1,089
Views
5
CrossRef citations to date
0
Altmetric
Review

Connexins and microRNAs: Interlinked players in regulating islet function?

, , , &
Pages 99-108 | Received 15 Feb 2017, Accepted 11 May 2017, Published online: 10 Jul 2017

References

  • Bosco D, Haefliger JA, Meda P. Connexins: key mediators of endocrine function. Physiol Rev 2011; 91:1393–445; PMID:22013215; https://doi.org/10.1152/physrev.00027.2010
  • Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 2009; 7:4; PMID:19284610; https://doi.org/10.1186/1478-811X-7-4
  • Farnsworth NL, Benninger RK. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Lett 2014; 588:1278–87; PMID:24583073; https://doi.org/10.1016/j.febslet.2014.02.035
  • Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 2005; 568:459–68; https://doi.org/10.1113/jphysiol.2005.090985
  • Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003; 4:285–94; https://doi.org/10.1038/nrm1072
  • Scemes E, Spray DC, Meda P. Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 2009; 457:1207–26; https://doi.org/10.1007/s00424-008-0591-5
  • Sohl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004; 62:228–32; https://doi.org/10.1016/j.cardiores.2003.11.013
  • Yen MR, Saier MH, Jr. Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 2007; 94:5–14; https://doi.org/10.1016/j.pbiomolbio.2007.03.006
  • Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2012; 2:1981–2035.
  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 1991; 115:1077–89; PMID:1659572; https://doi.org/10.1083/jcb.115.4.1077
  • Naus CC, Laird DW. Implications and challenges of connexin connections to cancer. Nat Rev Cancer 2010; 10:435–41; PMID:20495577; https://doi.org/10.1038/nrc2841
  • Bosse Y, Despres JP, Chagnon YC, Rice T, Rao DC, Bouchard C, et al. Quantitative trait locus on 15q for a metabolic syndrome variable derived from factor analysis. Obesity (Silver Spring) 2007; 15:544–50; PMID:17372302; https://doi.org/10.1038/oby.2007.577
  • Belluardo N, Trovato-Salinaro A, Mudo G, Hurd YL, Condorelli DF. Structure, chromosomal localization, and brain expression of human Cx36 gene. J Neurosci Res 1999; 57:740–52; PMID:10462698; https://doi.org/10.1002/(SICI)1097-4547(19990901)57:5%3c740::AID-JNR16%3e3.0.CO;2-Z
  • Kilimnik G, Jo J, Periwal V, Zielinski MC, Hara M. Quantification of islet size and architecture. Islets 2012; 4:167–72; https://doi.org/10.4161/isl.19256
  • Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: A comparative study. Islets 2009; 1:129–36; https://doi.org/10.4161/isl.1.2.9480
  • Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2010; 2:135–45; https://doi.org/10.4161/isl.2.3.11815
  • Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 2012; 61:1700–7; https://doi.org/10.2337/db11-1312
  • Meda P, Chanson M, Pepper M, Giordano E, Bosco D, Traub O, et al. In vivo modulation of connexin 43 gene expression and junctional coupling of pancreatic B-cells. Exp Cell Res 1991; 192:469–80; https://doi.org/10.1016/0014-4827(91)90066-4
  • Perez-Armendariz EM, Cruz-Miguel L, Coronel-Cruz C, Esparza-Aguilar M, Pinzon-Estrada E, Rancano-Camacho E, et al. Connexin 36 is expressed in beta and connexins 26 and 32 in acinar cells at the end of the secondary transition of mouse pancreatic development and increase during fetal and perinatal life. Anat Rec (Hoboken) 2012; 295:980–90; https://doi.org/10.1002/ar.22473
  • Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, et al. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 2009; 18:428–39; https://doi.org/10.1093/hmg/ddn370
