669. doi: 10.1021/es100681g.
  • Chhabra P, Mosbach S, Karimi IA, et al. Practically useful models for kinetics of biodiesel production. ACS Sustain Chem Eng. 2019;7(5):4983–4992. doi: 10.1021/acssuschemeng.8b05636.
  • Erdiwansyah R, Mamat MSM, Sani K, et al. An overview of higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 2019;5:467–479. doi: 10.1016/j.egyr.2019.04.009.
  • de Lima AL, Ronconi CM, Mota CJ. Heterogeneous basic catalysts for biodiesel production. Catal Sci Technol. 2016;6(9):2877–2891. doi: 10.1039/C5CY01989C.
  • Wong KY, Ng JH, Chong CT, et al. Biodiesel process intensification through catalytic enhancement and emerging reactor designs: a critical review. Renew Sust Energy Rev. 2019;116:109399. doi: 10.1016/j.rser.2019.109399.
  • Ahmad Jan H, Šurina I, Zaman A, et al. Synthesis of biodiesel from Ricinus communis L. seed oil, a promising non-edible feedstock using calcium oxide nanoparticles as a catalyst. Energy. 2022;15(17):6425. doi: 10.3390/en15176425.
  • Jan HA, Šurina I, Al-Fatesh AS, et al. Biodiesel synthesis from milk thistle (Silybum marianum (L.) Gaertn.) seed oil using ZnO nanoparticles as a catalyst. Energy. 2022;15(20):7818. doi: 10.3390/en15207818.
  • Arshad S, Ahmad M, Munir M, et al. Assessing the potential of green CdO2 nano-catalyst for the synthesis of biodiesel using non-edible seed oil of Malabar ebony. Fuel. 2023;333:126492. doi: 10.1016/j.fuel.2022.126492.
  • Jabeen M, Munir M, Abbas MM, et al. Sustainable production of biodiesel from novel and non-edible Ailanthus altissima (mill.) seed oil from green and recyclable potassium hydroxide activated ailanthus cake and cadmium sulfide catalyst. Sustainability. 2022;14(17):10962. doi: 10.3390/su141710962.
  • Abbasi TU, Ahmad M, Asma M, et al. High efficient conversion of Cannabis sativa L. biomass into bioenergy by using green tungsten oxide nano-catalyst towards carbon neutrality. Fuel. 2023;336:126796. doi: 10.1016/j.fuel.2022.126796.
  • Chia SR, Ahmad M, Sultana S, et al. Reen synthesis of biodiesel from citrus medica seed oil using green nanoparticles of copper oxide. Fuel. 2022;323:124285. doi: 10.1016/j.fuel.2022.124285.
  • Munir M, Ahmad M, Rehan M, et al. Production of high quality biodiesel from novel non-edible Raphnus raphanistrum L. seed oil using copper modified montmorillonite clay catalyst. Environ Res. 2021;193:110398. doi: 10.1016/j.envres.2020.110398.
  • Munir M, Saeed M, Ahmad M, et al. Optimization of novel Lepidium perfoliatum Linn. biodiesel using zirconium-modified montmorillonite clay catalyst. Energy Sources Part A Recov Util Environ Eff. 2022;44(3):6632–6647. doi: 10.1080/15567036.2019.1691289.
  • Sukoco BM, Lestari YD, Susanto E, et al. Middle manager capabilities and organisational performance: the mediating effect of organisational capacity for change. Int J Product Perform Manag. 2022;71(4):1365–1384. doi: 10.1108/IJPPM-07-2019-0364.
  • Munir M, Ahmad M, Saeed M, et al. Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renew Sustain Energy Rev. 2019;109:321–332. doi: 10.1016/j.rser.2019.04.029.
  • Naghmash MA, El-Molla SA, Mahmoud HR. Synthesis and characterization of novel chlorinated SnO2 nanomaterials for biodiesel production via stearic acid esterification with methanol. Adv Powder Technol. 2022;33(4):103532. doi: 10.1016/j.apt.2022.103532.
