218
Views
8
CrossRef citations to date
0
Altmetric
Articles

Virgin Coconut Oil-Induced Neuroprotection in Lipopolysaccharide-Challenged Rats is Mediated, in Part, Through Cholinergic, Anti-Oxidative and Anti-Inflammatory Pathways

, Msc, , PhD, , PhD, , PhD, , PhD & , PhD

References

  • Ammendola, S., Giusti, A. M., Masci, A., Mosca, L., Saso, L., & Bovicelli, P. 2011. Antioxidant properties of hydroxytyrosyl acetate compared with hydroxytyrosol and their protective capacity against oxidative stress in human neuroblastoma cells. J Sci Ind Res, 70, 929–937.
  • Ansari, N., Khodagholi, F., Ramin, M., Amini, M., Irannejad, H., Dargahi, L., & Amirabad, A. D. 2010. Inhibition of lps-induced apoptosis in differentiated-pc12 cells by new triazine derivatives through nf-κb-mediated suppression of cox-2. Neurochem Int, 57(8), 958–968. doi:https://doi.org/10.1016/j.neuint.2010.10.002.
  • Arias, E., Gallego-Sandin, S., Villarroya, M., Garcia, A. G., & Lopez, M. G. 2005. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in sh-sy5y neuroblastoma cells: Role of nicotinic receptors. J Pharmacol Exp Ther, 315(3), 1346–1353.
  • Arunima, S., & Rajamohan, T. 2013. Effect of virgin coconut oil enriched diet on the antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats - a comparative study. Food & function, 4(9), 1402–1409. doi:https://doi.org/10.1039/c3fo60085h.
  • Boateng, L., Ansong, R., Owusu, W. B., & Steiner-Asiedu, M. 2016. Coconut oil and palm oil's role in nutrition, health and national development: A review. Ghana medical journal, 50(3), 189–196.
  • Borovikova, L. V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., Watkins, L. R., Wang, H., Abumrad, N., Eaton, J. W., & Tracey, K. J. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 405(6785), 458–462.
  • Bostanci, M. O., Bas, O., & Bagirici, F. 2010. Alpha-tocopherol decreases iron-induced hippocampal and nigral neuron loss. Cell Mol Neurobiol, 30(3), 389–394.
  • Brunet, A., Datta, S. R., & Greenberg, M. E. 2001. Transcription-dependent and-independent control of neuronal survival by the pi3k–akt signaling pathway. Curr Opin Neurobiol, 11(3), 297–305.
  • Carocho, M., & Ferreira, I. C. F. R. 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol, 51, 15–25.
  • Choi, D. Y., Lee, Y. J., Hong, J. T., & Lee, H. J. 2012. Antioxidant properties of natural polyphenols and their therapeutic potentials for alzheimer's disease. Brain Res Bull, 87(2), 144–153.
  • Choi, D. Y., Lee, J. W., Lin, G., Lee, Y. K., Lee, Y. H., Choi, I. S., Han, S. B., Jung, J. K., Kim, Y. H., & Kim, K. H. 2012. Obovatol attenuates lps-induced memory impairments in mice via inhibition of nf-κb signaling pathway. Neurochem Int, 60(1), 68–77.
  • Dhanasekaran, M., Holcomb, L. A., Hitt, A. R., Tharakan, B., Porter, J. W., Young, K. A., & Manyam, B. V. 2009. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of alzheimer's disease animal model. Phytother Res, 23(1), 14–19.
  • Dumont, M., & Beal, M. F. 2011. Neuroprotective strategies involving ros in alzheimer disease. Free Radic Biol Med, 51(5), 1014–1026.
  • Dypbukt, J. M., Ankarcrona, M., Burkitt, M., Sjöholm, Å., Ström, K., Orrenius, S., & Nicotera, P. 1994. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting rinm5f cells. The role of intracellular polyamines. J Biol Chem, 269(48), 30553–30560.
  • Erickson, M. A., & Banks, W. A. 2011. Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: Multiplex quantification with path analysis. Brain, behavior, and immunity, 25(8), 1637–1648.
  • Fallarini, S., Miglio, G., Paoletti, T., Minassi, A., Amoruso, A., Bardelli, C., Brunelleschi, S., & Lombardi, G. 2009. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol, 157(6), 1072–1084.
  • Feng, Y., & Wang, X. 2012. Antioxidant therapies for alzheimer's disease. Oxid Med Cell Longev, 2012, 472932. doi:https://doi.org/10.471155/472012/472932..
