1,528
Views
1
CrossRef citations to date
0
Altmetric
Methods and Technical Advances

A modular toolset of phiC31-based fluorescent protein tagging vectors for Drosophila

, &
Pages 29-41 | Received 24 Jan 2019, Accepted 11 Mar 2019, Published online: 28 Mar 2019

References

  • Groth AC, Fish M, Nusse R, et al. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31 [Comparative study research support, U.S. Gov’t, P.H.S.]. Genetics. 2004 Apr;166(4):1775–1782. PubMed PMID: 15126397; PubMed Central PMCID: PMC1470814. eng.
  • Bischof J, Maeda RK, Hediger M, et al. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases [Comparative study research support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A. 2007 Feb 27; 104(9):3312–3317. PubMed PMID: 17360644; PubMed Central PMCID: PMC1805588. eng
  • Duffy JB. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis. 2002 Sep-Oct;34(1–2):1–15. PubMed PMID: 12324939.
  • Lai SL, Lee T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci. 2006 May;9(5):703–709. PubMed PMID: 16582903.
  • Potter CJ, Tasic B, Russler EV, et al. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell. 2010 Apr 30;141(3):536–548. PubMed PMID: 20434990; PubMed Central PMCID: PMC2883883.
  • Rorth P. Gal4 in the Drosophila female germline. Mech Dev. 1998 Nov;78(1–2):113–118. PubMed PMID: 9858703.
  • Wang JW, Beck ES, McCabe BD. A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila. PubMed PMID: 22848718; PubMed Central PMCID: PMC3405054. eng PloS one. 2012;77:e42102.
  • Pfeiffer BD, Ngo TT, Hibbard KL, et al. Refinement of tools for targeted gene expression in Drosophila [Research support, Non-U.S. Gov’t]. Genetics. 2010 Oct;186(2):735–755. PubMed PMID: 20697123; PubMed Central PMCID: PMC2942869. eng.
  • Gohl DM, Silies MA, Gao XJ, et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods. 2011 Mar;8(3):231–237. PubMed PMID: 21473015; PubMed Central PMCID: PMC3079545.
  • Lin CC, Potter CJ. Editing transgenic DNA components by inducible gene replacement in Drosophila melanogaster. Genetics. 2016 Aug;203(4):1613–1628. . PubMed PMID: 27334272; PubMed Central PMCID: PMC4981265.
  • Oda H, Tsukita S. Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J Cell Sci. 2001 Feb;114(Pt 3):493–501. PubMed PMID: 11171319.
  • O’Donnell KH, Chen CT, Wensink PC. Insulating DNA directs ubiquitous transcription of the Drosophila melanogaster alpha 1-tubulin gene. Mol Cell Biol. 1994 Sep;14(9):6398–6408. PubMed PMID: 8065369; PubMed Central PMCID: PMC359165.
  • Matthews KA, Miller DF, Kaufman TC. Developmental distribution of RNA and protein products of the Drosophila alpha-tubulin gene family. Dev Biol. 1989 Mar;132(1):45–61. PubMed PMID: 2492961.
  • Goedhart J, von Stetten D, Noirclerc-Savoye M, et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun. 2012;3:751. PubMed PMID: 22434194; PubMed Central PMCID: PMC3316892.
  • Ai HW, Henderson JN, Remington SJ, et al. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J. 2006 Dec 15;400(3):531–540. PubMed PMID: 16859491; PubMed Central PMCID: PMC1698604.
  • Lam AJ, St-Pierre F, Gong Y, et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods. 2012 Oct;9(10):1005–1012. PubMed PMID: 22961245; PubMed Central PMCID: PMC3461113.
  • Karasawa S, Araki T, Nagai T, et al. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer [Comparative study research support, Non-U.S. Gov’t]. Biochem J. 2004 Jul 1;381(Pt 1):307–312. PubMed PMID: 15065984; PubMed Central PMCID: PMC1133789. eng.
  • Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002 Sep 13;297(5588):1873–1877. PubMed PMID: 12228718; eng.
  • Ruta V, Datta SR, Vasconcelos ML, et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output [Research Support, Non-U.S. Gov’t]. Nature. 2010 Dec 2;468(7324):686–690. PubMed PMID: 21124455; eng.
  • Ando R, Mizuno H, Miyawaki A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science. 2004 Nov 19;306(5700):1370–1373. PubMed PMID: 15550670.
  • Gurskaya NG, Verkhusha VV, Shcheglov AS, et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol. 2006 Apr;24(4):461–465. PubMed PMID: 16550175.