  • Serre-Beinier V, Le Gurun S, Belluardo N, Trovato-Salinaro A, Charollais A, Haefliger JA, et al. Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes 2000; 49:727–34; PMID:10905480; https://doi.org/10.2337/diabetes.49.5.727
  • Theis M, Mas C, Doring B, Kruger O, Herrera P, Meda P, et al. General and conditional replacement of connexin43-coding DNA by a lacZ reporter gene for cell-autonomous analysis of expression. Cell Commun Adhes 2001; 8:383–6; PMID:12064623; https://doi.org/10.3109/15419060109080758
  • Theis M, Mas C, Doring B, Degen J, Brink C, Caille D, et al. Replacement by a lacZ reporter gene assigns mouse connexin36, 45 and 43 to distinct cell types in pancreatic islets. Exp Cell Res 2004; 294:18–29; PMID:14980497; https://doi.org/10.1016/j.yexcr.2003.09.031
  • Coronel-Cruz C, Hernandez-Tellez B, Lopez-Vancell R, Lopez-Vidal Y, Berumen J, Castell A, et al. Connexin 30.2 is expressed in mouse pancreatic beta cells. Biochem Biophys Res Commun 2013; 438:772–7; https://doi.org/10.1016/j.bbrc.2013.06.100
  • Peiris H, Bonder CS, Coates PT, Keating DJ, Jessup CF. The beta-cell/EC axis: how do islet cells talk to each other? Diabetes 2014; 63:3–11; PMID:24357688; https://doi.org/10.2337/db13-0617
  • Benninger RK, Zhang M, Head WS, Satin LS, Piston DW. Gap junction coupling and calcium waves in the pancreatic islet. Biophys J 2008; 95:5048–61; https://doi.org/10.1529/biophysj.108.140863
  • Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G, et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 2005; 54:1798–807; PMID:15919802; https://doi.org/10.2337/diabetes.54.6.1798
  • Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M. Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 2007; 56:1078–86; https://doi.org/10.2337/db06-0232
  • Calabrese A, Zhang M, Serre-Beinier V, Caton D, Mas C, Satin LS, et al. Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes 2003; 52:417–24; https://doi.org/10.2337/diabetes.52.2.417
  • Benninger RK, Head WS, Zhang M, Satin LS, Piston DW. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. J Physiol 2011; 589:5453–66; PMID:21930600; https://doi.org/10.1113/jphysiol.2011.218909
  • Short KW, Head WS, Piston DW. Connexin 36 mediates blood cell flow in mouse pancreatic islets. Am J Physiol Endocrinol Metab 2014; 306:E324–31; https://doi.org/10.1152/ajpendo.00523.2013
  • Carvalho CP, Oliveira RB, Britan A, Santos-Silva JC, Boschero AC, Meda P, et al. Impaired beta-cell-beta-cell coupling mediated by Cx36 gap junctions in prediabetic mice. Am J Physiol Endocrinol Metab 2012; 303:E144–51; https://doi.org/10.1152/ajpendo.00489.2011
  • Porte D, Jr., Kahn SE. beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes 2001; 50 Suppl 1:S160–3; PMID:11272181; https://doi.org/10.2337/diabetes.50.2007.S160
  • Urschel S, Hoher T, Schubert T, Alev C, Sohl G, Worsdorfer P, et al. Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem 2006; 281:33163–71; PMID:16956882; https://doi.org/10.1074/jbc.M606396200
  • Farnsworth NL, Walter RL, Hemmati A, Westacott MJ, Benninger RK. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cdelta. J Biol Chem 2016; 291:3184–96; PMID:26668311; https://doi.org/10.1074/jbc.M115.679506
  • Penko D, Rojas-Canales D, Mohanasundaram D, Peiris HS, Sun WY, Drogemuller CJ, et al. Endothelial progenitor cells enhance islet engraftment, influence beta-cell function, and modulate islet connexin 36 expression. Cell Transplant 2015; 24:37–48; PMID:24069942; https://doi.org/10.3727/096368913X673423
  • Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 2006; 34:5863–71; https://doi.org/10.1093/nar/gkl743
  • Hao J, Zhang C, Zhang A, Wang K, Jia Z, Wang G, et al. miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep 2012; 27:1504–10.