  • Fernández, M. A., Sáenz, M. T., & García, M. D. 1998. Anti-inflammatory activity in rats and mice of phenolic acids isolated from scrophularia frutescens J Pharm Pharmacol, 50(10), 1183–1186.
  • Fernando, W. M., Martins, I. J., Goozee, K. G., Brennan, C. S., Jayasena, V., & Martins, R. N. 2015. The role of dietary coconut for the prevention and treatment of alzheimer's disease: Potential mechanisms of action. Br J Nutr, 114(1), 1–14.
  • Gandotra, S., Kour, J., & Van der Waag, A. 2014. Efficacy of adjunctive extra virgin coconut oil use in moderate to severe alzheimer’s disease. Int J School Cogn Psychol, 1, 1–10.
  • Godbout, J. P., Berg, B. M., Krzyszton, C., & Johnson, R. W. 2005. Alpha-tocopherol attenuates nfkappab activation and pro-inflammatory cytokine production in brain and improves recovery from lipopolysaccharide-induced sickness behavior. J Neuroimmunol, 169(1-2), 97–105.
  • Hao, L., Sheng, Z., Potian, J., Deak, A., Rohowsky-Kochan, C., & Routh, V. H. 2016. Lipopolysaccharide (lps) and tumor necrosis factor alpha (tnfα) blunt the response of neuropeptide y/agouti-related peptide (npy/agrp) glucose inhibited (gi) neurons to decreased glucose. Brain Res, 1648(Pt A), 181–192. doi:https://doi.org/10.1016/j.brainres.2016.07.035.
  • Hazalin, N. A. M. N., Ramasamy, K., Lim, S. M., Wahab, I. A., Cole, A. L. J., & Majeed, A. B. A. 2009. Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the national park, pahang, malaysia. BMC Complement Altern Med, 9(1), 46. doi:https://doi.org/10.1186/1472-6882-1189-1146.
  • Hoozemans, J. J. M., Rozemuller, A. J. M., van Haastert, E. S., Eikelenboom, P., & van Gool, W. A. 2011. Neuroinflammation in alzheimer's disease wanes with age. J Neuroinflammation, 8, 171. doi:https://doi.org/10.1186/1742-2094-1188-1171.
  • Hritcu, L., Ciobica, A., Stefan, M., Mihasan, M., Palamiuc, L., & Nabeshima, T. 2011. Spatial memory deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of parkinson's disease. Neurosci Res, 71(1), 35–43.
  • Hsieh, C.-F., Liu, C.-K., Lee, C.-T., Yu, L.-E., & Wang, J.-Y. 2019. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep, 9(1), 840. doi:https://doi.org/10.1038/s41598-018-37215-0.
  • Hwang, Y. P., & Jeong, H. G. 2010. Ginsenoside rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related pi3k/akt/nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol, 242(1), 18–28.
  • Illam, S. P., Narayanankutty, A., & Raghavamenon, A. C. 2017. Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death. Toxicol Mech Methods, 27(6), 442–450 doi:https://doi.org/10.1080/15376516.2017.1320458.
  • Jendresen, C., Digre, A., Cui, H., Zhang, X., Vlodavsky, I., Li, J.-P., & Nilsson, L. N. G. 2019. Systemic lps-induced aβ-solubilization and clearance in aβpp-transgenic mice is diminished by heparanase overexpression Sci Rep, 9(1), 4600. DOI: https://doi.org/10.1038/s41598-41019-40999-41594.
  • Kaizaki, A., Tien, L. T., Pang, Y., Cai, Z., Tanaka, S., Numazawa, S., Bhatt, A. J., & Fan, L. W. 2013. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide. J Neuroinflammation, 10, 45. doi:https://doi.org/10.1186/1742-2094-1110-1145.
  • Kalb, A., von Haefen, C., Sifringer, M., Tegethoff, A., Paeschke, N., Kostova, M., Feldheiser, A., & Spies, C. D. 2013. Acetylcholinesterase inhibitors reduce neuroinflammation and-degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One, 8(5), e62679. DOI: https://doi.org/10.61371/journal.pone.0062679.
  • Kealy, J., Murray, C., Griffin, E. W., Lopez-Rodriguez, A. B., Healy, D., Tortorelli, L. S., Lowry, J. P., Watne, L. O., & Cunningham, C. 2020. Acute inflammation alters brain energy metabolism in mice and humans: Role in suppressed spontaneous activity, impaired cognition, and delirium. J Neurosci, 40(29), 5681–5696.
  • Kheir-Eldin, A. A., Motawi, T. K., Gad, M. Z., & Abd-ElGawad, H. M. 2001. Protective effect of vitamin e, beta-carotene and n-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem Cell Biol, 33(5), 475–482.