  • Wiedenmann J, Ivanchenko S, Oswald F, et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion [Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15905–15910. PubMed PMID: 15505211; PubMed Central PMCID: PMC528746. eng.
  • Shu X, Lev-Ram V, Deerinck TJ, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 2011 Apr;9(4):e1001041. PubMed PMID: 21483721; PubMed Central PMCID: PMC3071375.
  • Takemoto K, Matsuda T, Sakai N, et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation [Research Support, Non-U.S. Gov’t]. Sci Rep. 2013;3:2629. PubMed PMID: 24043132; PubMed Central PMCID: PMC3775092. eng.
  • Subach FV, Subach OM, Gundorov IS, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking [Research Support, N.I.H., Extramural]. Nat Chem Biol. 2009 Feb;5(2):118–126. PubMed PMID: 19136976; PubMed Central PMCID: PMC2662996. eng.
  • An X, Armstrong JD, Kaiser K, et al. The effects of ectopic white and transformer expression on Drosophila courtship behavior. J Neurogenet. 2000 Dec;14(4):227–43,271. PubMed PMID: 11342383.
  • Roseman RR, Pirrotta V, Geyer PK. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. Embo J. 1993 Feb;12(2):435–442. PubMed PMID: 8382607; PubMed Central PMCID: PMC413226.
  • Kuhn EJ, Viering MM, Rhodes KM, et al. A test of insulator interactions in Drosophila. Embo J. 2003 May 15;22(10):2463–2471. PubMed PMID: 12743040; PubMed Central PMCID: PMC155999.
  • Serano TL, Cheung HK, Frank LH, et al. P element transformation vectors for studying Drosophila melanogaster oogenesis and early embryogenesis. Gene. 1994 Jan 28;138(1–2):181–186. PubMed PMID: 8125300.
  • Adams SR, Campbell RE, Gross LA, et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. 2002 May 29;124(21):6063–6076. PubMed PMID: 12022841.
  • Kyriakakis P, Tipping M, Abed L, et al. Tandem affinity purification in Drosophila: the advantages of the GS-TAP system [Research Support, U.S. Gov’t, Non-P.H.S.]. Fly (Austin). 2008 Jul-Aug;2(4):229–235. PubMed PMID: 18719405; eng.
  • Nechiporuk T, Fernandez TE, Vasioukhin V. Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev Cell. 2007 Sep;13(3):338–350. PubMed PMID: 17765678; eng.
  • Luo J, Wang H, Kang D, et al. Dlg5 maintains apical polarity by promoting membrane localization of Crumbs during Drosophila oogenesis. Sci Rep. 2016 May 23;6:26553. PubMed PMID: 27211898; PubMed Central PMCID: PMC4876392.
  • Bharadwaj R, Roy M, Ohyama T, et al. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development. 2013 Feb 1;140(3):627–638. PubMed PMID: 23293294; PubMed Central PMCID: PMC3561792.
  • Finan D, Hartman MA, Spudich JA. Proteomics approach to study the functions of Drosophila myosin VI through identification of multiple cargo-binding proteins. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5566–5571. PubMed PMID: 21368190; PubMed Central PMCID: PMC3078346.
  • Bulgheresi S, Kleiner E, Knoblich JA. Inscuteable-dependent apical localization of the microtubule-binding protein Cornetto suggests a role in asymmetric cell division [Research Support, Non-U.S. Gov’t]. J Cell Sci. 2001 Oct;114(Pt 20):3655–3662. PubMed PMID: 11707517; eng.
  • McCahill A, Warwicker J, Bolger GB, et al. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol. 2002 Dec;62(6):1261–1273. PubMed PMID: 12435793.
  • Kadrmas JL, Smith MA, Pronovost SM, et al. Characterization of RACK1 function in Drosophila development. Dev Dyn. 2007 Aug;236(8):2207–2215. PubMed PMID: 17584887.
  • Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008 Jul;5(7):605–607. PubMed PMID: 18536722; PubMed Central PMCID: PMC2814344.
  • Homem CCF, Steinmann V, Burkard TR, et al. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell. 2014 Aug 14;158(4):874–888. PubMed PMID: 25126791.
  • Jang JK, Rahman T, Kober VS, et al. Misregulation of the kinesin-like protein Subito induces meiotic spindle formation in the absence of chromosomes and centrosomes. Genetics. 2007 Sep;177(1):267–280. PubMed PMID: 17660552; PubMed Central PMCID: PMC2013708.