  • Prestigiacomo C, Biondo M, Galia A, et al. Interesterification of triglycerides with methyl acetate for biodiesel production using a cyclodextrin-derived SnO@ γ-Al2O3 composite as heterogeneous catalyst. Fuel. 2022;321:124026. doi: 10.1016/j.fuel.2022.124026.
  • Al-Mawali KS, Osman AI, Al-Muhtaseb AH, et al. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: a circular bioeconomy approach. Renew Energy. 2021;170:832–846. doi: 10.1016/j.renene.2021.02.027.
  • Hanif M, Bhatti IA, Zahid M, et al. Production of biodiesel from non-edible feedstocks using environment friendly nano-magnetic Fe/SnO catalyst. Sci Rep. 2022;12(1):16705. doi: 10.1038/s41598-022-20856-7.
  • Kouzu M, Hidaka JS. Purification to remove leached CaO catalyst from biodiesel with the help of cation-exchange resin. Fuel. 2013;105:318–324. doi: 10.1016/j.fuel.2012.06.019.
  • Kaur N, Ali A. Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha curcas oil. Fuel Process Technol. 2014;119:173–184. doi: 10.1016/j.fuproc.2013.11.002.
  • Molaei Dehkordi A, Ghasemi M. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process Technol. 2012;97:45–51. doi: 10.1016/j.fuproc.2012.01.010.
  • Taufiq-Yap YH, Hwa S, Rashid U, et al. Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: effect of stoichiometric composition. Energy Convers Manag. 2014;88:1290–1296. doi: 10.1016/j.enconman.2013.12.075.
  • Kouzu M, Kasuno T, Tajika M, et al. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel. 2008;87(12):2798–2806. doi: 10.1016/j.fuel.2007.10.019.
  • Al-Muhtaseb AH, Osman AI, Jamil F, et al. Integrating life cycle assessment and characterisation techniques: a case study of biodiesel production utilising waste Prunus armeniaca seeds (PAS) and a novel catalyst. J Environ Manage. 2022;304:114319. doi: 10.1016/j.jenvman.2021.114319.
  • D'Cruz A, Kulkarni MG, Meher LC, et al. Synthesis of biodiesel from canola oil using heterogeneous base catalyst. J Am Oil Chem Soc. 2007;84(10):937–943. doi: 10.1007/s11746-007-1121-x.
  • Hanif S, Alsaiari M, Ahmad M, et al. Membrane reactor based synthesis of biodiesel from Toona ciliata seed oil using barium oxide nano catalyst. Chemosphere. 2022;308(Pt 3):136458. doi: 10.1016/j.chemosphere.2022.136458.
  • Jeon H, Kim DJ, Kim SJ, et al. Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production. Fuel Process Technol. 2013;116:325–331. doi: 10.1016/j.fuproc.2013.07.013.
  • Saman S, Balouch A, Talpur FN, et al. Green synthesis of MgO nanocatalyst by using Ziziphus mauritiana leaves and seeds for biodiesel production. Verpoort App Organomet Chem. 2021;35:1–10. doi: 10.1002/aoc.6199.
  • Hassan HMA, Alhumaimess MS, Alsohaimi IH, et al. Aldosari, biogenic-mediated synthesis of the Cs2O–MgO/MPC nanocomposite for biodiesel production from olive oil. ACS Omega. 2020;5(43):27811–27822. doi: 10.1021/acsomega.0c02814.
  • Munir M, Saeed M, Ahmad M, et al. Cleaner production of biodiesel from novel non-edible seed oil (Carthamus lanatus L.) via highly reactive and recyclable green nano CoWO3@ rGO composite in context of green energy adaptation. Fuel. 2023;332:126265. doi: 10.1016/j.fuel.2022.126265.