  • Krikorian, R., Shidler, M. D., Dangelo, K., Couch, S. C., Benoit, S. C., & Clegg, D. J. 2012. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging, 33(2), 425.e419–425.e427.
  • Kwon, K. J., Kim, H. J., Shin, C. Y., & Han, S. H. 2010. Melatonin potentiates the neuroprotective properties of resveratrol against beta-amyloid-induced neurodegeneration by modulating amp-activated protein kinase pathways. J Clin Neurol, 6(3), 127–137. doi:https://doi.org/10.3988/jcn.2010.6.3.127.
  • Lee, Y. J., Choi, D. Y., Choi, I. S., Kim, K. H., Kim, Y. H., Kim, H. M., Lee, K., Cho, W. G., Jung, J. K., & Han, S. B. 2012. Inhibitory effect of 4-o-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappab in vitro and in vivo models. J Neuroinflammation, 9, 35. DOI: https://doi.org/10.1186/1742-2094-1189-1135.
  • Lei, E., Vacy, K., & Boon, W. C. 2016. Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int, 95, 75–84.
  • Lemere, C. A., & Masliah, E. 2010. Can alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol, 6(2), 108–119.
  • Li, Y., Li, F., Gong, Q., Wu, Q., & Shi, J. 2011. Inhibitory effects of dendrobium alkaloids on memory impairment induced by lipopolysaccharide in rats. Planta Med, 77(2), 117–121.
  • Librado, A. S., & Von Luigi, M. V. 2013. Phenolic-dependent anti-lipid peroxidative, antimodulatory and antioxidant activity of virgin coconut oil in vitro. Int Food Res J, 20(4), 1683–1689.
  • Lim, S. M., Rahim, N. S., & Ramasamy, K. (2020). Chapter 16 - coconut oil and antioxidative neuroprotection. In C. R. Martin & V. R. Preedy (Eds.), Oxidative stress and dietary antioxidants in neurological diseases (pp. 231–247): Academic Press.
  • Marina, A. M., Che Man, Y. B., & Amin, I. 2009. Virgin coconut oil: Emerging functional food oil. Trends Food Sci Technol, 20(10), 481–487.
  • Marina, A. M., Che Man, Y. B., Nazimah, S. A. H., & Amin, I. 2009a. Antioxidant capacity and phenolic acids of virgin coconut oil. Int J Food Sci Nutr, 60(Sup 2), 114–123.
  • Marina, A. M., Che Man, Y. B., Nazimah, S. A. H., & Amin, I. 2009b. Chemical properties of virgin coconut oil. J Am Oil Chem Soc, 86(4), 301–307.
  • McCarty, M. F., & DiNicolantonio, J. J. 2016. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. Open heart, 3(2), e000467. DOI: https://doi.org/10.001136/openhrt-002016-000467.
  • Mirzaei, F., Khazaei, M., Komaki, A., Amiri, I., & Jalili, C. 2018. Virgin coconut oil (vco) by normalizing nlrp3 inflammasome showed potential neuroprotective effects in amyloid-β induced toxicity and high-fat diet fed rat. Food Chem Toxicol, 118, 68–83. doi:https://doi.org/10.1016/j.fct.2018.04.064.
  • Miwa, M., Tsuboi, M., Noguchi, Y., Enokishima, A., Nabeshima, T., & Hiramatsu, M. 2011. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of gaba transporter 2. J Neuroinflammation, 8, 153. doi:https://doi.org/10.1186/1742-2094-1188-1153.
  • Mohsenzadegan, M., & Mirshafiey, A. 2012. The immunopathogenic role of reactive oxygen species in alzheimer disease. Iran J Allergy Asthma Immunol, 11(3), 203–216.
  • Mrak, R. E., & Griffin, W. S. T. 2005. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging, 26(3), 349–354.
  • Neelakantan, N., Seah, J. Y. H., & van Dam, R. M. 2020. The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation, 141(10), 803–814. doi:https://doi.org/10.1161/CIRCULATIONAHA.119.043052.
  • Nevin, K. G., & Rajamohan, T. 2004. Beneficial effects of virgin coconut oil on lipid parameters and in vitro ldl oxidation. Clin Biochem, 37(9), 830–835.
  • Nevin, K. G., & Rajamohan, T. 2006. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chem, 99(2), 260–266.
  • Nguyen, V. T. A., Le, T. D., Phan, H. N., & Tran, L. B. 2017. Antibacterial activity of free fatty acids from hydrolyzed virgin coconut oil using lipase from candida rugosa. J Lipids, 2017, 7170162. doi:https://doi.org/10.7171155/7172017/7170162..
