682
Views
63
CrossRef citations to date
0
Altmetric
Articles

Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone

, PhD, , PhD, , PhD, , PhD, , PhD & , PhD

References

  • Abdin AA, Hamouda HE. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology. 2008;55:1340–1346.
  • Aoyama K, Matsumura N, Watabe M, Wang F, Kikuchi-Utsumi K, Nakaki T. Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience. 2011;181:206–215.
  • Ascheiro A, Zhang SM, Hernán MA, Kawachi I, Colditz GA, Speizer FE, et al. Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Annl Neurol. 2001;50:56–63.
  • Banchroft JD, Steven A, Turner DR. Theory and practice of histological technique (4th ed.). New York, NY: Churchil Livingstone. 1996.
  • Barone P. Neurotransmission in Parkinson's disease: beyond dopamine. Eur J Neurol. 2010;17:364–376.
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenmyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurobiol. 2000;3:1301–1306.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.
  • Bowler K, Tirri R. The temperature characteristics of synaptic membrane ATPases from immature and adult rat brain. J Neurochem. 1974;23:611–613.
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24:197–211.
  • Brothers HM, Marchalant Y, Wenk GL. Caffeine attenuates lipopolysaccharide-induced neuroinflammation. Neurosci Lett. 2010;480:97–100.
  • Brown RE, Corey SC, Moore AK. Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genetics. 1999;29:263–271.
  • Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, et al. Changes in acetylcholinesterase, Na+/K+ ATPase, and Mg2+ ATPase activities in the frontal cortex and the hippocampus of hyper and hypothyroid adult rats. Metab Clin Exp. 2007;56:1104–1110.
  • Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7:376–385.
  • Chen JF I, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, et al. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease. J Neurosci. 2001;21(10):RC143.
  • Choi EY, Jang JY, Cho YO. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats. Nutr Res Pract. 2010;4:283–289.
  • Ciarlone AE. Further modification of a fluoromertric method for analyzing brain amines. Microchem J. 1978;23:9–12.
  • Dai SF, Han GZ, Li Y, Yu DQ, Zhang DM, Feng YH, et al. Effects of nicotine on the microglia of Parkinson's disease mice. Asian J Pharmacodyn Pharmacokin. 2008;8:319–323.
  • Dalmazio I, Santos LS, Lopes RP, Eberlin MN, Augusti R. Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry. Enviro Sci Tech. 2005;39:5982–5988.
  • Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39:889–909.
  • de Lores Arnaiz GR, Ordieres MG. Brain Na(+), K(+)-ATPase activity in aging and disease. Int J Biomed Sci. 2014;10:85–102.
  • Demirtaş C, Ofluoğlu E, Hussein A, Paşaoğlu H. Effects of caffeine on oxidant-antioxidant mechanisms in the rat liver. Gazi Med J. 2012;23:13–18.
  • Dringen R, Pawlowski PJ, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79:157–165.
  • Douglas KT. Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 1987;59:103–167.
  • Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Ferre' S, Fuxe K, von Euler G, Johansson B, Fredholm BB. Adenosine-dopamine interactions in the brain. Neuroscience. 1992;51:501–512.
  • Ferre´ S. An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem. 2008;105:1067–1079.
  • Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci. 2004;61:857–872.
  • Fleuranceau-More lP, Barrier L, Fauconneau B, Piriou A, Huguet F. Origin of 4-hydroxynonenal incubation-induced inhibition of dopamine transporter and Na/K adenosine triphosphatase in rat striatal synaptosomes. Neurosci Lett. 1999;277:91–94.
  • Fonnum F, Lock EA. The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem. 2004;88:513–531.
  • Giza E, Gotzamani-Psarrakou A, Bostantjopoulou S. Imaging beyond the striatonigral dopaminergic system in Parkinson's disease. Hell J Nucl Med. 2012;15:224–232.
  • Górska AM, Gołembiowska K. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum. Neurotox Res. 2015;27(3):229–245.
  • Gorun V, Proinov I, Baltescu V, Balaban G, Barzu O. Modified Ellman procedure for assay of cholinesterase in crude-enzymatic preparations. Anal Biochem. 1978;86:324–326.
  • Habig WH, Pabst MJ, Jacoby WB. Glutathione-S-transferase; the first step in mercapturic fermentation. J Biochem. 1973;249:7130–7139.
  • He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, et al. Role of nitric oxide in rotenone-induced nigro-striatal injury. J Neurochem. 2003;86:1338–1345.
  • Hsu CW, Wang CS, Chiu TH. Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice. J Biomed Sci. 2010;17:4.
  • Imam SZ, Newport GD, Itzhak Y, Cadet JL, Islam F, Slikker Jr W, et al. Peroxynitrite plays a role in methamphetamine- induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase. J Neurochem. 2001;76:745–749.
  • Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345:91–104.
  • Kang CH, Jayasooriya RG, Dilshara MG, Choi YH, Jeong YK, Kim ND, et al. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-κB activation and ERK phosphorylation. Food Chem Toxicol. 2012;50:4270–426.