  • Yang W. Effect of nitrogen, phosphorus and potassium fertilizer on growth and seed germination of Capsella bursa-pastoris (L.) Medikus. J Plant Nutr. 2018;41(5):636–644. doi: 10.1080/01904167.2017.1415350.
  • Satar S, Kavallieratos NG, Tüfekli M, et al. Capsella bursa-pastoris is a key overwintering plant for aphids in the mediterranean region. Insects. 2021;12(8):744. doi: 10.3390/insects12080744.
  • Ahmed HT, Francis A, Clements DR, et al. The biology of Canadian weeds. 159. Capsella bursa-pastoris (L.) Medik. Can J Plant Sci. 2021;102(3):529–552.
  • Wahab R, Ansari SG, Dar MA, et al. Synthesis of magnesium oxide nanoparticles by sol-gel process. Mater Sci Forum. 2007;558–559:983–986. doi: 10.4028/www.scientific.net/MSF.558-559.983.
  • Ashok A, Kennedy LJ, Vijaya JJ, et al. Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Techn Environ Policy. 2018;20(6):1219–1231. doi: 10.1007/s10098-018-1547-x.
  • Ullah K, Jan HA, Ahmad M, et al. Synthesis and structural characterization of biofuel from Cocklebur sp., using zinc oxide nano-particle: a novel energy crop for bioenergy industry. Front Bioeng Biotechnol. 2020;8:756. doi: 10.3389/fbioe.2020.00756.
  • Birla A, Singh B, Upadhyay SN, et al. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol. 2012;106:95–100. doi: 10.1016/j.biortech.2011.11.065.
  • Jan HA, Surina I, Saqib NU, et al. Application of recycled nickel-oxide nanoparticles for biodiesel synthesis from the non-edible seed oil of Acacia farnesiana. Biofuels. 2023:1–11. doi: 10.1080/17597269.2023.2294225.
  • Uğuz G, Atabani AE, Mohammed MN, et al. Fuel stability of biodiesel from waste cooking oil: a comparative evaluation with various antioxidants using FT-IR and DSC techniques. Biocatal Agric Biotechnol. 2019;21:101283. doi: 10.1016/j.bcab.2019.101283.
  • Zhang Y, Ma M, Zhang X, et al. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes. J Alloys Compd. 2014;590:373–379. doi: 10.1016/j.jallcom.2013.12.113.
  • Al Zubi MA, Jayaganthan A, Alimuddin, et al. Reduction of carbon-based emissions using MgO nanoparticle with waste cooking oil biodiesel in diesel engine. Adsorp Sci Tech. 2022;2022. doi: 10.1155/2022/9259173.
  • Wilson K, Hardacre C, Lee AF, et al. The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem. 2008;10(6):654–665. doi: 10.1039/b800455b.
  • Jan HA, Saqib NU, Aamir A, et al. Aleurites moluccana as a potential non-edible feedstock for industrial-scale biodiesel synthesis using homemade zinc oxide nanoparticles as a catalyst. Waste Biom Valor. 2023;15:1081–1095. doi: 10.1007/s12649-023-02238-w.
  • Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev. 2006;10(3):248–268. doi: 10.1016/j.rser.2004.09.002.
  • Seenuvasan M, Kalai Selvi P, Anil Kumar M, et al. Standardization of non-edible Pongamia pinnata oil methyl ester conversion using hydroxyl content and GC–MS analysis. J Taiwan Inst Chem Eng. 2014;45(4):1485–1489. doi: 10.1016/j.jtice.2013.11.002.
  • Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 2006;97(6):841–846. doi: 10.1016/j.biortech.2005.04.008.
  • Jan HA, Osman AI, Šurina I, et al. Recycling calcium oxide nanoparticles for sustainable biodiesel production from nonedible feedstock Argemone mexicana L. Biofuels. 2023:1–10. doi: 10.1080/17597269.2023.2277989.