  • Nishio, K., Horie, M., Akazawa, Y., Shichiri, M., Iwahashi, H., Hagihara, Y., Yoshida, Y., & Niki, E. 2013. Attenuation of lipopolysaccharide (lps)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biol, 1, 97–103.
  • Nonaka, Y., Takagi, T., Inai, M., Nishimura, S., Urashima, S., Honda, K., Aoyama, T., & Terada, S. 2016. Lauric acid stimulates ketone body production in the kt-5 astrocyte cell line. Journal of oleo science, 65(8), 693–699.
  • O'Connor, B. (2018). How to use coconut oil for whole-body health. Retrieved from https://chopra.com/articles/how-to-use-coconut-oil-for-whole-body-health
  • Rahim, N. S., Lim, S. M., Mani, V., Abdul Majeed, A. B., & Ramasamy, K. 2017. Enhanced memory in wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress. Pharm Biol, 55(1), 825–832. doi:https://doi.org/10.1080/13880209.2017.1280688.
  • Ramassamy, C., Arseneault, M., & Nam, D. T. (2010). Free radical-mediated damage to brain in alzheimer’s disease: Role of acrolein and preclinical promise of antioxidant polyphenols. In S. Bondy & K. Maiese (Eds.), Aging and age-related disorders (pp. 417–437). Totowa, NJ: Humana Press.
  • Reiter, E., Jiang, Q., & Christen, S. 2007. Anti-inflammatory properties of α- and γ-tocopherol. Mol Aspects Med, 28(5–6), 668–691.
  • Rohman, A., Irnawati, Erwanto, Y., Lukitaningsih, E., Rafi, M., Fadzilah, N. A., Windarsih, A., Sulaiman, A., & Zakaria, Z. 2019. Virgin coconut oil: Extraction, physicochemical properties, biological activities and its authentication analysis. Food Rev Int, doi:https://doi.org/10.1080/87559129.87552019.81687515..
  • Rosas‐Ballina, M., & Tracey, K. J. 2009. Cholinergic control of inflammation. J Intern Med, 265(6), 663–679.
  • Sabitha, P., & Vasudeva, D. M. 2010. Lipid profile and antioxidant enzymes in coconut oil consumers. Indian Coconut J, 72, 3–6.
  • Scott, B. C., Butler, J., Halliwell, B., & Aruoma, O. I. 1993. Evaluation of the antioxidant actions of ferulic acid and catechins. . Free Radic Res Commun, 19(4), 241–253.
  • Shibata, H., Katsuki, H., Okawara, M., Kume, T., & Akaike, A. 2006. C-jun n-terminal kinase inhibition and α-tocopherol protect midbrain dopaminergic neurons from interferon-γ/lipopolysaccharide-induced injury without affecting nitric oxide production. J Neurosci Res, 83(1), 102–109. doi:https://doi.org/10.1002/jnr.20700.
  • Srivastava, Y., Semwal, A. D., Majumdar, A., & Yildiz, F. 2016. Quantitative and qualitative analysis of bioactive components present in virgin coconut oil. Cogent Food Agric, 2, 1. doi:https://doi.org/10.1080/23311932.23312016.21164929.
  • Sullivan, P. G., & Brown, M. R. 2005. Mitochondrial aging and dysfunction in alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry, 29(3), 407–410.
  • Sun, K. H., de Pablo, Y., Vincent, F., & Shah, K. 2008. Deregulated cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem, 107(1), 265–278.
  • Sung, S., Yao, Y., Uryu, K., Yang, H., Lee, V. M., Trojanowski, J. Q., & Praticò, D. 2004. Early vitamin e supplementation in young but not aged mice reduces abeta levels and amyloid deposition in a transgenic model of alzheimer's disease. FASEB J, 18(2), 323–325.
  • Tan, S. W., Ramasamy, R., Abdullah, M., & Vidyadaran, S. 2011. Inhibitory effects of palm α-, γ- and δ-tocotrienol on lipopolysaccharide-induced nitric oxide production in bv2 microglia. Cell Immunol, 271(2), 205–209.
  • Teng, M., Zhao, Y. J., Khoo, A. L., Yeo, T. C., Yong, Q. W., & Lim, B. P. 2020. Impact of coconut oil consumption on cardiovascular health: A systematic review and meta-analysis. Nutrition reviews, 78(3), 249–259.
  • Tiwari, V., Kuhad, A., Bishnoi, M., & Chopra, K. 2009. Chronic treatment with tocotrienol, an isoform of vitamin e, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative–nitrosative stress in rats. Pharmacol Biochem Behav, 93(2), 183–189.