  • Fujita T, Inoue H, Kitamura T, et al. Senescence marker protein-30 (SMP30) rescues cell death by enhancing plasma membrane Ca(2+)-pumping activity in Hep G2 cells. Biochem Biophys Res Commun. 1998 Sep 18;250(2):374–380. PubMed PMID: 9753637.
  • Zhu K, Liu M, Fu Z, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 2017 Aug;13(8):e1006946. PubMed PMID: 28859085; PubMed Central PMCID: PMC5578494.
  • Wan P, Wang D, Luo J, et al. Guidance receptor promotes the asymmetric distribution of exocyst and recycling endosome during collective cell migration. Development. 2013 Dec;140(23):4797–4806. PubMed PMID: 24198275; eng.
  • Stanford WL, Cohn JB, Cordes SP. Gene-trap mutagenesis: past, present and beyond [Comparative study review]. Nat Rev Genet. 2001 Oct;2(10):756–768. PubMed PMID: 11584292; eng.
  • Kelso RJ, Buszczak M, Quinones AT, et al. Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D418–20. PubMed PMID: 14681446; PubMed Central PMCID: PMC308749.
  • Venken KJ, Kasprowicz J, Kuenen S, et al. Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation [Research Support, Non-U.S. Gov’t]. Nucleic Acids Res. 2008 Oct;36(18):e114. PubMed PMID: 18676454; PubMed Central PMCID: PMC2566861. eng.
  • Venken KJ, Schulze KL, Haelterman NA, et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes [Research support, N.I.H., Extramural research support, Non-U.S. Gov’t]. Nat Methods. 2011 Sep;8(9):737–743. PubMed PMID: 21985007; PubMed Central PMCID: PMC3191940. eng.
  • Huang J, Zhou W, Dong W, et al. From the Cover: directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering [Research support, N.I.H., Extramural research support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A. 2009 May 19; 106(20):8284–8289. PubMed PMID: 19429710; PubMed Central PMCID: PMC2688891. eng
  • Lee T, Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 2001 May;24(5):251–254. PubMed PMID: 11311363.
  • Markstein M, Pitsouli C, Villalta C, et al. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Nat Genet. 2008 Apr;40(4):476–483. PubMed PMID: 18311141; PubMed Central PMCID: PMC2330261. eng.
  • Ni JQ, Zhou R, Czech B, et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods. 2011 May;8(5):405–407. PubMed PMID: 21460824; PubMed Central PMCID: PMC3489273.
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7297–7301. PubMed PMID: 7638184; PubMed Central PMCID: PMC41326.
  • Ai HW, Shaner NC, Cheng Z, et al. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry. 2007 May 22;46(20):5904–5910. PubMed PMID: 17444659.
  • Rizzo MA, Piston DW. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys J. 2005 Feb;88(2):L14–6. PubMed PMID: 15613634; PubMed Central PMCID: PMC1305173.
  • Goedhart J, van Weeren L, Hink MA, et al. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods. 2010 Feb;7(2):137–139. PubMed PMID: 20081836.
  • Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173(1 Spec No): 33–38. PubMed PMID: 8707053.
  • Zacharias DA, Violin JD, Newton AC, et al. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Science. 2002 May 3;296(5569):913–916. PubMed PMID: 11988576; eng.
  • Nagai T, Ibata K, Park ES, et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications [Research Support, Non-U.S. Gov’t]. Nat Biotechnol. 2002 Jan;20(1):87–90. PubMed PMID: 11753368; eng.
  • Griesbeck O, Baird GS, Campbell RE, et al. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. J Biol Chem. 2001 Aug 3;276(31):29188–29194. PubMed PMID: 11387331; eng.
  • Shaner NC, Campbell RE, Steinbach PA, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein [Comparative Study Evaluation Studies Letter Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Nat Biotechnol. 2004 Dec;22(12):1567–1572. PubMed PMID: 15558047; eng.
  • Shaner NC, Lin MZ, McKeown MR, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nat Methods. 2008 Jun;5(6):545–551. PubMed PMID: 18454154; PubMed Central PMCID: PMC2853173. eng.
  • Kredel S, Oswald F, Nienhaus K, et al. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PloS one. 2009;4(2):e4391. PubMed PMID: 19194514; PubMed Central PMCID: PMC2633614.
  • Magliery TJ, Wilson CG, Pan W, et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc. 2005 Jan 12;127(1):146–157. PubMed PMID: 15631464.
  • Saka Y, Hagemann AI, Piepenburg O, et al. Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus [Research Support, Non-U.S. Gov’t]. Development. 2007 Dec;134(23):4209–4218. PubMed PMID: 17959720; PubMed Central PMCID: PMC2435607. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.