  • Jan HA, Al-Fatesh AS, Osman AI, et al. Assessment of Ailanthus altissima seed oil as a potential source for biodiesel production using nickel oxide nanoparticles catalyst. JKSUS. 2024;36(3):103084. doi: 10.1016/j.jksus.2023.103084.
  • Dhawane SH, Karmakar B, Ghosh S, et al. Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. J Environ Chem Eng. 2018;6(4):3971–3980. doi: 10.1016/j.jece.2018.05.053.
  • De S, Pessoa Junior WAG, Sá ISC, et al. Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour Technol. 2020;312:123569. doi: 10.1016/j.biortech.2020.123569.
  • Niju S, Meera Sheriffa Begum KM, Anantharaman N. Enhancement of biodiesel synthesis over highly active CaO derived from natural white bivalve clam shell. Arab J Chem. 2016;9(5):633–639. doi: 10.1016/j.arabjc.2014.06.006.
  • Zhang Y, Dubé MA, McLean DD, et al. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol. 2003;90(3):229–240. doi: 10.1016/S0960-8524(03)00150-0.
  • Gebremariam SN, Marchetti JM. Economics of biodiesel production. Energy Convers Manag. 2018;168:74–84. doi: 10.1016/j.enconman.2018.05.002.
  • Ávila Vázquez V, Díaz Estrada RA, Aguilera Flores MM, et al. Transesterification of non-edible castor oil (Ricinus communis L.) from Mexico for biodiesel production: a physicochemical characterization. Biofuels. 2020;11:1–10. doi: 10.1080/17597269.2020.1787700.
  • Ma Y, Wang Q, Sun X, et al. Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renew Energy. 2017;107:522–530. doi: 10.1016/j.renene.2017.02.007.
  • Al-Samaraae RR, Atabani AE, Uguz G, et al. Perspective of safflower (Carthamus tinctorius) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels. 2020;11(6):715–731. doi: 10.1080/17597269.2017.1398956.
  • Kaisan MU, Anafi FO, Nuszkowski J, et al. Calorific value, flash point and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with diesel. Biofuels. 2020;11(3):321–327. doi: 10.1080/17597269.2017.1358944.
  • Khan MA, Blackshaw RE, Marwat KB. Biology of milk thistle (Silybum marianum) and the management options for growers in north-western Pakistan. Weed Biol Manag. 2009;9(2):99–105. doi: 10.1111/j.1445-6664.2009.00326.x.
  • Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci. 2009;2(7):759–766. doi: 10.1039/b903941d.
  • Mofijur M, Masjuki HH, Kalam MA, et al. Effect of biodiesel-diesel blending on physico-chemical properties of biodiesel produced from moringa oleifera. Proced Eng. 2015;105:665–669. doi: 10.1016/j.proeng.2015.05.046.
  • Pullen J, Saeed K. An overview of biodiesel oxidation stability. Renew Sustain Energy Rev. 2012;16(8):5924–5950. doi: 10.1016/j.rser.2012.06.024.
  • Sia CB, Kansedo J, Tan YH, et al. Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: a review. Biocatal Agric Biotechnol. 2020;24:101514. doi: 10.1016/j.bcab.2020.101514.
  • Bannister CD, Chuck CJ, Bounds M, et al. Oxidative stability of biodiesel fuel. Proceed Inst Mech Eng Part D J Auto Eng. 2011;225(1):99–114. doi: 10.1243/09544070JAUTO1549.
  • Kumar N. Oxidative stability of biodiesel: causes, effects and prevention. Fuel. 2017;190:328–350. doi: 10.1016/j.fuel.2016.11.001.
  • Fregolente PBL, Fregolente LV, Wolf MacIel MR. Water content in biodiesel, diesel, and biodiesel–diesel blends. J Chem Eng Data. 2012;57(6):1817–1821. doi: 10.1021/je300279c.
  • Cardoso LC, Almeida FNC, Souza GK, et al. Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production. Renew Energy. 2019;133:743–748. doi: 10.1016/j.renene.2018.10.081.