  • Tyagi, E., Agrawal, R., Nath, C., & Shukla, R. 2007. Effect of anti-dementia drugs on lps induced neuroinflammation in mice. Life Sci, 80(21), 1977–1983.
  • Tyagi, E., Agrawal, R., Nath, C., & Shukla, R. 2010. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by lps in rat brain. Eur J Pharmacol, 640(1), 206–210.
  • Um, M. Y., Ahn, J. Y., Kim, M. K., & Ha, T. Y. 2012. Sesaminol glucosides protect β-amyloid induced apoptotic cell death by regulating redox system in sk-n-sh cells. Neurochem Res, 37(4), 689–699.
  • Veech, R. L., Chance, B., Kashiwaya, Y., Lardy, H. A., & Cahill, G. F. 2001. Ketone bodies, potential therapeutic uses. IUBMB Life, 51(4), 241–247.
  • Vladimirova, O., Lu, F. M., Shawver, L., & Kalman, B. 1999. The activation of protein kinase c induces higher production of reactive oxygen species by mononuclear cells in patients with multiple sclerosis than in controls. Inflamm Res, 48(7), 412–416. doi:https://doi.org/10.1007/s000110050480.
  • Vysakh, A., Ratheesh, M., Rajmohanan, T. P., Pramod, C., Premlal, S., Girish kumar, B., & Sibi, P. I. 2014. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action. Int Immunopharmacol, 20(1), 124–130.
  • Wagner, K. H., Kamal-Eldin, A., & Elmadfa, I. 2004. Gamma-tocopherol–an underestimated vitamin? Ann Nutr Metab, 48(3), 169–188.
  • Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., & Schulz-Schüffer, W. 2007. Role of the toll-like receptor 4 in neuroinflammation in alzheimer’s disease. Cell Physiol Biochem, 20(6), 947–956.
  • Wang, W., Huang, W., Li, L., Ai, H., Sun, F., Liu, C., & An, Y. 2008. Morroniside prevents peroxide-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Cell Mol Neurobiol, 28(2), 293–305.
  • Wang, L., Pavlou, S., Du, X., Bhuckory, M., Xu, H., & Chen, M. 2019. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener, 14(1), 2. doi:https://doi.org/10.1186/s13024-13019-10305-13029.
  • Yamada, K., Tanaka, T., Han, D., Senzaki, K., Kameyama, T., & Nabeshima, T. 1999. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: Implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. The European journal of neuroscience, 11(1), 83–90.
  • Yan, J.-J., Cho, J.-Y., Kim, H.-S., Kim, K.-L., Jung, J.-S., Huh, S.-O., Suh, H.-W., Kim, Y.-H., & Song, D.-K. 2001. Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol, 133(1), 89–96.
  • Zakaria, Z. A., Somchit, M. N., Teh, L. K., Salleh, M. Z., & Long, K. 2011. In vivo antinociceptive and anti-inflammatory activities of dried and fermented processed virgin coconut oil. Med Princ Pract, 20(3), 231–236.
  • Zarifkar, A., Choopani, S., Ghasemi, R., Naghdi, N., Maghsoudi, A. H., Maghsoudi, N., Rastegar, K., & Moosavi, M. 2010. Agmatine prevents lps-induced spatial memory impairment and hippocampal apoptosis. Eur J Pharmacol, 634(1–3), 84–88.
  • Zduńska, K., Dana, A., Kolodziejczak, A., & Rotsztejn, H. 2018. Antioxidant properties of ferulic acid and its possible application Skin Pharmacol Physiol, 31(6), 332–336.
  • Zhang, L., Yu, H., Zhao, X., Lin, X., Tan, C., Cao, G., & Wang, Z. 2010. Neuroprotective effects of salidroside against β-amyloid-induced oxidative stress in sh-sy5y human neuroblastoma cells. Neurochem Int, 57(5), 547–555.
  • Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., & Zhu, L. 2019. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep, 9, 5790. DOI: https://doi.org/10.1038/s41598-41019-42286-41598.
  • Zhu, X., Raina, A. K., Lee, H. G., Casadesus, G., Smith, M. A., & Perry, G. 2004. Oxidative stress signalling in alzheimer's disease. Brain Res, 1000(1), 32–39.
  • Ziegler, D. R., Ribeiro, L. C., Hagenn, M., Araújo, E., Torres, I. L. S., Gottfried, C., Netto, C. A., & Gonçalves, C. A. 2003. Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem Res, 28(12), 1793–1797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.