  • Kiss PJ. Theory of active antidepressants: a nonsynaptic approach to the treatment of depression. Neurochem Int. 2008;52:34–39.
  • Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:471–479.
  • Kurokawa M, Koga K, Kase H, Nakamura J, Kuwana Y. Adenosine A2A receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem. 1996;66:1882–1888.
  • Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL. Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NY Acad Sci. 2002;962:318–331.
  • Machado-Filho JA, Correia AO, Montenegro AB, Nobre ME, Cerqueira GS, Neves KR, et al. Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions. Behav Brain Res. 2014;264:116–125.
  • Mao X, Chai Y, Lin YF. Dual regulation of the ATP-sensitive potassium channel by caffeine. Am J Physiol Cell Physiol. 2007;292:C2239–C2258.
  • Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal. 2011;14:2013–2054.
  • Montgomery HAC, Dymock JF. The determination of nitrite in water. Analyst. 1961;86:414–416.
  • Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmun Pharmacol. 2012;7:42–59.
  • Nadanasabapathi S, Rufia J, Manju V. Invitro free radical scavenging activity and bioavailability of dietary compounds caffeine, caffeic acid and their combination. Int Food Res J. 2013;20:3159–3165.
  • Nakaso K, Ito S, Nakashima K. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neurosci Lett. 2008;432:146–150.
  • Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis. 2010;20(Suppl 1):S85–S94.
  • Nishikimi M, Appaji N, Yogi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Common. 1972;46:849–854.
  • Nobre HV Jr, Cunha GMA, Vasconcelos LM, Magalha∼es HIF, Neto RNO, Maia FD, et al. Caffeine and CSC, adenosine A2A antagonists, offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells. Neurochem Int. 2010;56:51–58.
  • Oakley A. Glutathione transferases: a structural perspective. Drug Metab Rev. 2011 (May);43(2):138–151.
  • Ostrem JL, Galifianakis NB. Overview of common movement disorders. Continuum Lifelong Learn Neurol. 2010;16:13–48.
  • Petzer A, Pienaar A, Petzer JP. The interactions of caffeine with monoamine oxidase. Life Sci. 2013;93:283–287.
  • Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 2007;30:545–553.
  • Prasanthi JR, Dasari B, Marwarha G, Larson T, Chen X, Geiger JD, et al. Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med. 2010;49:1212–1220.
  • Rego AC, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in Excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res. 2003;28:1563–1574.
  • Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids. 1994;59:383–388.
  • Schapira AH, Olanow CW. Neuroprotection in parkinson disease: mysteries, myths, and misconceptions. JAMA. 2004;291:358–364.
  • Shi X, Dalal NS, Jain AC. Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food Chem Toxicol. 1991;29:1–6.
  • Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci. 2002;22:6321–6324.
  • Souza MA, Mota BC, Gerbatin RR, Rodrigues FS, Castro M, Fighera MR, et al. Antioxidant activity elicited by low dose of caffeine attenuates pentylenetetrazol-induced seizures and oxidative damage in rats. Neurochem Int. 2013;62:821–830.
  • Sun Y, Zhang G, Xu J, Chen S, Tao E, Xu C, et al. Effect of rifampicin pre- and post-treatment on rotenone induced dopaminergic neuronal apoptosis and alpha-synuclein expression. Neural Regen Res. 2010;5:85–91.
  • Svenningsson P, Le MoineC, FisoneG, FredholmBB. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol. 1999;59:355–396.
  • Swathi G, Bhuvaneswar C, Rajendra W. Alterations of cholinergic neurotransmission in rotenone induced parkinson's disease: protective role of bacopa monnieri. Int J Pharm Biol Sci. 2013;3:286–292.
  • Takakura K, Xiaohong W, Takeuchi K, Fukuda S. Peroxynitrite decreases dopamine's vasoconstrictive activity. Anesth Analg. 2003 (Nov);97(5):1492–6.
  • Tsakiris S, Angelogianni P, Schulpis KH, Behrakis P. Protective effect of l-cysteine and glutathione on rat brain Na+, K+ ATPase inhibition induced by free radicals. Z Naturforsch. 2000a;55:271–277.
  • Tsakiris S, Angelogianni P, Schulpis KH, Stavridis C. Protective effect of L-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem. 2000b;33:103–106.
  • Varty GB, Hodgson RA, Pond AJ, Grzelak ME, Parker EM, Hunter JC. The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates. Psychopharmacology (Berl). 2008;200:393–401.
  • Watabe M, Nakaki T. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol Pharmacol. 2008;74:933–940.
  • Yu ZF, Kong LD, Chen Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol. 2002;83:161–165.
  • Zang LY, Misra HP. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride. Mol Cell Biochem. 2003;254:131–136.
  • Zhang L, Haraguchi S, Koda T, Hashimoto K, Nakagawara A. Muscle atrophy and motor neuron degeneration in human NEDL1 transgenic mice. J Biomed Biotechnol. 2011;831092. doi:10.1155/2011/831092

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.