  • Lugo-Méndez H, Sánchez-Domínguez M, Sales-Cruz M, et al. Synthesis of biodiesel from coconut oil and characterization of its blends. Fuel. 2021;295:120595. doi: 10.1016/j.fuel.2021.120595.
  • Demirbaş A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag. 2003;44(13):2093–2109. doi: 10.1016/S0196-8904(02)00234-0.
  • Anand K, Ranjan A, Mehta PS. Estimating the viscosity of vegetable oil and biodiesel fuels. Energy Fuels. 2010;24(1):664–672. doi: 10.1021/ef900818s.
  • Demirbaş A. Production of biodiesel from algae oils. Energy Sources Part A Recov Util Environ Eff. 2009;31(2):163–168. doi: 10.1080/15567030701521775.
  • Adewuyi A, Awolade PO, Oderinde RA. Hura crepitans seed oil: an alternative feedstock for biodiesel production. J Fuels. 2014;2014:1–8. doi: 10.1155/2014/464590.
  • Knothe G. Monitoring a progressing transesterification reaction by fiber‐optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc. 2000;77(5):489–493. doi: 10.1007/s11746-000-0078-5.
  • Portela NA, Oliveira ECS, Neto AC, et al. Quantification of biodiesel in petroleum diesel by 1H NMR: evaluation of univariate and multivariate approaches. Fuel. 2016;166:12–18. doi: 10.1016/j.fuel.2015.10.091.
  • Ullah K, Ahmad M, Qiu F, et al. Assessing the experimental investigation of milk thistle oil for biodiesel production using base catalyzed transesterification. Energy. 2015;89:887–895. doi: 10.1016/j.energy.2015.06.028.
  • Miglio R, Palmery S, Salvalaggio M, et al. Microalgae triacylglycerols content by FT-IR spectroscopy. J Appl Phycol. 2013;25(6):1621–1631. doi: 10.1007/s10811-013-0007-6.
  • Atabani AE, Shobana S, Mohammed MN, et al. Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: blending with higher alcohols, FT–IR, TGA, DSC and NMR characterizations. Fuel. 2019;244:419–430. doi: 10.1016/j.fuel.2019.01.169.
  • Soon LB, Rus AZM, Hasan S. Continuous biodiesel production using ultrasound clamp on tubular reactor. Int J Autom Mech Eng. 2013;8:1396–1405. doi: 10.15282/ijame.8.2013.27.0115.
  • Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indo J Sci Technol. 2019;4(1):79–118. doi: 10.17509/Ijost.V4i1.15806.
  • Siatis NG, Kimbaris AC, Pappas CS, et al. Improvement of biodiesel production based on the application of ultrasound: monitoring of the procedure by FTIR spectroscopy. J Am Oil Chem Soc. 2006;83(1):53–57. doi: 10.1007/s11746-006-1175-1.
  • Araya F, Troncoso E, Mendonça RT, et al. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of Eucalyptus globulus wood and their relationship with cellulose accessibility. Biotechnol Bioeng. 2015;112(9):1783–1791. doi: 10.1002/bit.25604.
  • Andrade TA, Errico M, Christensen KV. Transesterification of castor oil catalyzed by liquid enzymes: optimization of reaction conditions. Comput Aided Chem Eng. 2017;40:2863–2868. doi: 10.1016/B978-0-444-63965-3.50479-7.
  • Elango RK, Sathiasivan K, Muthukumaran C, et al. Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem J. 2019;145:1162–1168. doi: 10.1016/j.microc.2018.12.039.
  • Asci F, Aydin B, Akkus GU, et al. Fatty acid methyl ester analysis of Aspergillus fumigatus isolated from fruit pulps for biodiesel production using GC-MS spectrometry. Bioengineering. 2020;11(1):408–415. doi: 10.1080/21655979.2020.1739379.