  • Hsieh YW, Chang C, Chuang CF. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans. PLoS Genet 2012; 8:e1002864; https://doi.org/10.1371/journal.pgen.1002864
  • Jin Z, Xu S, Yu H, Yang B, Zhao H, Zhao G. miR-125b inhibits Connexin43 and promotes glioma growth. Cell Mol Neurobiol 2013; 33:1143–8; https://doi.org/10.1007/s10571-013-9980-1
  • Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 2007; 18:393–400; PMID:18023200; https://doi.org/10.1016/j.tem.2007.10.001
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281–97; PMID:14744438; https://doi.org/10.1016/S0092-8674(04)00045-5
  • Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136:642–55; PMID:19239886; https://doi.org/10.1016/j.cell.2009.01.035
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136:215–33; https://doi.org/10.1016/j.cell.2009.01.002
  • Tufekci KU, Oner MG, Meuwissen RL, Genc S. The role of microRNAs in human diseases. Methods Mol Biol 2014; 1107:33–50; PMID:24272430.
  • Tufekci KU, Meuwissen RL, Genc S. The role of microRNAs in biological processes. Methods Mol Biol 2014; 1107:15–31; PMID:24272429.
  • Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009; 7:147–54; PMID:20172487; https://doi.org/10.1016/S1672-0229(08)60044-3
  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 2007; 131:1273–86; PMID:18155131; https://doi.org/10.1016/j.cell.2007.11.034
  • Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, et al. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 2003; 13:1429–34; PMID:12932328; https://doi.org/10.1016/S0960-9822(03)00537-2
  • Dumortier O, Van Obberghen E. MicroRNAs in pancreas development. Diabetes Obes Metab 2012; 14 Suppl 3:22–8; PMID:22928561; https://doi.org/10.1111/j.1463-1326.2012.01656.x
  • Guay C, Jacovetti C, Nesca V, Motterle A, Tugay K, Regazzi R. Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab 2012; 14 Suppl 3:12–21; PMID:22928560; https://doi.org/10.1111/j.1463-1326.2012.01654.x
  • Joglekar MV, Parekh VS, Hardikar AA. Islet-specific microRNAs in pancreas development, regeneration and diabetes. Indian J Exp Biol 2011; 49:401–8; PMID:21702218.
  • Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009; 9:109–13; PMID:18977315; https://doi.org/10.1016/j.gep.2008.10.001
  • Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009; 106:5813–8; PMID:19289822; https://doi.org/10.1073/pnas.0810550106
  • Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes 2013; 62:887–95; PMID:23223022; https://doi.org/10.2337/db12-0451
  • Nieto M, Hevia P, Garcia E, Klein D, Alvarez-Cubela S, Bravo-Egana V, et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 2012; 21:1761–74; https://doi.org/10.3727/096368911X612521
  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432:226–30; PMID:15538371; https://doi.org/10.1038/nature03076
  • El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008; 57:2708–17; PMID:18591395; https://doi.org/10.2337/db07-1614
  • Tattikota SG, Sury MD, Rathjen T, Wessels HH, Pandey AK, You X, et al. Argonaute2 regulates the pancreatic beta-cell secretome. Mol Cell Proteomics 2013; 12:1214–25; https://doi.org/10.1074/mcp.M112.024786
  • Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59:978–86; PMID:20086228; https://doi.org/10.2337/db09-0881
  • Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, Matschinsky F, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 2011; 108:12030–5; PMID:21730150; https://doi.org/10.1073/pnas.1101450108
  • Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008; 57:2728–36; PMID:18633110; https://doi.org/10.2337/db07-1252
  • Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 2012; 61:1742–51; PMID:22537941; https://doi.org/10.2337/db11-1086
  • Farr RJ, Januszewski AS, Joglekar MV, Liang H, McAulley AK, Hewitt AW, et al. A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Sci Rep 2015; 5:10375; https://doi.org/10.1038/srep10375
  • Joglekar MV, Januszewski AS, Jenkins AJ, Hardikar AA. Circulating microRNA Biomarkers of Diabetic Retinopathy. Diabetes 2016; 65:22–4; https://doi.org/10.2337/dbi15-0028
  • Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 2015; 58:900–11; https://doi.org/10.1007/s00125-015-3510-2
  • Zhao X, Mohan R, Ozcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 2012; 287:31155–64; https://doi.org/10.1074/jbc.M112.362632
  • Sebastiani G, Po A, Miele E, Ventriglia G, Ceccarelli E, Bugliani M, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 2015; 52:523–30; https://doi.org/10.1007/s00592-014-0675-y
  • Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008; 389:305–12; https://doi.org/10.1515/BC.2008.026
  • Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012; 61:653–8; https://doi.org/10.2337/db11-0944
  • Laird DW. Life cycle of connexins in health and disease. Biochem J 2006; 394:527–43; PMID:16492141; https://doi.org/10.1042/BJ20051922
  • Klotz LO. Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys; 524:23–9; PMID:22464988; https://doi.org/10.1016/j.abb.2012.03.012
  • Zhou R, Hang P, Zhu W, Su Z, Liang H, Du Z. Whole genome network analysis of ion channels and connexins in myocardial infarction. Cell Physiol Biochem 2011; 27:299–304; https://doi.org/10.1159/000327956
  • Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007; 13:486–91; PMID:17401374; https://doi.org/10.1038/nm1569
  • Lu Y, Zhang Y, Shan H, Pan Z, Li X, Li B, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res 2009; 84:434–41; PMID:19581315; https://doi.org/10.1093/cvr/cvp232
  • Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006; 174:677–87; https://doi.org/10.1083/jcb.200603008
  • Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 2009; 106:20794–9; https://doi.org/10.1073/pnas.0909311106
  • Curcio A, Torella D, Iaconetti C, Pasceri E, Sabatino J, Sorrentino S, et al. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One 2013; 8:e70158; https://doi.org/10.1371/journal.pone.0070158
  • Imamura M, Sugino Y, Long X, Slivano OJ, Nishikawa N, Yoshimura N, et al. Myocardin and microRNA-1 modulate bladder activity through connexin 43 expression during post-natal development. J Cell Physiol 2013; 228:1819–26; https://doi.org/10.1002/jcp.24333
  • Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, et al. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 2011; 71:2381–91; https://doi.org/10.1158/0008-5472.CAN-10-2754
  • Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, et al. MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One 2011; 6:e21249; https://doi.org/10.1371/journal.pone.0021249
  • Li X, Pan JH, Song B, Xiong EQ, Chen ZW, Zhou ZS, et al. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther 2012; 13:890–8; https://doi.org/10.4161/cbt.20841
  • Danielson LS, Park DS, Rotllan N, Chamorro-Jorganes A, Guijarro MV, Fernandez-Hernando C, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J 2013; 27:1460–7; https://doi.org/10.1096/fj.12-221994
  • Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 2009; 119:2772–86; PMID:19726871; https://doi.org/10.1172/JCI36154
  • Wang BW, Wu GJ, Cheng WP, Shyu KG. Mechanical stretch via transforming growth factor-beta1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes. J Formos Med Assoc 2013; 112:635–43; PMID:24120154; https://doi.org/10.1016/j.jfma.2013.01.002
  • Hong X, Sin WC, Harris AL, Naus CC. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 2015; 6:15566–77; https://doi.org/10.18632/oncotarget.3904
  • Lemcke H, Steinhoff G, David R. Gap junctional shuttling of miRNA - A novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal 2015; 27:2506–14; https://doi.org/10.1016/j.cellsig.2015.09.012
  • Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 2011; 71:1550–60; https://doi.org/10.1158/0008-5472.CAN-10-2372
  • Suzhi Z, Liang T, Yuexia P, Lucy L, Xiaoting H, Yuan Z, et al. Gap Junctions Enhance the Antiproliferative Effect of MicroRNA-124-3p in Glioblastoma Cells. J Cell Physiol 2015; 230:2476–88; https://doi.org/10.1002/jcp.24982
  • Ketting RF. A dead end for microRNAs. Cell 2007; 131:1226–7; PMID:18160032; https://doi.org/10.1016/j.cell.2007.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.